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It is shown that single-loop Feynman integrals have a simple, natural expression as generalized
hypergeometric power series, It is shown how to continue these power series to regions of physical interest
and how to use them to derive simple systems of differential equations satisfied by single-loop Feynman
integrals. Applications to the evaluation of the box-graph contribution to the scattering of light by light are
discussed.

I. INTRODUCTION Il. SINGLE-LOOP DIAGRAMS

If one examines any text on the theory of func-
tions of several complex variables, one finds that
a very basic tool in this theory is the representa-
tion of holomorphic functions by power series.
This type of representation has received very little
attention in the study of Feynman amplitudes, and
so in this article we. shall examine the representa-
tion of Feynman amplitudes by power series. We
are motivated by a number of specific considera-
tions. The recent work of Begge' has pointed out
that Feynman amplitudes are generalized hyper-
geometric functions in the sense that their funda-
mental groups of analytic continuations are gen-
eralizations of the fundamental group for the ordi-
nary hypergeometric function. This leads one to
suspect that, as in the case for the ordinary hyper-
geometric function, the Feynman amplitudes might
possess simple and elegant power-series expan-
sions, power-series continuations, and differential
equations. In the study of the ordinary hypergeo-
metric function, the study of its fundamental group
plays the role of the final abstraction or crowning
glory of the theory, while most of the theory
is developed using the power series representa-
tions and differential equation. Furthermore, the
simplest way to numerically evaluate the hyper-
geometric function at any point is via the appro-
priate power series representation. Thus, by
studying Feynman amplitudes as power series we
hope to develop the idea of Feynman amplitudes as
generalized hypergeometric functions in a power-
ful new direction and, et the same time, in a more
practically useful direction. Our long-range goal
is to develop a powerful and systematic method
for the calculation and evaluation of higher-order
Feynman integrals.

In Sec. II we study the single-loop diagrams, a
class of diagrams whose fundamental group has
been studied extensively by Regge. ' In Sec. III we
study a more complicated diagram.

Consider any single-loop Feynman graph with
arbitrary internal masses. I et P„.. . , P„be the
N external four momenta and m». .. , m„ the ad-
jacent internal masses. Then the amplitude for
this graph may be written in the form'

E(Pg~ ~ ~ ~ i P~) = dp, p Q(Q~ Zg~

and z&&
= (P& +P«, » + ~ ~ ~ + P&; »)'. We can obtain

a power series for I by expanding the integrand
in Eq. (1) as a power series in {(z,~ —C&~))
i, j = I, . . . , N and i&j, and then performing the
integration term by term Here {.C, ,j is the point
in the space of the —,

' [N(N-1)] variables a,&, about
which we wish to expand. Clearly this power
series will converge so long as

~ Z o'~n~(~&y «y) ( Qo'~~~ ~o'~o&Col i
i&i

for all {o,} in the region of integration. We
assume that all masses are nonzero. By choosing
(C,-J ) sufficiently small and by choosing ~z&z

—C„.(
sufficiently small, (2) can always be satisfied, so
for sufficiently small ~C,;(, the power series ob-
tained by this method will have a finite domain of
convergence. Next we wish to choose {C,z} as-
tutely so that the term-by-term integration will
give simple, elegant coefficients for our power
series. We note that in the theory of the ordi-
nary hypergeometric function the simplest power
series are obtained by expanding about points
which are singular points of the function on some
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sheet. For example, the defining power series
for, F,(a, b, c; z),

r(c) ~ I'(a+n)I (b+n)
I'(a)l'(b) ~, I'(c+n)nt

is an expansion about z=D, which is a singular
point of the continuation of I obtained by circling
the branch point at ~= 1. Generalizing this in-
sight we shall let C»» ——(m»-»&)' since it is known

that the single-loop amplitude has singularities
on unphysical sheets at z»&

——(», -m,.)'. For this
choice of C... the right-hand side of Eq. (2) be-
comes

X2n, ~, sm, —m. 'j

F(I „.. . , P„)=F(y,)
2- (2-ar)

"& Zn»n»&»» —Qn»»»
j&j

(4-2N)
=(-()"f »p(gm, m,

Q) Qyg)g

(Ln, m, )'

which, expanding by the binomial theorem, equals

(-()" ~r( -n+»n) (+ ' '~")
I'(N 2) t-»»»t i @n m )2(N-2+n) ~

2~, , —,(I-,)
2

t&j

Q(n, .»,.)'+ 2+ (n, m»)(n, m»)
i g&j

gn»» )0

and, by the multinomial theorem, becomes

I'(N -2+ n)
(n»»)=0 i&j Cj

rr
f= 1

)» (gn m )2(N-2+n)

so the power series will have a finite radius of
convergence. Let

JfI Zg) (PS g
f/) ) ~

w2

where n=+;,&n»», . and n»
——Q» (»»)n»&++& (»„)n»»,

and QN», n» = 2n. Now let us perform the integra-
tion. We have

i= 1
)

(g n m )
2( N 2+n)-I"(2(N-2)} '-. 8"» dp,

I"(2(N+n-2)) '; ()m» "» " (gn»»»)"N "
( I)NF (N) Sn ~

S (N -4)

I'(2(N+»»-2)};" ' 8»;"» Bx(N 4) (Qn&»»+x)» „

( I)N N ()n» S (N-4)

l(2(N+»»-2)}, . "()m» "» „()x("-');.",(», +»») ~„,

(-I)" .-"- " g () )""
[]Il(2(N+n-2));; am»"; ...s», /

(N-4)
( I)N

, am,. r(2(n+n-»)) )-; m, (iC'") '

Here we have assumed that N &4. Thus,

which, since I"(2z)= 2(" ')I'(z)I'(z+ —,')/w'~', becomes

»(1/2 2(5 2N) S (»: 4)» (g»»»); —
» (»» )n»»F(Z„.. . , I „)=, „, g '(g»,), ' ' „...[
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u ~=
4m,.m,.

z, —(m, -m. )'
4m, m,.

and u, ,= 1 gives the normal threshold in the vari-
able ~,, Thus we see that the single-loop Feyn-
man amplitude is just the (N-4)th derivative of a
single hypergeometric power series in —,'[N(N-I)j
va, riables. '

To illustrate the usefulness of the power-series
method me will nom confine ourselves to the ca.se
M=4, i.e., the box graph, and we shall consider
various applications in detail. For the case N-4,
Eq. (3) becomes

of spurious singularities which only cancel when
one sums over all terms.

As a first application of Eq. (4) we shall show
how it may be used to write down differential
equations for Feynman amplitudes. According to
Hateman, ' if we have a power eries in y vari-
ables,

and lf

where P and Q are finite polynomials in the (u;},
then z~ satisfies the system of y linear pa.rtial-
differential equation s:

2; (~ ej

This formula is remarkable in itself, because
the standard methods for evaluating Feynrnan
integrals lead to F(P„.. . , P,,)=the sum of 192
Spence functions of different rational algebraic
functions of the invariants. ' Note that Spence's
function is a hypergeometric function of one vari-
able, i.e.,

Applying this method to Eq. (4) we find

Q,, =- (n, ,+ 1){n+-,'-),

and therefore the box-graph amplitude satisfies
the system of 6 second-order linear differential
equations„

u, , =-==-+1 un, +2 u

We see that by expressing our amplitude in terms
of generalized hypergeometric functions in sev-
eral variables this sum of 192 ordinary hyper-
geometric functions in one variable collapses into
just one simple hypergeometric function given in
Eq. (4). Of course this is not quite the whole
story, because the continuations of the ordinary
hypergeometric function are known and thus the
behavior of the sum of the 192 Spence functions
is, in principle, known in every region, whereas
all the continuati. ons of the hypergeometric func-
tion in {4) are not known. In practice though the
continuation of the sum of 192 Spence functions
proves difficult because there are intricate can-
eellations between the singularities of the various
terms while, as we shall see, the continuation
of expression (4) is not too difficult and leads to
equally simple and elegant power series in regions
of physical interest. Finally, we shall see that
in (4) and its continuations to other regions, the
analytic behavior in a given region is simply and
explicitly displayed, whereas in the sum of 192
Spence functions, individual terms have all sorts

where

u~ . if $&Q
u ~f s&k

Simplifying, we find for the box graph,

8 8

9u Bu Bu ~ Bu
( ) uI ] u]~ u(~~) u(~ g)

(a~)) (r~y)

8
u(~i)

~+(5 & )

(~~) )

-1 E({u„})=0 . (5)

Thus, me have a simple way of finding differ-
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t1,2-(m, -m2)2 tl22-(m2-m3)'
4m m ' " 4m~

p, ,2-(m, -m4)2 p42-(m, , m4)-2
34 4~ ~ 0 14

4ppg ppg3 4 1 4

s-(m, -m, )'
4m'1 3

t-(m, -m, )'
024 = 4

4m2ng4

ential equations for Feynman amplitudes.
Next, let us study the continuations of the

power series to regions of physical interest.
Let the external-leg masses be p, „~. ~, p, 4. Then

If we assume stability of the external legs,
then p1&Ps1+w2 etc. , and so u», u23 834 and

u, 4 & 1. If we wish to look at scattering in the
s channel, then s& (p, , + p, 2)' and s& (p. 3+ p, 4)2,

while t&(p2-p, 3)2 and t«(tl, -t14)2. The stability
condition ensures that the sum over n», n», n34,
and n„ in Equation (4) will be convergent. If,
in addition, s&(m, +m, )'-u» & 1 and t is such that
~u24[ & 1, then (4) will be a convergent power
series in this region. If we wish to find the scat-
tering amplitude in the vicinity of the normal
threshold s=(m, +m, )' or u»=1, then we rewrite
Eq. (4) in the form

~ .mf 8 f g 'fIfg . „-P I \++ P)+13 ~

(tl .~I 13

where g' and g' mean do not sum over n„and do not include (ij) = (13) in the product. From the theory «
the ordinary hypergeometric function' it is known that

git yg' t

13

n'! n,'!w -1 "24

'4 " "r(-n + -,') r( n'- n' +-'2) r(n'-n'+
2)

= F (n'+ 1, n'+ 1; -n + -', ; 1-u )

g 824+ 1/2
+2+1( 1+2 3+2 24+2, l-u»), "

3 w(-I) 24
r(n24+ 2

where n'=n- n», n,'=n, —n13y and n3'=n3-n». Therefore it follows that in the vicinity of the normal thresh-
old,

F(P P} ( //8g } g (II .)( 1) ' '( ) ' (1 )

) I'(n»-n„+-,')I"(n-n, + 2)I'(n-n, +2);.', 1' (n„)! n13!
1 rl

3 3n, !n4! I'(n-n, +n»+2)I'(n-n, +n»+2)
(~) I'(n„+n„+—,')r(n-n, + —,')r(n-n, +-', )

$n.)f

x (a )" I (1-I )'"»'"
nf~ & (n„)!

Note how the square-root branch point is explicitly displayed in the second term. Similarly, if we
wish to look at the behavior of the scattering amplitude in the vicintiy of s-~, we simply use the formula
for continuation of 2E, to the neighborhood of u»=~ and we obtain a power series which converges rapidly
as s- ~, and explicitly displays the asymptotic behavior. '

As a simple application of these methods, let us consider the box-graph contribution to the scattering of
light by light. According to Karplus and Neuman, ' the scattering amplitude may be written as a sum of
amplitudes of the form

5(1 +el,)-
f-1 Q

where the u, are non-negative integers and g', , o, =4, s =(P, +P,)', t= (P, +P,)', P =0. Applying our
method to this expression we find,

, Q (P+q+ I)!(jl+(r,)!(q+v2)! (!t+a3)!(q+o'4) I s t '
(2p+2q+7)! P!q! m m
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Using

I'(2p+2q+8)=-2'(~'""tt 'i'I'(p+q+4)I'(p+q+'-, ),
we find

(p+q+1) t (p+o, ) '(q+o, )!(p+o.) '(q+o.)!
2'm' ~, 0 (p+q+3)! I'(p+q+ —,')ptqr

where x = s/4m' and y = t/4m' Th.us we see that
the amplitude for the scattering of light by light
is just a simple generalization of the Appell func-
tion I,.'

The continuations of E(l. (6) to other regions
may be easily obtained by the method described
above. In the low energy limit, s, t«4m' and
the p=q =0 term of Eq. (6) gives the low energy
approximation of Karplus and Neuman while the
higher-order terms give all corrections to that
approximation. " In the case of forw'ard scat-
tering, t=0, and we have

A(P„. . . , P4)=m o2!o~!

(p+ 1) t(p+o ) t(p yo3) t s
(2pi7) tP! m

[II"']

x,F,(o, + 1, o, + 1, 2; 4,$; (s/4m') ),
where, E2 is the generalized hypergeometric
series in one variable whose continuations may
be looked up in the Bateman manuscript. " The
clarity and suitability for numerical computa-
tation of E(l. (6) may best be appreciated by
comparing it with the equivalent expression by
Karplus and Neuman for A(P„. . . ,P,)

1

(r, -1)
a ( — t a ( —

)(q a q a )
(1 a )r, (I a )(r,

—tt

we can further reduce C„ to a sum of integrals
of the form

J
n.

" (l-a,)(l-a, )
'

Finally, writing a, = 1-(l-a,), a, = l-(l-a, ),
a, =(l-a,)+(l-a,)-l, and expanding, we ob-
tain C„as a sum of integrals of the form

!t IIa, '=
(Zp;+2) '

"(l-a,)(l-a, )

(ata~a3)
(I-a,)"t (l-a, )"2 '

Then, by using relations of the type

J IIa" (l-a, )"|(1—a,)"g

6(1 ~ )
IIa,' s (1—a,)(' " t

(l-a, )"t Ba, (r, -1)

III. MORE COMPLKATED DIAGRAMS

Let us consider the lowest-order self-energy
graph in tttt' theory. There are three internal
lines with equal masses, and after renormal-
ization, one finds that the corresponding Feynman
amplitude is given by

I gf|
F(P') =a+!x+ —, (tt -2)!C„—,3 y tl 2 Pl

where a and b depend on the mass and wave-
function renormalization, x = (P'-m')/m', and

Thus we see that C„=P„+m'q„, where P„and q„
are both rational numbers, but P„and q„are
no longer simple products of I" functions as
was true in the single-loop case. To investigate
the convergence of the power series we note
that IIat/(I —at) has a maximum at a, = a, = a,=-';,

the center of the triangle of integration, and
goes to zero on the boundary of the triangle.
Therefore for large n, let e, = cy, -3, and we
find that

We have defined x so that x =0 gives the un-
physical-sheet Landau singularity. The coeffi-
cients C „may be evaluated in the following
manner: First, by repeatedly multiplying and
dividing by Q', ,(l-a, )=2, we can reduce C„
to a sum of integrals of the form

+ 00 2 2/1 i(tt -i) d d -(& -&)(27/4)(& + ~ + ~y~2)- is) 1 2 1 2

1 n-27T

27 [3(yg —1)]' /2
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Therefore, the power series converges if x &8,
and diverges if x&8. This is as expected since
the physical-sheet Landau singularity lies at
P'=(3m)', or x=8. We also note that the power
series

OO &n
f(x) Q--(n-2)! C „—,

0 =2 8

may be continued by the method of Mellin and
Barnes. That is,

] ." + f~+ 3/2
f(x)= ds I'(s- I)I'(-s) (-x)

2pi

the contour with an infinite semicircle in the
region Res & —,.

IV. CONCLUSION

It has been shown that all single-loop Feynman
diagrams can be represented by a single gen-
eralized hypergeometric power series. The
continuations of these power series to various
physically-interesting regions has been given.
A simple method for finding the system of lin-
ear differential equations satisfied by each
graph is presented. " A simple application to
the scattering of light by light is given.

where ~arg(-x) ~&w, as is easily seen by closing
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