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A systematic investigation, in perturbation theory, is presented of the light-cone behavior of multiparticle

matrix elements of time-ordered products of local fie1ds: I d'x e '" ( P ~TQ, (x)as(0)
~
u ) . In the limit

q -+ oo, the contribution of any single Feynman graph is of the form q ~(lnq )~. The main result here is a
rule by means of which the integers P and y can be read oA' from the topology of the graph. The
implications of this investigation for local field theories are organized and discussed in operator language in

a companion paper. A by-product of the special methods here developed to obtain asymptotic estimates in

perturbation theory is a refinement of Weinberg's theorem for the Euclidean region: the determination of
the logarithmic factors in the asymptotic form of Feynman amplitudes when a set of external momenta q „
q„... is allowed to approach infinity according to q, = gq', , q-+Oo .

I. INIODUCTION

This is the second of two papers' dealing with
light-cone singularities of bilocal operator prod-
ucts as manifested in perturbation theory. The
present paper is devoted exclusively to a system-
atic investigation of the asymptotic contribution of
an arbitrary Feynman graph to Fourier-trans-
formed multiparticle matrix elements of ti.me-
ordered products:

'xe'"(P
~
Tg, (x)g, (0)

~
n)

in the generalized Bjorken-Johnson-l. ow (pJL)

limit'. q - ~ with q+, q~ fixed.
I For reasons of typographical clarity, the no-

tation used in this paper differs from that in I.
For any vector q", the quantities q, are not de-
fined as vector components, but rather as scalar
products: q, =q' =M, q, M," =2 "'(1,0, 0, v1).
Thus q or q is numerically equal to the —com-
ponent of the contravariant vector. ]

The asymptotic behavior of any single Feynman
graph turns out to be of the form q s(lnq ) &'. Our
main result here is the formulation of a rule ac-
cording to which the integers P and y can be read
off from the topology of any given graph. The ap-
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plication of this rule to classify asymptotically
all Feynman graphs for various multipartiele
matrix elements is then undertaken in detail in
the context of a particular Lagrangian field theory
with a scalar-spinor interaction of the type gg&f&.

The asymptotic behavior in q space can be trans-
lated into light-cone behavior, using the results of
Ref. 2 and the Appendix of I. The coefficient of
I/q is the Fourier transform of the singular part
of the light-cone commutator. ' However, there
are other terms which do not lead to singularities
in eommutators, but only in T products or Wight-
man products. In the Appendix to I, it is shown
that if the index J3 is less than two, the graph has
no singularities on the light cone, but that there
are singularities if P ~ 2 (e.g. , Inx' corresponds
to P =2, y =0). Such singularities occur in fermion
bilocals in perturbation theory and violate Bjorken
scaling.

The paper is organized as follows: In See. II
we develop a topological formula for writing down
an arbitrary Feynman integral in its parametric
form. This is essentially a generalization to par-
ticles with spin of a previous formula for the pure-
ly scalar case given by Shimamoto. '

In Sec. III we discuss the asymptotic contribution
of various regions in Feynman-parameter space
for an arbitrary graph and locate the leading as-
ymptotic behavior. Our discussion is summarized
in a general topological rule. The application of
this rule depends on the knowledge, within a par-
ticular Lagrangian theory, of certain character-
istic integers, the asymPtotic indices associated
with a special class of graphs which we shall call
m g~aPhs. The concepts and methods introduced
in this section for the light-cone limit actually
have a wider applicability. We illustrate this with
a brief discussion of asymptotic behavior in the
Euclidean, case, in which we obtain a refinement
of Weinberg's theorem' by determining the loga-
rithmic factors in the asymptotic limit.

In Sec. IV we focus on the

/ting

interaction. Es-
timating the asymptotic indices turns out to be, at
least in this theory, particularly easy. In fact,
they can be obtained from a study of a small num-
ber of tree graPhs. As we are then able to survey
the asymptotics of all Feynman graphs in this
theory, there emerges a striking feature: The
light-cone singularities of the operator product
(i.e., the collection of all its multiparticle matrix
elements) can be isolated in a small number of
irreducible Bethe-Salpeter kernels (which are
functions of a finite number of space-time co-
ordinates). The detailed implications of this phe-
nomenon for light-cone physics, if valid in all
renormalizable field theories, are organized and
discussed in operator language in the companion

paper, where we formulate an expansion of bilocal
operator products in terms of irreducible Bethe-
Salpeter kernels.

The techniques developed in this paper enable
one to extract the exact power of lnq in the
q —~ behavior of individual Feynman integrals
and, moreover, to see that these logarithmic
powers are associated with iterations of the ir-
reducible kernels. However, we have not here
addressed ourselves to the circumstances under
which these logarithmic terms could build up to
an essential modification of light-cone behavior.
It is also appropriate to mention, at the outset,
an important qualification of our present work on
perturbation theory: We have only considered
"skeleton" graphs, i.e., convergent Feynman in-
tegrals, with bare propagators and vertices. We,
nevertheless, expect that the inclusion of the full
renormalized propagators and vertex parts will
not seriously affect our conclusions.

Sections II, III, and IV are rather long and in-
volved. The reader who is not interested in these
details is urged to turn to Sec. V, which is a brief
summary of the main results.

PARAMETRIC FEYNMAN INTEGRALS

Our study of the asymptotic properties of Feyn-
man integrals will be carried out in terms of their
parametric form, namely, the form obtained by
combining the denominators of all propagators
through the Feynman identity and then explicitly
performing the integration over internal momenta.
Although the original defining form reflects the
topology of the graph more directly, it does not
seem to be appropriate for reliable asymptotic
estimates. This is because the Feynman integrals
in the original form are never absolutely conver-
gent due to the indefiniteness of the Lorentz met-
ric —even before the ie-0 limit is taken in the
denominators. For this reason Weinberg's power-
ful theorem' on the asymptotic behavior of Feyn-
man integrals is established only for Euclidean
external momenta and cannot be directly applied
where some or all of the external momenta are
on the mass shell. In contrast, the parametric
form is absolutely convergent (if i c w0, as we will
assume throughout our discussion); moreover,
it is possible to give a relatively simple topologi-
cal recipe for writing down the integrand as a
function of the Feynman parameters and the ex-
ternal momenta. Such a prescription was given
long ago by Shimamoto' and represented a refine-
ment of previous work by Nambu, ' Symanzik, ' and
Nakanishi. ' Since Shimamoto's formula is, strict-
ly speaking, applicable to graphs with only scalar
particles, we shall need to generalize it in this
section to the general case of particles with spin
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and in particular spin- —,.' particles.
It will be convenient to introduce certain pre-

liminary topological concepts in relation to graphs.
Let G be an arbitrary connected' Feynman graph
with L independent loops and I internal lines with

Feynman parameters x„x2y x3p ~ ~ y xI ~

Definition: A chord set h is a set of I internal
lines (i„i„..., i~} whose complement is loopless
and connected (i.e., G-h is a tree). The product
x. x. ~ x- will be referred to as a chord-set

t j.

product and will be denoted by y(h).
Definition: A cut set c is a set of L+1 internal

lines (i„i„..., i~,}whose complement consists
of two vertex-disjoint, connected, loopless parts
(i.e., G-c consists of two disjoint trees). The
product x. x. ~ .x. will be referred to as at2
cut-set product and will be denoted by y(c).

The sum of the external momenta attached to
one of the two trees G-c will be referred to as the
cut-set momentum I', . In general, we shall fur-
ther need to specify which one of the two trees
I', is associated with. Because of the over-all
momentum conservation, this is only an over-all
sign ambiguity and, for example, in Shimamoto's
formula for the purely scalar case, only I', 2 ap-
pears and no further specification is necessary.

Consider now a graph G with only scalar propa-
gators as, for example, in a theory of scalar par-
ticles coupled by cubic and quartic interactions of
the type &f&' and Q'. According to the Feynman
rules (i) to each internal line carrying momentum

Q,. there corresponds a propagator (2m)'i (Q,
'

—m,.'+is) ', where m,. is the mass of the asso-
ciated particle, and (ii) to each vertex there cor-
responds a factor of (2v)'i 5'(P Q) x (coupling con-

stants), where P Q is the sum of the momenta
converging to that vertex.

We obtain the parametric form by first combin-
ing the denominators' by means of the Feynrnan
identity

where

(2)

all c

For later use we note that p/Vis equal to the
extremum of the sum Qx„.Q,.

' under variations of
the components of all Q,. 's subject to the four-
momentum conservation constraints at the ver-
tices. The extremizing values Q,. of these mo-
menta satisfy Kirchhoff's law:

Px,. QI" =0 along any loop.

Another immediate consequence of the extremum
property of which we shall later make use is

The formal correspondence to an electric cir-
cuit with the parameters x„x„.. . , x, having
the role of ohmic resistances has been frequently
employed in the literature. "

%e shall now proceed to a generalization of
formula (I) for graphs having a number of internal
particles with spin. The integrand of any Feynman
integral with some polynomial in the momenta
oecuring in the numerator is a linear combination
of terms of the form

QP &QP2. . .QPal 2 g

(Qg —mg +2E)(Qp —mp +1 E)' ' ' (QI —mr +iE')

To obtain the parametric form for this integral
we make use of the scalar formula (I) by the de-
vice of writing

x —sz + SE'

j=1

and then performing the momentum integrations.
Shirnamoto's formula for the resulting integral
over x~ x2~. . . xr reads

(I 2L I) t

F(G) = (coupling constant)

1j 1 d7.
Q,

' —m)'+i@ '
m,. 2 '&a",. (Q,. +a,. )' —7;. +ie

or symbolically,

QP 1

Q,.
' —m,.'+ i e ' (Q,. + a, )' —w,. + i e '

wI;ich defines I-,". as an operator. We may then
write the integrand (6) as

LPi LjI2. . .I Po 1

[(Q, + a, ) —m, '+ ie] [(Q, +a,)'- m, '+ ieI ~ ~ ~

If we now, befoxe the application of the operator L",'L,"2, perform the momentum integrations by
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means of the Feynman identity, the resulting parametric form will obviously be that of a purely scalar
graph with o auxiliary external momenta a„a„.. . , a, (one for each fermion line) assigned as follows:
If the i th fermion line joins the vertices v and v' and carries momentum Q",. in the direction from v to v',
then an auxiliary external momentum a",. enters at v and exits at v'. The resulting parametric integral
according to formula (1) reads

where

2' „„4'D = —-Qm, 'x,. + —Q a P. d", +—Q (a,. a, )r„
j=l

+(terms prop to a,', a, ', . . . )+i&,

Q -=+I'. X(c),

dp. =+I',"!i(c),
C&t

C+fg J
+X c

Thus P and Uare the same expressions as in
the purely scalar case. En addition, two new types
of quantities appear, d",. and x, , , whose symbolic

definitions as given above need further clarifica-
tion. Let the i th fermion line join the vertices
v,. and v,'. and be oriented, in the sense described
above, from v,. to v,'. . Then the sum in the defi-
nition of d",. runs over those cut sets c for which
v,. and v,'. belong to different trees in G c, a-nd

IP," is the total external momentum (not including
the auxiliary momenta) coming into the tree con-
taining v, The sum in the definition of x, , runs
over those cut sets c for which either (i) v,. and
v,. belong to one tree in G-c and v,'. , v,'. to the oth-
er, or (ii) v,. and v,'. belong to one tree and v,'. , v,.
to the other. The + sign is appropriate in case (i)
and the —sign in case (ii).

Note that the terms proportional to the squares
a, , a, , . . . can be dropped at this stage since2 2

all a,.'s are to be set equal to zero after the dif-
ferentiations implied by L" lI 2 ~ ~ I-",'.

The result of carrying out the operations
L"lL"2 on D I"L isl 2

dj a yl ~" ~2 d" d"4 da" a -I+2L+ l
D -'+2L+ " ' 4 ~ ~ ~ + permutationsx Ux2U x U xx2U x3U x4U x U I —2I —1

with

X g "l"2 x,g "&"4 d",5 d", & -I+2L+2
+ " ' ' +permutations ' + ~

(I —2L —1)(I—2L —2)

D, = -g x,. m, '+i—e.

Here "+ permutations" mean that all distinct te "ms obtained from the given one by permutations of the
indices 1, 2, . . . , 0 are to be added.

We may employ a shorthand notation to write this as

P l P2. . . p -1+2I -~ P )' -1+2j+p 1 '2L, L2 ~ L, D ~ ((I —2L- 1'! D, ' ' ' +permutations t
x, Ux2U x U

P Pae111gs

if we introduce the "pairing" dots as

d~ d' = Ug~"x.

Making use of double dots, triple dots, etc., to distinguish between different pairings, we see that the
integrand (6) leads to the parametric integrand

~

~ ~ ~

3I —2L — ) t
dx, dx2 dxrS(Zxy —1) -dp, . dp2 ~ dp, dp~"

~ ~ ~ +permutations p,(4w) ~ U [Q/U —Qx rn +,Ef]l 2L P x, Ux U -x, U x U P ya1mlgS

Consider now a complete Feynman integral. For concreteness, assume that the only momentum-depen-
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dent factors in the numerator come from fermion propagators. The general form of the integral is then

(27()4i (27() 4i Q,'-m, '+is 12@2' —m2'+ie " Q,
' —m, 2+is Q „'—m„,2+is

where k„k„.. . , k~ is a set of independent loop moment and I'~, I», ~ ~ ~ are momentum-independent ma-
trices. According to our previous analysis, the parametric form of F(G) can be written as

F G
(I 2I, -p)! " dx,dx, dx, ()(gx, -1)

(4~)" . U2[y/U-g x, m„.2+i~]'

x — — +m, I"~ + m2 1» + + permutations
x U ' x2U

P PRlD11gS

where we used the pairing dots for fermion numerators:

if2 &Jk
~ ~ ~ +m,. + fpg 4 ~ 4 4 4 ~ y 4 ~ eyP4 ~ ~

x,. U ~ x, U ' x,. x, U ~

The sum in the curly brackets in Eq. (10) is taken over all the terms obtained by forming exactly p pairs
in all possible ways out of the set of fermion lines.

As an illustration we consider the 6th order graph of Fig. 1 for a (r)gQ theory of fermions (solid lines)
and scalars (dotted lines). We first write down the quantities U, Q, d, , r„accord. ing to their topological
definitions:

U = (x1 + x3 + x5 ) (x2 + x4 + x5 + x7) + x5 (x1 + x2 + x3 + x4 + x5 + x7),

P=q, '[x x, (x, +x, +x, +x,)+x x x,]+q,'[xx, (x, +x, +x, +x,)+x x x,]

+ P 1 [X2X7 (X1 + X3 + X5 + X5) + X1X5X7] + P2 [X4X7(X1+X3 + X5 + X5) + X3X5X7]

+ (P1 + P2) [x1x3(x2 + 4 + x5 + 7) +x1 4x5 + 2x3x5+ x2x4(x1 + 3 + x5 + x5)] + (P1+P3) x5x5x7 1
2 2

= x5 (x2 + x4 + x5 + x7)q1 + f x3 (x2 + x4 + x5 + x7) + x4x5] (q 1 + q2 ) —x5x7 PxI

—= —x,(x, +x, +x, +x,)P, —[x,(x, +x, +x, +x,)+x,x,] (P, +P, )+x,x,q„
X2

=x,(x, +x, +x, +x,)q, + [x,(x, +x, +x, +x,)+xx,] (q, +q, ) —x x,P, ,
3

d~ = —x,(x, + x, + x, +x,)P, —[x, (x, + x, + x, + x,) + x,x,] (P, + P, ) + x,x,q, ,
x4

+13 24

XQX3 X2X4 XQX4 X2X3 X]X2 X3X4

The parametric integral is

1 dx ~ dx 7 3I 2 I

F(G)
(4 x4 2 ~ Q xj 1

D 3 41234 + 2 (4(12)34 + 4(13)24 4(14)32 4(23)14 4(24)1 +3412(34) )

1
+ (4(12)(34) 4(13)(24) +4(14)(23) ) 1

Do

where D5 = Q/U-gx&m, .'+is and the g's stand for
the various ways of pairing fermion lines, in an
obvious notation. For example, )~34 is the no-
pairing term

4r„
( (!1)12—34 +m3 + m4 y

XJX2 X3 x4

4r„ .-.),XQX3 X2 x4

A sample of some of the pairing terms is
4m~4 4X2s

xx Uxx U r r ~~~'
4 2 3
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It is clear that an analogous notation for orga-
nizing various terms in the parametric form of a
Feynman integral can be developed in the general
case (e.g., derivative couplings, etc. ) insofar as
the integral can be written as a sum of terms of
the form (6).

In general, writing out the parametric formula
for the Feynman integral E(G) will result in a
considerable number of terms of the form"

III. ASYMPTOTIC BEHAVIOR OF

FEYNMAN INTEGRALS

We are interested in the light-cone behavior of
time-ordered products of local field operators.
Consider, for example, the case of two Dirac
fields (one of which may be an adjoint field):

'xe"" (B
~
T(g»(x)g»(0))

~
A) = C„z(q; P„P„.. . ) .

V ~ '''J' ~ d ~

$]42 $344 42p 1 $2p $2p+1 s 7

X g '''X. D PU T P+
i1 i2 i„

(12)

For our subsequent discussion of asymptotic
behavior it will be convenient to further decom-
pose the integrand as follows. In the defining ex-
pression (7) for the "numerator momenta" d, , we
group cut-set products associated with the same
cut-set momentum and write

=QP d, ((u), .

where P is the sum of a subset co of the external
momenta and c is a cut set with cut-set momen-
tum P . Accordingly, each of the terms (12) is
decomposed into a sum of terms like

r d(.&u. ) d ((u. )~1&2 &2p -li2p c2 +1 ~2p+1p+ iT iT.

D I-2L-p U T-p+2

In perturbation theory, contributions to the con-
nected part of C„B correspond to connected graphs
C. We explore the light cone in the limit q
with q„q; P„P„.. . , P„ fixed. If we display
explicitly the external propagators associated with
the fields g, and g„

I g(q, P„P~, ,P. ),
the quantity I z will be associated with the "in-

yb

ternal" lines of C. For ease of reference, it will
be convenient to combine the two propagators for
g, and g, with the ones in I z by the Feynman iden-
tity, although this is not necessary. In general
the contribution of a particular numerator pattern
P of a graph 0 with I, independent loops and I
propagators is of the form

dx, dx~6 (Q x, —1)
F(G P)=

P [Q/U Q x m +tel & P~P~-

each of which is specified by (i) the set of numer-
ator momenta d which are paired and the particu-
lar pairing pattern, (ii) the set of unpaired d's and
the corresponding P 's.

We shall call the specifications (i) and (ii) a nu-
merator pattern P and we shall denote by F(G, P)
the corresponding contribution to E(G):

F(G) =gF(G, P).

~G P(xlx' ' ~
& xI)+6 P(q&P1&P2t ~ ~ ) t

where p(P) is the number of pairings and the de-
pendence on the external mcmenta of the numer-
ator is factored in the quantity II~ ~, which is a
polynomial in the components of q, P„P„.. . , P„.

Since we are only interested in the q - ~ be-
havior of E(G, P), we may simplify this expression
for F(G, P) as follows:

(1) We replace H~ p by its large-q behavior:
~(a, s) "

rJIG p-q ' IIGp(q+~qii pi~p2~ ~ ~ &Pn).
(2) Since max m, .'~P x,. m,.'~ minm, .', we re-

place the sum g x,.m,.' in the denominator by a
constant m' (this amounts to assuming that all the
masses are equal to m).

(3) The quantity Q in the denominator is a lin-
ear combination of the Lorentz scalar products

Xp
''

p
I

" Xg 2 2q, qP» qP2~ ~ ~ ~ &Pl &P1P2p ~ ~ ~ r

with coefficients depending on the parameters x1,
x„.. . , x, . Asymptotically we have

FIG. 1. A 6th-order graph in $|I)p theory used in the
text to illustrate the topological construction of the

parametric integral with spin.

q ) qp1) ~ ~ ~ Q' q+) q„p1& ~ ~ ~ q
'

p p fixed.

We may separate the q -dependent terms by writ-
ing
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(I) = fq + (terms proportional to fixed momenta),

f =+1i(c)P;.

We now drop the terms which are proportional
to fixed momenta and simply write Q =fq, as this
will not affect the leading asymptotic behavior of
F(G, P).

Note that q f/c —m' is the exact denominator if
(1) all internal masses are equal to m and (2) P»
p„.. . , p„only have a + component and also
q~ =o.

Thus we may write

Since the coefficient of $ is not zero by assump-
tion, f/U changes sign at $ =0. From Eq. (14) it
further follows that if, for some i, x, =0 then
also x, ($) =0 so that a finite segment of the line
containing $ =0 lies in the integration domain

lx, ~ 0;px, =1j. If we now take ( as one of the
integration variables (by setting, e.g., x, =x,
+71, $ for some i for which 71, IO) our integral
takes the form

J d(Q($, x) )Q(c, ~)
[ f/U 2+'~]I 2L-P-(P)q-

F(G, P)- dx, dx 5(gx; —1)

Mc, ~(x)q "'c ~'IIc,„(1)
U'[f/Uq —m'+ie]

The reader should be warned at this point that,
although in so simplifying the integrand the leadivg
term in F(G, P) is not altered, it is conceivable
that in the sum F(G) =g~F(G, P), the leading
terms could cancel, in which case our subsequent
result for the asymptotic behavior of F(G, P)
would be an overestimate. It would then be nec-
essary to consider the next leading terms in the
F(G, P)'s. Such cancellations, as well as cancel-
lations between different graphs, cannot be dis-
missed as totally unlikely. "

Let us now consider the contribution from vari-
ous regions in parameter space in the limit
q - ~. It is clear that the contribution of any
region where f/Ue0 behaves like q

8~ c ~), where

P (G, P) =N(G, P) -I +2L+ p(P) .
The integer i1(G, P) will be called the asymptotic

Asdex of G associated with the numerator pattern P.
Next, let f/U=O at x, =x, , (i =1, 2, . . . , I ). As-

sume first that

where $, &0& $„andf/U, in its dependence on $,
is analytic with a nonvanishing derivative at $ =0.
Under these circumstances the path of the $ inte-
gration may be distorted in a small semicircle
about $ =0 in the lower or upper half plane [de-
pending on the sign of q e(f/U)/&$] and it follows
that the integral behaves like q

~ ~ just as from
regions where f/Uw0.

At this point a clarification is necessary. We
have taken for granted that f/U is analytic at x,.
=x, . Since f and Uare both polynomials, this is
true except when U= 0. From its definition, U

vanishes if and only if the Feynman parameters of
at least one loop vanish. In that case f also van-
ishes and f/U is indeterminate. This formal dif-
ficulty can be overcome by introducing a scaling
parameter A.. Let, for example, x„x„.. . , x
be the parameters of the loop and set x, =A.x', ,
i =1, 2, . . . , m with Qx,' = 1. For small A. we have

f -X and U-A. so that, in terms of the new vari-
ables ~ and x,'. , the ratio f/U is analytic at X =0
(and the x,"s cannot vanish simultaneously). Our
previous argument then applies. (If the parame-
ters of more than one loop vanish, we simply in-
troduce one scaling parameter for each loop. )

It remains to discuss what happens when

and consider the straight line

8
x ~ ($) = x( +')I ( with 7/( = x( ~

j
(14)

for x,. =x, . This means that, for every i, either
x, =Oor

[Note that points on this line satisfy P x, =1 be-
cause

where the last equality follows from the fact that
f/U is a homogeneous function of the x,. 's of de-
gree one. ] We look now at the values of f/U on
the line in the neighborhood of $ =0 by expanding

Recall, however, that [see Eq. (5)]

,~) =Q*=(Q, ), (Q, )
x

where (g, ] extremizes PX, Q,
' [with q„= (p, )

= (P,. ) =0]. In terms of the electric circuit anal-
ogy this means that the lines of our graph are
divided into three disjoint sets: (1) lines of zero
resistance (i.e., shortcircuited), (2) lines carry-
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(q+ q-) —&(p.)+

Pi+

Pa+
N+

FIG. 2, The + and —components of the extremizing
momenta flow in disjoint parts of the graph.

ing only + current, and (3) lines carrying only
—current. Since Kirchhoff's laws hold separately
for the + and —currents, it is easy to see that
the potential between the points A and B (where

q and q, flow in and out of the circuit) must be
the same (see Fig. 2). Thus the resistance be-
tween A and B must be zero, namely, the param-
eters of a set of lines forming a continuous Path
from A to B must vanish.

Before going into a systematic discussion of the
asymptotic contributions of such vanishing sets of
parameters, it will perhaps be helpful for the
reader to visualize the relevant mechanism in a
general way. Let x„x„.. . , x„be the parame-
ters of a set of lines forming exactly l-indepen-
dent loops and containing a continuous path from
A to B. Introduce a scaling parameter by x, =A.x,'. ,
i =1, 2, . . . , n with Px,' =1 as above. From the
topological definition of f and Uit follows that

f -A."' and U-A. ' for small X. Accordingly, we
have a contribution to F(G, P) from the neighbor-
hood of A. =0 of the form

dA. A.
"

ar(c, J )

(Xq - m+i )'e'

where A,
' is the small-X behavior of Mc ~/U' (see

Ec[. (13)j. Clearly if n+7&I-2I. —p(P) this in-
tegral still behaves like q . However, in
contrast with the integral of E|I. (15), if n+ T &I
—2I.—p(P) the behavior is q

"c ~~ " ' (times
lnq if the equality sign holds). This is because
the lower limit of the A, integration is zero, i.e.,
the vanishing of the coefficient of q in the denom-
inator cannot be avoided by a distortion of contours
into the complex plane.

These end-Point contributions are familiar in
the literature from the study of the high-energy
behavior of scattering amplitudes in perturbation
theory. " In the case of scattering amplitudes
where all external momenta are on the miss shell
and, in particular, for fixed momentum transfer,
in addition to end-point contributions, there ap-

pears another mechanism, the so-called pinch-
contributions, associated with a certain class of
nonplanar graphs. " This is essentially because,
in the high-energy fixed-momentum-transfer limit
of scattering amplitudes, the + and —currents
can flow in separate pieces of the graph without
the vanishing of all cut-set products in the coef-
ficient of the large variable in the denominator of
the integral. The so-called Mandelstam graphs,
which are associated with moving cuts in the com-
plex angular momentum plane and the Gribov-
Pomeranehuk singularities, correspond, in elec-
tric circuit language, to a kind of double Wheat-
stone bridge (see Fig. 3). It is an imPortant sim-
plification that, as use have shoun above, there
axe no pinch-conA ibutions in the light-cone limit
q - ~. This phenomenon can be traced to the
simple fact that the + and —components of q are
always present at the external vertices A and B
(the pinch contributions would reappear for q„=0
but this would not be the light-cone limit for local
operators).

We proceed to discuss the end-point contribu-
tions in a systematic way. Consider an end-point
set of lines E with parameters x„x„.. . , x„.
Suppose a subset 0 of E with parameters xy x2,

is disconnected from A and B (i.e., there
is no continuous path of lines of E from A to any
of the lines of o). Introducing a scaling parame-
ter, as above, for the parameters of o. we have,
for small X f - X' and U- X', where l is the num-
ber of independent loops of o. Therefore f/U does
not vanish for small A. . Clearly then, in terms of
the new variables A., xy x2 ~ ~ x x x„,
it is just the vanishing of x „, x „,. . . , x„ that
makes f/U vanish. We may thus restrict our-
selves from now on to connected end-point sets
of lines. Moreover, it is easy to see that these
sets need not contain "redundant" bnes, i.e.,
lines whose removal from the set does not destroy
any of its loops or the continuous path from A to B.
We therefore introduce the following definition.

Definition: A minimal end-Point sub''mph or
briefly an ~ subgxaPh is a set of lines of |"with
the properties:

(1) It is connected.

Q, =Q =0 p

FIG. 3, Electrical-circuit analog of the Mandelstam
graphs,
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(2) It contains a set of lines forming a contin-
uous path from A to B.

(3) The removal of any of its lines destroys
either one of its loops or the path from A to B.
We shall include G itself in the set of its n~ sub-
graphs.

Now let (1, 2, 3, . . . , I) be the lines of a Feynman
graph G with L-independent loops. By definition
F(G, P) is given by a parametric integral associ-
ated with the numerator pattern P. Also let
(1, 2, . . . , n) be the lines of a m subgraph g with I
independent loops. In order to isolate and study
the asymptotic contribution of the manifold x»
=. . . =x„=0 (corresponding to the vanishing of the
parameters of g) we introduce the quantity
F, , (G, P) as the value of the parametric integral
for F(G, P) when the domain of the integration is
restricted by

x,/1, x2/x, . . . , x„/A, x„„,x„„2,. . . , x, & t,
where X =P",x, and I/I & e& 0.

Next we consider the Feynman. integral F(g) as-
sociated with g itself with external momenta as
shown in Fig. 4. Besides the external momenta q

and —q at the vertices A and B (just as in G), we
assign a set of external momenta P,', p,', . . . at
those vertices which g has in common with its
complement in G. [When we later refer to the
q - ~ behavior of F(g) it will be meant under
fixed but general values of P,', P,', . . . .] F(g) is
itself a sum over parametric integrals of various
numerator patterns P' of g.

F(g) =g F(g, P').

We shall focus on those P' which are comPatible
with P. By this we shall mean the following rela-
tion between P' and P to be denoted by P'C P:

(1) If two numerator momenta are paired in g
under P', their counterparts in G are also paired
under P.

(2) If d,'. (&u') is an unpaired numerator momen-
tum in P', its counterpart d,. (~) in D is also un-
paired and ~' contains q if and only if co contains
q.

Our first step will be to obtain the asymptotic
behavior of F, , (G, P). According to our analysis
in Sec. II, F(G, P) is of the form

« d&2 dyAy2 ' &(go+Qy-I) A, A, C, C AA;. ACI CC;.
U [f/Uq —2)2 +zc] I 2L P(P) --(1~U o.'2U y, U y2U GI&n, U ~2& y, U y;yI U

" d~" dy ~(g~+Qy I-
U2[f/Uq ~2+2~] I 2L-p (P) G, P -i y P, Gq—

where, for ease of reference, we denoted by Q„Q„.. . , Q„ the parameters of g and by y», y2, . . . those
of G-g. Also we denoted by A,. and C,. the numerator momenta "d,. " for g and G-g, respectively. (We
have omitted the vector indices on A,. and C,. for simplicity. ) If we introduce a scaling parameter for the
lines of g..

dQ dQ ' ' 'dQ —X dX dQ»dQ2' ' 'dQ ~ Qf —1

we have, by definition,

'dido." dy 5(P a'- l)5 (Qy+X-1)F (P P3- M ~(~ Q )B ~(c,z)
CX g)C U [f/Uq —I)2 +is]2j / 2 ~ "l

g 2g (g)

It is obvious that the q - ~ behavior of F, ,(G, P)
depends on the small-X behavior of f, U, and

Mc ~. We shall examine each of these quantities
separately.

(1) Every chord set of G must contain at least
l lines belonging to g because its removal de-
stroys all the loops of g. It follows that

U=X' U(A. , u', y),

where U is a polynomial in A., Q', and y. Note
that U(0, Ir', y) does not vanish identically because
there is always at least one chord set which con-
tains exactly l lines belonging to g.

(2) Every cut set of G inf contains at least 1+1
N

FIG. 4. External momenta assigned to an m subgraph g.
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go~
e,. U

A;. A',.

n, a,. U
A;C;

The pairing C,.C,. contains cut-set products with
l n's (but none with less than l u's) so that

lines belonging to g because its removal destroys
all the loops in g and disconneets A from B. It
follows that

f =A.'"f ()(, o. ', y),

where again f is a polynomia, l which does not van-
ish identically for A. =0.

(3) The small-)I. behavior of Mwi11 be obtained
by looking at the quantities A,. /G(, U, . C,. /y, . U, etc.,
indlvlduall. y.

Each cut-set product in A, , A,. A, , or A;. C',. con-
tains, as factors, l + 1 n parameters associated
with one of several numerator patterns J." com-
patible with I'. It follows that

C;C,
'

o

Finally, if and only if the eut-set momentum in
a given C,. contains q, each of the associated cut
sets contains l+ 1 lines forming cut sets of g (of
compatible patterns, i.e., containing q). It fol-
lows that

C;
A.I, if 02; contains q

'
t

-'- -A.'P„ if cu, does not contain q.

This means that a power of A. multiplies every
extra power of q that the integrand of r(G, P)
picks up in excess of the q

' ' of a compatible
pattern I'' of g. Thus the small-A. behavior of
M~ ~ can be expressed by writing

() &

y)q N(G, P) g y-P (P')
() q

)JV(G. P) lV( , g')P-N(g, P')
q (~ &i )

I"CP

where the quantities pP, are not identically zero for X =0.
Collecting powers of X and recalling that P (g, P') =N( g, P') —n+21+ p(P'), we have

)(- (8 g P')( ) q )E{G,P)q (y ~& )
Eg g (Gy P) Q, d+I dyl d~ 2I I 2 ' & )g(G P) 8(G P)-p, ) )g o U [Xf/Uq —m +i@']

Because of the restriction e', y& e, no end-
point set of parameters for f /U can vanish" so
that the leading q - ~ behavior comes from the
neighborhood of A =0. The problem is thus re-
duced to a study of elementary integrals of the
fol m

y -8 (g P')
()(q )N{G P)

1))g(G,P) -8(G.P) (q- ) ~

The result is as follows: I et p= maxP, ~Pp (g,P');
then

E, , (G, P)-q { ' if P&P(G, P)
-q 8lnq ifP=P(G, P)
-q if P &P(G, P).

Observe that the asymptotic behavior of
E, , (G, P) depends only on the asymptotic indices
of g and G and not on N(G, P) or any other detail
of the parametric forms. We shall, in fact, pro-
ceed to show that the knowledge of the asymptotic
indices associated with all rn subgraphs of G de-
termines the asymptotic behavior of E(G).

We begin by considering a numerator pattern
P of G such that E(G, P) behaves asymptotically
like E(G), i.e., E(G)/E'(P, G)-finite+0. " Be-
es,use of the constraint g', x,. = 1 the leading be-
havior should be unaffected" if the range of a

certain parameter, x, say, is restricted away
from zero: xr & c. Let g, be the largest m sub-
graph contained in the set of lines (1,2, . . . , I- I);
g, is well defined as the union of all m subgraphs
contained in this set of lines. Without loss of
generality we may take g, to consist of the lines
(1,2, . . . , n,j. We introduce a scaling pa. rameter
Xl fOr gl.'

(1)x, Alx, , g —ly2, . . . , n, ,

dxdx dx =~" -'d) dx" dx"'e x'&-C.1 2 nl 1 1 1 n,

Again because of the restriction Px(,.') =1 we
may restrict the range of integration of a particu-
lar x~', e.g., x~„'~& e without affecting the leading
behavior.

Next, let g, =i 1, 2, . . . , n, 'l be the largest m sub-
graph contained in the set f 1, 2, . . . , n, —1) and
introduce a second scaling parameter A. 2:

x{,"=),x{,'. ), i =1, 2, . . . , n, gx") =1

dx 'dx' . dx' =X n2 'dh. dx dx dx1 2 n2 2 2 1 2 n2

xa

Continuing this way we construct a sequence of
"nested" rn. subgraphs:
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G &g & g2& ~ ~ ~ &g„

which terminates when we finally arrive at an m
subgraph having no proper rn subgraph, i.e., gk
is a tree graph.

If l, is the number of independent loops ing, ,
the small-X„A. „.. . , 1, behavior off and U can
be factored out as follows:

i'd+1)„} +21. . .y }y +I g

U=X'X '2 X'kU1 2

Our restrictions on the integration domain mean,
effectively, that f /U can vanish at no end-point
manifolds.

According to the analysis given in connection
with F, , (G, P) the small-X„X „.. . behavior of
the expression 11$'U' in the integrand of F(G, P)
can be displayed as a sum over a/l sequences of
compatible patterns:

~ N(G, P) - 8(g1,P1)M
TT2 1

P+P ~P '''
1 2

~ ~ &(O', P)-8(g2, P2). . .
2

xgp p /U

F(G, P) is thus essentially reduced to a set of
elementary integrals of the form

y -8(g],P1) y -8(g2, P2). ..P, -8(gk, Pk) (y y ... 4&(P&)
kJ}P„P„.. . , P, } = J dX, dl, d

0 0 0 A, k q +

whose asymptotic behavior is easily evaluated.
Let P =max&, ~}P(g, , P, ) and let y be the number
of P(g„P, )' s equal to P. Then

4 -q if P&P(G P)

& —
q

8 (lnq ) &' if P = P(G, P),
J-q (lnq )~ ' if P) P(G, P).

Note that (1) the behavior again depends on as-
ymptotic indices only and not explicitly on N(G, P);
(2) in a given sequence P„P„.. . the m subgraphs
with P(g, , P, )& max P (g, ., P, )are irre. levant to the
leading behavior; (3) obviously the leading power
of q will come from those pattern sequences with
the largest possible P.

From our construction then, we can deduce a
general rule for the q - ~ behavior of F(G).

Rule: The asymptotic behavior of F(G} as q
approaches ~ is given by q 8(lnq ) }', where
P = max P(g, P' ), the maximum being taken over
all m subgraphs g of G (including G itself) and as-
sociated numerator patterns I". To determine y
consider the longest sequences g, g, ~ g, of nested
m subgraphs and corresponding numerator pat-
terns P, P, ~ ~ P, such that p(g»P, ) =p(g»P, )
= ~ ~ ~ =p(g„,P„)=p. Then y=k- l. (g, may co-
incide with G. )

In this paper we are concerned with the q
limit. However, it should be pointed out that the
concepts and methods we have introduced in this
section have a wider applicability. As an illus-
tration we shall devote the rest of this section to
a brief discussion of asymptotic limits for large
Euclidean momenta, a case of great importance
for the renormalization program. With our meth-
od we not only recover Weinberg's theorem, but
are also able to refine it by determining the log-
arithmic factors in the asymptotic limit.

Consider a "Euclidean" Feynman integral F(G)
(as obtained by rotating the integration paths of
all energy variables to the imaginary axis) with
external momenta q„q„.. . , q„, P„P„.. . , P .
Of interest is the asymptotic behavior of F(G) as
the subset (q„q„.. . , q„) is allowed to approach
0 according to

q ~ =Qq ~
y

'g~ 0 ~

In the expression (4) for the quantity g in the
parametric integral, we note that if a cut-set mo-
mentum I', contains at least one of the large mo-
menta q, then I', ' - q', otherwise I', ' is fixed.
Accordingly, we define a quantity f by writing

U U
—= —q'+ (terms proportional to fixed momenta p }.

Contributions to F(G, P) from regions in para, —

metric space where f/U&0 behave asymptotically
like q~ i.e., like the integrand of the numer-
ator pattern in question. We may define the ex-
ponent P(G, P) as the asymptotic index. Actually,
because of the Euclidean metric, we may just
focus on the patterns P with the largest P(G, P).
The number P(G) -=max&»P(G, P) is easily seen
to be what Weinberg calls the "dimensionality" of
6 and can be obtained u it@out reference to the
parametric form by simply power counting: Each
propagator contributes according to its large mo-
mentum behavior, e.g. , -2 for scalar propagator,
—1 for spin- —,

' propagator, etc., and +4 for each
independent loop integration. (Any momentum
factors arising from derivative eouplings are as-
sumed to be appropriately assigned to propaga-
tors. )

Next we note that, because of the Euclidean na-
ture of the metric, I', '&0 for all eut sets c so that
f/U vanishes only if all cut-set products inf van-
ish. Thus there are no complications from "pinch"
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contributions just as in the q —~ limit. We may
therefore focus on m subgraphs. In this case an
m subgxaPA is a set of lines which (i) are con-
nected, (ii) contain a continuous path between any
two of the n vertices at which the large momenta
q„q». . . , q„are applied, and (iii) are strongly
connected (i.e., contain no line" which does not
belong to any of its loops). Note that our m sub-
graphs are identical with the subgraphs of Wein-
berg's theorem.

The resulting a.symptotic behavior is &(G)
-q (In71)&, where p=maxp(g), the maximum be-
ing taken over all m subgraphs of G (including G
itself). To determine y, consider the largest se-
quences of nested m subgraphs gygg2++3+
with P(g,. ) =P. Then y =k —I (g, may coincide
with G).

IV. ASYMPTOTIC INDICES IN Pgft} THEORY

In Sec. III we reduced the problem of determin-
ing the asymptotic behavior of an arbitrary Feyn-
man integral y'(G) to the knowledge of the as-
ymptotic indices P(g, P) of its m subgraphs for
various numerator patterns P. Clearly these as-
ymptotic indices depend on the particular local
field theory we are considering. In this section
we shall discuss in some detail the simplest type
of scalar-spinor interaction, namely, ggP. It
turns out that, in this case, it is fa,irly easy to
calculate the asymptotic indices on a systematic
basis.

MAzimal Trees. We begin with the tree graphs. "
By definition, trees have no loops and therefore
there is only one continuous path joining any two
vertices. In particular, there is a unique contin-
uous path of (internal) lines joining the vertices
A and B (where the large momentum q enters and
exits). Since q can only be routed along this path,
the rest of the graph is irrelevant insofar as we
are interested in the large q behavior. Another
way of expressing this is to say that the lines
along the q route from the one and only m sub-
graph of the tree (which may, of course, coincide
with the entire tree). We shall therefore focus on
minimal ox m trees defined as those trees which
coincide with their m subgraph.

Consider now a general m-tree contribution to
matrix elements of g(x)I",. ((0) or g(x)I',. $(0),

where f I",.) is a complete set of 4X4 matrices.
The corresponding Fourier transforms have the
form

Tr[ I;S(+q) I (6P „P„.. . )S(+q+P)],
where the fermion propagators S(q) correspond to
the fields g(x) and $(0), and I is associated with
the internal lines of the graph.

It will turn out that the strongest asymptotic
behavior is associated with I", =y or y y, or
y y, . This can be anticipated in view of the iden-
tities

d=~, q +~ q, +r. i. ,

from which it follows" that in the product gi;. g,
the y, q terms from the gPs can both contribute
if and only if T',. =y . In Fig. 5 we have drawn a
general m tree whose contribution is

r S(q)S(q, )S(q ) ~(P. )-
I

qn

&& ~(P„„)S(q„„) S(q,)S(q),

where

q,. =q+ (fixed external momenta) .
It is clear by inspection that the numerator pat-
tern with the most powers of q corresponds to
the term y gy', g, . Moreover, because y, '
= y

' =0, only alternate factors can contribute a
power of q:

r(r, q )(r q, )(r, q )

This means that in each chain of fermion propa-
gators, only about half the numerators grow like

q, whereas all denominators grow like q'-q .
Consequently the longer the chain, the weaker the
asymptotic behavior (i.e., the smaller the as-
symptotic index). In fact, the strongest asymp-
totic contribution to gy g at the tree level is as-
sociated with the two second-order graphs of Fig.
6 whose behavior is

The strongest asymptotic contribution to Py P

I
I

P, P

I

~ e ~ ~

P„ N-I N

P(

„-q+P+ P

Pp

q P —
P

FlG. 5. Assignment of momenta to a general m tree. FIG. 6. Leading m trees for + g.
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is given by the four simple graphs of Fig. 7 whose
behavior is also 1/q . Thus we see that, at the
m-tree level, the leading behavior 1/q (i.e., an
asymptotic index of —1) is only present in the two-
particle matrix elements (P ~ (y ( ~ n) and

(P ~l)~ j' if)
~ n), i.e., for N= N„+—N& =2, where N„,

NB are the number of particles in the states e
and P.

All other m trees behave like 1/q ' or weaker.
In each case the leading behavior can be readily
obtained by appropriately assigning a power of

q to alternate fermion numerators along the chain
and a power of I/q to every (fermion or scalar)
denominator. The asymptotic indices for various
other numerator patterns can be similarly esti-
mated. Identical results hold for I'=y y~ or y y, .

A similar reasoning for the case I' = y or y,
shows that the only 1/q contribution comes from
the one-particle graph in Fig. 8(a), whereas the
leading behavior of the two- and three-particle
graphs in 8(b), 8(c), 8(d), and 8(e) (as well as
those obtained by crossing) is 1/q

All other graphs behave like 1/q ' or weaker.
Here again the asymptotic index decreases as N
inc reases.

Lastly, we record the following leading behav-
iors for the "least singular" case I'=y, or y, y
or y, y, .

N=1 1/q ',
1/q ',

N= 3 1/q

Analogous results are obtained for matrix ele-
ments of the products gP and QQ: asymptotic
indices decrease with increasing ¹

rn graphs zoith loops. We now consider m graphs
with loops, i.e., connected graphs with loops
which can occur as subgraphs of a general Feyn-
man graph. Take the case gy-g or (y g, N=2
(the nontree graphs with N= 1 are not skeleton
graphs). We focus, first, on graphs with no in-
ternal fermion loops. In Fig. 9 we have drawn

I

I

(e)

FIG. 8. Leading m trees for gy~g or gy5$.

general graphs of this type with I loops and 3L+ 1
internal lines. There are 2L internal fermion
propagators for (( and 21 +1 fermion propagator
for (g. It is readily seen that in numerator pat-
terns with no pairings the largest number of pow-
ers of q one can have is I (including the two
external propagators of the fermion fields) ob-
tained when successive d's in the fermion chains
carry the large moment q . Since the no-pairing
(p(P) =0) denominator in the parametric integrand
grows like q

' '~ ~ ~~' = q ", we have

P(G, P) & —1 for p(P)=0,

where the equality is actually attained for some
I'. This estimate persists for graphs with internal
fermion loops: An internal fermion loop with 2v
vertices on it yields up to v powers of q (for cer-
tain patterns) in the numerator but I —21. also in-
creases by v. It is also easy to see that the result
is the same for «y numbers ofpairings. One can
argue inductively: In a no-pairing numerator with
P(P, G) = —1, all d's contribute (alternatively) by
their y, q or y q, term. But in pairing two d's,
a y, is always contracted to a y so that we lose
one power of q in the numerator which counter-
balances the increase of p(P) by one. Thus the
behavior of the integrand is again 1/q .

Without going into the details we state that the
situation with the other choices of I' and number
of particles N is the same, namely: "The maxi-

-q+p+p
I 2

Ik
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mum asymptotic index of nontree rn graphs for the
N-particle matrix element of the time-ordered
product of two fields is equal to the maximum
asymptotic index of the corresponding ctrees. "

It is now fairly easy to apply the rule obtained
in Sec. III for the asymptotic behavior of a general
graph. Consider, for example, the "ladder" graph
for gy g shown in Fig. 10(a). Since the asymp-
totic index for N = 2 is —I, the graph itself and
the L m subgraphs obtained by cutting the fermion
chains between any two successive rungs form
the dominant" sequence gypgpgg3+ Qgg ] ~

Thus the asymptotic behavior" is (lnq ) /q. Sim-
ilarly the "crossed" ladder graph of Fig. 10(b) be-
haves like (lnq )" '/q, where n is the number of
"crosses. " Note, in fact, that the only contribu-
tions to an N-particle matrix element of gy g
(with N& 2) of order 1/q (apart from powers of
lnq ) come from graphs with "two particle inter-
mediate states, "which can be classified as shown
in Fig. 11. The "blobs" K and I represent the sum
of all "two-particle irreducible" graphs with N=2
and N& 2, respectively. The full N-particle ma-
trix element can thus be expanded in terms of
iterations of an irreducible Bethe-Salpeter kernel:

I +KI +K'I+ ~ ~ ~ +K "I + ~ ~ ~

According to our asymptotic rule for N=2 (K= 1)
we have K"I-(Inq )"/q, whereas for N&2 the
asymptotic behavior is K "I- (lnq )" '/q for
n =1, 2, . . . , but I itself behaves like 1/q ' or
weaker. Thus the 1/q behavior for any matrix
element of gy P is traced to the irreducible ker-
nel K.

The above phenomenon persists as we consider
terms of order 1/q ', etc. : For a given n the
asymptotic contributions of order 1/q " or higher
to all matrix elements of the operator product
are, in effect, contained in a finite number of ir-
reducible Bethe-Salpeter kernels.

//s'~ » ) &X

o l
e /

/

/
Ik /

//II
~f

FIG. 10. (a) Sequence of m subgraphs for the straight
ladder. (b) Sequence of m subgraphs for the crossed
ladder.

FIG. 11. Expansion of an N-particle matrix element
in terms of a two-particle irreducible matrix element
I and a two-particle irreducible Bethe-Salpeter kernel &.

In the companion paper we organize and discuss
this property of perturbation expansions in terms
of an expansion of time-ordered products in terms
of N-particle "irreducible" operator products
integrated over appropriate Bethe-Salpeter ker-
nels. The important feature of the expansion is
that only a finite number of terms are singular
on the light cone.

V. SUMMARY

For the benefit of the reader who finds the fore-
going reasoning highly involved we offer in sim-
plified terms a summary of the main features
emerging from the application of the general rule
of Sec. III to a specific theory like ggP.

1. Let the matrix element (n, ~ Q, (x)g, (0)
~
n, )

in the generalized BJL limit behave like q in
the tree approximation. The integer P depends,
of course, on the type of the fields Q, and Q, and
the number and kind of particles in the states
cr, . We found, in fact, that P decreases as the
number of particles in e, and e, increases.

2. A general Feynman graph for the above ma-
trix element, which we may think of as describing
a process P„Q,- (o.„n,), behaves asymptotically
like q (lnq )&. The integer P is equal to the max-
imum P associated (in the sense described above)
with matrix elements of the type g, g, - (q), where
(q) runs over all intermediate states of the graph
in the operator-product channel

3. To determine the integer y we consider the
longest chains (there may exist several of the
same length) of successive intermediate states
in the graph

such that the I3 of each process Q, &f&, -(q, ) is equal
to P. Then y=k-1. [The last state (q~) may
actually coincide with ( no, ).]

The simplicity of this result is essentially due
to the absence of "pinch" contributions as shown
in Sec. III. Our methods also led to a similar
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rule for the precise logarithmic power of the as-
ymptotic behavior of an arbitrary Feynman inte-
gral in the Euclidean regime, thus improving the
estimates of steinberg's theorem. 4

4. In I, it is shown that Bjorken scaling implies
that the operator P(x)y. xg(0) is nonsingular at
x' =0. The corresponding statement in momen-
tum space is that (8/sq")E„(q), where F„(q) is
the Fourier transform of any matrix element of
((x) y&g(0), have an index P which is less than two
(see the Appendix of 1). Application of the results
of Sec. III shows that this is true for every one-
and two-particle irreducible matrix element of
the fermion bilocal, as long as there are three or
more particles in the external states; reducible
graphs or those with less than three external legs
have P & 2 and are singular in perturbation theory.
These results are the basis for the truncated op-

erator expansion given in I, and valid near the
light cone.

5. As long as one is not concerned with loga-
rithmic singularities, summary statement 2 has
the interpretation that concepts of naive scale
invariance and canonical dimensionality (d = —, for

(, 4=1 for Q) hoM, in perturbation theory,
near the light cone. (These concepts are clearly
known to be valid at short distances, according to
Weinberg's theorem. ')

These results, in themselves, do not solve the
problem of scaling in canonical field theory, but
merely help to organize our knowledge of how
scaling is violated in perturbation theory. Pet
the techniques used seem to be sufficiently power-
ful to give a precise answer to the problem; we
hope to return to this question in a future publica-
tion.
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