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With the aid of a general algorithm for expanding a given Heisenberg operator product in terms of
n -particle irreducible operator products integrated over ¢-number Bethe-Salpeter kernels, we discuss the
expansion of bilocal products near the light cone. It is shown that, to any finite order in perturbation
theory, only a small number of terms in the operator-product expansion can be singular on the light cone.
In particular, some of the bilocal operators which determine the scaling properties of deep-inelastic
electroproduction have potential singularities determined by operator-valued Bethe-Salpeter equations
involving only these bilocals themselves (plus local fields). A generalization of the light-cone
Bjorken-Johnson-Low (BJL) limit is given which reveals logarithmic singularities which occur in 7" products
but not in commutators; this BJL limit is applied systematically to Feynman graphs in another paper. As a

special case, the Wilson expansion is recovered.

I. INTRODUCTION

This is one of two companion papers (the other
is Ref. 1) dealing with the light-cone expansion in
perturbation theory; the present paper concen-
trates on operator properties.

The Wilson? expansion of operator products at
short distances (x"#=0) is by now a fairly well -
understood subject in perturbation theory. For
example, Zimmerman® has given a systematic
exposition and review of the Wilson expansion in
perturbation theory, including its relation to re-
normalization techniques.* The generalization
of the operator -product expansion to the neigh-
borhood of the light cone (x?~0) is less well
studied in perturbation theory, in spite of the in-
tense interest in light -cone physics.’’® (We are
not referring here to works” on specific matrix
elements—usually two-particle forward—of this
operator -product expansion; our interest is in
the operator nature of the expansion.) Brandt and
Preparata® have shown that the expansion involves
an infinite number of fields of arbitrary spin, but
the relation of these fields to the primitive fields
of the theory has not been explored in much detail.

In this paper, we develop techniques for expand-
ing any multilocal product of Heisenberg operators
near the light cone. The coefficients of the expan-
sion are themselves multilocal operator products
of a special character, integrated over c-number
kernels. The full expansion, with an infinite
number of terms, holds identically for any values
of the coordinates. Needless to say, it is not very
useful to have an infinite sum of operater products
as an expansion of one operator product. But when
the coordinates of the operator product which is
being expanded are restricted to the neighborhood
of the light cone, only a small number of terms
in the sum can contribute to the light-cone singu-

8

larities, if any. We shall show that the contrib-
uting terms are those which have Feynman graphs
with a small number of intermediate states; those
graphs all of whose intermediate states have more
than a certain number of particles are nonsingular
(but not necessarily vanishing) on the light cone.
Analogous statements for operator expansions at
short distances are well known, but it is not
trivial to go from the short-distance regime to

the light cone, and the precise characterization

of the intermediate states differs in the two re-
gimes (except for a theory of all spinless particles,
where the light-cone and short-distance expansions
coincide).

The simplest example of an expansion of one
bilocal® operator in terms of other bilocals is very
well known: Products of two currents are given as
singular ¢-number functions times fermion bi-
locals.'®"'2 The question of Bjorken scaling'® in
electroproduction and neutrino scattering then
reduces to the question of singularities in the
fermion bilocals. In the perturbation theory of
two-particle forward matrix elements, scaling is
broken by logarithmic terms™'*® and this breaking
can be directly traced to light-cone singularities
in fermion bilocals.¢17

The techniques presented here do not shed any
light on the scaling properties of two-particle
forward matrix elements, but they do allow us to
draw one conclusion: If two-particle matrix ele-
ments of fermion bilocals are nonsingular on the
light cone, then arbitrary matrix elements of the
same bilocals are nonsingular. This feature has
some peripheral practical interest, since it may
be that light-cone singularities are important in
such processes as massive lepton-pair produc-
tion, "'!® which depend on four -particle matrix
elements of bilocal operators. It could even be
argued that electroproduction amplitudes are not
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simple two-particle matrix elements, because the
external nucleons are composites of the basic
quark fields which occur in the fermion bilocal.

In a more general way, the singular structure
on the light cone of any field theory is entirely
characterized by a small number of multilocal
operators and associated Bethe-Salpeter kernels:
The singular structure of an arbitrary matrix ele-
ment of an arbitrary operator product depends on
this smaller set. We shall see that, for most
practical purposes, this set consists simply of
local fields and bilocals, and that the singular
structure (if any) of certain fermion bilocal oper-
ators is governed by an operator-valued integral
equation involving local and bilocal operators only.

Our result, that only a small number of opera-
tor products contribute to light-cone singularities,
is mirrored in the canonical commutators of field
theory quantized on the light cone.’® The fermion
anticommutator at x2=0 depends only on local
fields and bilocals (both boson and fermion). Un-
fortunately, the explicit expression in Ref. 10 for
the fermion anticommutator at x2=0 is not well
defined, since it refers to a product of operators
at the same space-time point. If it were well
defined, it would be a simple matter to prove that
canonical field theory and Bjorken scaling are in-
compatible. As it is, all we can do is give an ex-
pression for the fermion bilocal which is well
defined, and from which the anticommutator on
the light cone can be extracted, if it exists
(Bjorken scaling requires that this anticommutator
vanish, as we shall show).

One way in which the present approach differs
from the canonical treatment is that canonical
theory only deals with singularities in commuta-
tors or anticommutators. In Ref. 10, it was shown
how to isolate such singularities in momentum
space with a generalization of the Bjorken-
Johnson-Low!® (BJL) expansion, in which the mo-
mentum variable ¢~ was taken to infinity in a light-
like direction and the coefficient of 1/q~ was de-
termined.?° However, this is not enough to isolate
all singularities of T products near the light cone,
since functions such as In(x%—i€) do not appear as
singularities in the light-cone commutator. This
must be studied, since it is precisely terms like
Inx? which break scaling in perturbation theory.
We show in the Appendix that the criterion for
light -cone singularities in a T product is this: A
Feynman graph is not singular on the light cone if
its Fourier transform (less any polynomials) de-
creases more rapidly than 1/(¢”)?, with other com-
ponents of g held fixed.

It is a curious fact that there exist Feynman
graphs which decrease with an arbitrary large
power of g when all four components of ¢ are
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taken to be large, yet which are singular on the
light cone. Such graphs decrease no more rapidly
than 1/(¢7)* when only ¢~ is taken large, with ¢*
and q, held fixed. The space-time version of this
remark is that there exist functions [e.g., (x*p)¥
Inx? where p is a fixed vector] which approach
zerc with any power of x* as x* -0, but which
are singular on the light cone. In general, noth-
ing can be learned about light-cone singularities
from knowledge of behavior near the tip of the
light cone. There is one exception: In a field
theory containing only scalar particles, factors
like (x*p)¥ do not appear, so light-cone behavior
and small-x" behavior coincide, graph by graph.
In such field theories, we may immediately iden-
tify singular Feynman graphs from their naive
degree of divergence. The situation is somewhat
more complicated, but still tractable, in field
theories with spin. Our analysis of singular
graphs in such theories is similar in spirit to that
of Polkinghorne, ?! who has given a graphical
analysis of light-cone commutators and shown how
spin-matrix identities limit the number of skeleton
graphs which can contribute to the commutator.
This limitation is expressed, in the canonical
approach, in the finite number of powers of the
coupling constant g which explicitly appear in the
commutator.®

Observe that our ability to identify singular
graphs does not guarantee that we can extract the
leading light-cone singularity of the full field
theory; nonsingular terms like x2n"x2 may add
up to a singularity. We do not discuss this pos-
sibility further here, but it clearly merits a
separate inquiry.

For the sake of readability, the hard work be-
hind this paper is relegated to a companion pa-
per, ! referred to as II, in which rules are given
for expressing an arbitrary Feynman graph with
both fermion lines and boson lines as an integral
over Feynman parameters. This generalizes the
work of Shimamoto, ?* who has done the werk for
Feynman graphs without spin. The ¢~ -« limit
of these graphs is studied, and singularities ex-
tracted according to the prescription of the Ap-
pendix. The results of this labor are summarized
in Sec. II, of the present paper where a simple
scaling argument is advanced to show what the
results ought to be. Section II also contains the
general operator expansion referred to above.

In Sec. III, we make some brief remarks about
the relation to the canonical formalism and about
the unphysical phenomena which appear in low
orders of perturbation theory, supplementing the
calculations already given by Schnitzer.!” In
particular, we point out that there can be parts of
the electroproduction amplitude which exhibit
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Bjorken scaling, and which come from light-cone
behavior which is more singular than convention-
ally assumed. Conversely, certain pieces of the
imaginary parts which fall below scaling can con-
tribute to the leading light-cone singularity. In
the former case the Bjorken scaling function has
a pole as w = —-¢%/2v approaches unity, and in the
second case there is an effective addition to the
scaling function with support at w =1 only. Both
pathologies occur in perturbation theory. We also
show in this section how to recover the Wilson
expansion.

Section IV contains a summary and conclusions.

II. OPERATOR EXPANSIONS
NEAR THE LIGHT CONE

In this section we restate the results of II in op-
erator language, and give a plausibility argument,
based on asymptotic conformal invariance, for
these results. The problem is to characterize, in
perturbation theory, the light-cone singularities
of an arbitrary matrix element of any operator
product. Let us contrast this problem to the
Wilson expansion at short distances.2™* There an
operator product is expanded as a sum of local
fields multiplied by ¢-number functions. In the
present case, an operator product is expanded
near the light cone as a sum over other operator
products, integrated over c-number kernels. The
virtue of going to the light cone is that only a
small number of operator products can contribute
singularities to the operator being expanded, no
matter how complex that operator may be.

The essence of the development here and in II is
that if a matrix element of a particular multilocal
operator has a sufficiently large number of parti-
cles in the external states, and a sufficiently
large number of particles in all intermediate
states, then that matrix element is nonsingular on
the light cone, except for contributions from
multilocal operators of lower rank. This is anal-
ogous to the corresponding short-distance result
(in essence, that only the vertex, the propagator,
and possibly the four -point function are infinite in
perturbation theory) but is by no means a trivial
consequence of it. To implement the organization
of matrix elements according to the minimum
number of particles in intermediate states, we
introduce N-particle irreducible operators; 22
these operators have only matrix elements with
N or more particles in intermediate states. We
begin with notation and definitions.

Consider a field theory containing a fermion
field ¥(x) and a neutral scalar boson field B(x),
with a Yukawa coupling gJ¢ B. This is the only
theory with which we deal explicitly, although

with trivial modifications the results hold for
fermion-vector -boson theory in the light-cone
gauge.?*'1° To avoid cumbersome notation in the
definition below, we use the symbol ¢(x) to in-
dicate a field, whether ¢, I, or B; the reader
will easily be able to supply specific labels if
needed.

First we define recursively a generalized Wick
product of fields, denoted by colons (:*+*:), as
follows:

T(o(x) = dlwy)) =37 19y )+ -9 (x; )

part.

XO|T(x;,, )+ d(x; ) [0)

(2.1)

where the sum is over all partitions of {1-+ N}
into two sets, either of which may be empty (in
which case the corresponding operator product or
matrix element is replaced by unity). A general-
ized Wick product has a vanishing vacuum expec-
tation value (VEV), and its matrix elements con-
tain no disconnected VEVs constructed from
proper subsets of {¢(x;)}. We assume that

0] p(x)]0) =0, so :¢p:=¢. It is useful to deal with
these Wick products, as they contain no discon-
nected c¢-number singularities.

Second, we define N-particle-irreducible con-
nected kernels. Consider any connected skeleton
graph (i.e., with no self-energy corrections) cor-
responding to the matrix element of Heisenberg
operators

<0IT(¢(9C1)‘ ° '¢(xy)¢ (yl)' ° (P(.VN)) l0>c .

A contour is any continuous, closed line which
does not cross itself and which divides the graph
(cutting any line at most once) so that (1) all the
x, lie inside the contour and (2) the part inside
the contour is connected. In the set of all contours
there is a subset of contours which cross the
fewest lines; call this the minimum set. Define
the N-particle-ivveducible (abbreviated NPI) con-
nected kevrnel K (x,, ..., X33y, -+, Yy)ypy COrTe-
sponding to the above matrix element as the sum
of all connected skeleton graphs whose minimum
set consists solely of contours which cut only the
lines terminating in the y,, and no other lines.

'The significance of connected NPI kernels is that

every connected graph with external lines labeled
Xy oo oy Xy, Zy, + .., 2k can be uniquely divided into
such a kernel and a remainder (in general, dis-
connected). An example is shown in Fig. 1. Ob-
serve that irreducibility refers only to the channel
consisting of the legs x;, and to no other channel.
Now we turn to the properties of this remainder.
Since it is, so to speak, one half of a graph which
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FIG. 1. Unique reduction of a Feynman graph by a
minimum contour (the dashed line) into a connected
kernel (inside the dashed line) and a remainder. The
kernel is 4PI; the remainder is 3PI and (in this case)
disconnected.

has been split across the minimwn number (call
it N) of lines, the remainder cannot be further
subdivided by cutting fewer than N lines. (When
we speak of cutting this remainder with a contour,
we drop all requirements of connectivity imposed
earlier.) In order to implement this requirement,
we must construct N-point operators whose
matrix elements are (N-1)PI; in particular, N-
point operators with the property that all matrix
elements of such an operator with fewer than N
particles in the external states vanish. A com-
pletely general notation for such operators is
rather cumbersome, so we proceed by giving the
full definitions for N=1,2,3 only.

Since we have already assumed that (0[¢(x)0)=0,
the 1-point operator whose O-particle matrix
element vanishes is just ¢ itself. The 2-point
operator which is 1PI is

:¢(x1)¢(x2):1m = :¢(x1)¢(xz):
- f dz K, (0,0632) ;9 6(2) . (2.2)

The graphical depiction (Fig. 2) of anarbitrary ma-
trix element of the second term onthe right-hand side
of (2.2) makes it clear that K, is the full 3-point
function, truncated on the leg labeled z. (This
truncation of all legs in kernels which bear the
same coordinate label as an operator in the same
expression will be understood from now on.) With
this choice for the kernel, :¢(x;)¢(x,):,; has no
matrix elements between the vacuum and a o1 2-
particle state, nor any matrix elements whic 1
are one-particle reducible.

FIG. 2. Matrix element of the one-point operator
contribution to :¢ (x1)® (Xg) :p;.

X3 22

FIG. 3. The kernel K3, appearing in the expansion of
1 (x1)@ (X9)P(x3) :opy. The notation 2¢ means the corre-
sponding graph is 2P[ and connected. A sum over dis-
tinet permutations is understood.

Our final example is
1P ()P ()P (xg)15pr = 1 () () (3,):
~fdz K, (x;;2),p 9(2)
“f dz dz K oy(x; 525 )
X (2,)p(2,): 5 .
(2.3)

Clearly, K, (x;;z)is the connected 1PI kernel
taking three fields into one, The kernel K, is
fairly complicated, and is shown in Fig. 3. Ob-
viously, (2.3) has no matrix elements between the
vacuum and a one-particle state, but some discus-
sion is needed to show the vanishing of two-
particle matrix elements. The difficulty comes
from the fact that the two-point operator on the
right-hand side of (2.3) has disconnected matrix
elements, as shown in Fig. 4. To verify that the
last two terms on the right-hand side of (2.3) have
two-particle matrix elements which exactly can-
cel those of the first term on the right, use the
Bethe-Salpeter equations shown in Figs. 5 and 6.
The idea is to use the equation of Fig. 5 with the
totally disconnected part of K,, (see Fig. 3) to
effect a cancellation with the part of K, appearing
with a negative sign, and thus tc arrive at Fig. 6.

The obvious generalization is that one may con-
struct operators

(o) e py)iow-ver
in terms of

Gy, 10(x). L (Kyo )i oy

and ¢-number kernels so that these operators
2] e——— Py

g ———— P2

FIG. 4. A disconnected two-particle matrix element
of a two-point operator; sum over permutations under-
stood.
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have no matrix elements with either intermediate
states or external states containing fewer than N
particles.

The combination of connected NPI kernels and
NPI operators allows us to write an operator ex-
pansion for any operator which generates all the
connected matrix elements of that operator. Such
generality is of little practical use, since possi-
ble violations of Bjorken scaling®® in electro-
production and neutrino scattering are governed by
singularities in the matrix elements of the fermion
bilocal : ¢(x)3 (0): .1°-12 We therefore give only the
expansion of connected two -point operators:

3¢(x1)¢(xz):c =Z IH dzK, (xvxz; Zj )J‘P!

X:p(2,)* * b (2;) 1 -pp -
(2.4)

The subscript ¢ on the bilocal operator means
that the expansion on the right-hand side generates
connected graphs only for the bilocal. It is im-
portant to note that the operator products which
appear on the right-hand side of (2.4) do generate
disconnected subgraphs, which yield connected
graphs when integrated on the kernels. It is suf-
ficient to have the expansion yield only connected
graphs, since singularities of disconnected graphs
can be completely analyzed in terms of connected
operators of lower rank. (In the two-point case,
disconnected graphs are not singular at all.) It is
important to note that (2.4) holds when both the
operators and the kernels are unrenormalized,
and also when both are renormalized.

Equation (2.4) is merely another way of orga-
nizing an infinite number of Bethe-Salpeter equa-
tions if general values of x, and x, are considered.
The interesting thing is that this expansion ter-
minates after only two or three terms, if one goes
to the light cone and saves only terms which per-
turbation theory indicates are singular there. The
detailed —but not very transparent —proof of this
assertion is contained in II. It is worthwhile to
give a plausible argument (the outcome of which
agrees in every detail with II) which more cogently
illuminates the central issues.

X z, X z
X2 = X

2 Z2
X3 X3

FIG. 5. A Bethe-Salpeter equation for the two-point
operators. The notation 1c, 2c¢ is as in Fig. 3; the
circle with a 1 and no ¢ in its represents a two-particle
matrix element of the operator : (x;)p(x,) yp1, including
the disconnected parvt (Fig. 4).

In what follows, we study the fermion-neutral -
scalar-boson (or vector boson in the light-cone
gauge) theory under the simplifying assumption
that the propagator and vertex functions have
candnical short-distance behavior. In other words,
we pretend that the renormalization constants Z,
and Z, are finite, which is most easily accom-
plished by considering only skeleton graphs with
both vertex connections and self-energy connec-
tions removed. At several points we mention the
effect of removing these restrictions, which are
inessential to the main results.

Let us begin by defining the kinematical rela-
tions of light-cone current commutators and bi-
local operators given in Refs. 10, 16, and 6. The
covariant spin-averaged current correlation
function is written

TH (p,q) =i | dx '™ (plTHI" (X)W (0)[p) . (2.5)

The conventionally defined absorptive parts W,
and W, appear through

W, p¥ W, g"" 4+ + += —;—17 ImT" , (2.6)

mmTw=} [are X0l . @)

Next we give our first example of an operator ex-
pansion of the type in (2.4). The expansion is very
well known in the context of Bjorken scaling; it is
true in a certain sense even when scaling is vio-
lated by logarithmic terms, as in finite-order
perturbation theory. Consider the expression

(pl[g*(x),*(0)] |p) = [P (x)v, $(0)~H.c.| p)
X(g# 0¥ + 0" MBI+ v,
(2.8)

assumed valid near =0, where C(x) is a singu-
lar ¢-number function and omitted terms are less
singular. In canonical theory ">’ or in the
equivalent skeleton-graph theory referred to
above C(x) is related to the light -cone behavior
of the fermion propagator, and is given by

1
C(x)=C,x)= o€ (x°)8(x2) . (2.9)

X 2 X 2 | .

= X X,
Xp 2 Xz .. +
X3 3 x5 22

X| Z|
+ X2 2,

FIG. 6. Bethe-Salpeter equation for the full 3— 2
amplitude (unlabeled circle).
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However, inclusion of self-energy and vertex
corrections in perturbation theory violates can-
onical behavior, and C(x) is not given by (2.9).
We return to this point in Sec. III.

In free-field theory, the matrix elements can
be stripped off (2.8) and the current commutator
(as an operator) can be expressed solely in terms
of bilocal operators (axial-vector bilocals must
be added; their spin-averaged matrix element
vanishes). This is not possible in an interacting
field theory, and only the commutators [J*,J *]
and [J*,J~] may be so expressed.'® In fact, it
is not hard to see using the methods of this sec-
tion that the Wightman product J*J” needs prod-
ucts of up to five operators, and the commutator
[J*,J7] needs products of four operators, to

GEORGE TIKTOPOULOS

account for all light-cone singularities. For-
tunately, the scaling functions of electropro-
duction depend only on those portions of the
commutator which need only bilocal operators
in their expansion. In this connection, it should
be noted that the formal expression for [J ¥, J 7]
on the light cone contains a three-operator prod-
uct of the form #(0)@(x)B(x).® By use of the
equation of motion, this can be reduced to a
fermion bilocal. In the skeleton theory, it is
legitimate to use the equation of motion freely.

As is well known, the requirement of Bjorken
scaling means that the operator P(x)y*¢(0) has
specified behavior on the light cone. In terms of
the conventional scaling-function expansion of the
commutator near the light cone®

Z<pl[J" (x),JV(O)]Ip):[gMV_auav]S(_’.C_;)Fﬁ@ J;i gu,_('ZFL(w)eiwx-p

~[p0" =p-a(pt o7 + ") + gh¥(pe 0)?] LI fl
27 -

dw eiwx-p
g —
w X°p

Fy(@)+e++.  (2.10)

Jackiw and Waltz® have combined (2.8), (2.9), and (2.10) to arrive at the matrix element (valid for x*= 0)

(see Ref. 25)

dw

P |d(x)y 2 y(0)=H.c.|p) = 2p* fi %ﬂ Fz(w)e’“”‘"—%;- fi —F (w)e!?* Pienn, (2.11)

wz

__Based on this result, we shall say that the operator P (x)y*¥(0) exhibits Bjorken scaling if the expression
¥ (x)y - x ¥(0) is nonsingular at x*=0. In perturbation theory, this expression has logarithmic singularities,
as Schnitzer!” has discussed. We now make it plausible that these logarithmic singularities came only
from the one- and two-point functions in the operator expansion (2.4). Note that the one-point operator
which occurs in the operator: ¥(2,) ¥(2,): ,p [see (2.2)] in this expansion can be combined with the explicit
one-point term in (2.4) with the aid of the Bethe-Salpeter equation shown in Fig. 7 to yield a very simple

one-point contribution:

1P(x,) J(xz):c =ig J dz Sp(x,~2) B(2) Sp(z2—x,)

+ f dz, dz, [KET (x %53 2,25)ap1: (2,) P(2,): + KEB(x %55 2,2,) o012 B(2) B(2,) 1]+, (2.12)

where we use the notation F for a fermion-anti-
fermion channel and B for a boson-pair channel;
Sr is the fermion propagator. There is a similar
expansion for the boson two-point function. In
writing (2.12) we have, for simplicity, ignored
any possible B® coupling (which can be forbidden
by taking B to be pseudoscalar).

Suppose for the moment that scale invariance
holds for these operator expansions in the sense
that every operator which appears explicitly in
(2.4) is assigned a canonical dimension d (d=3%
for ¥ and P, d =1 for B) and the various ker-
nels have dimensions consistent with over-all
scale invariance, modulo possible logarithmic
terms. [Thus KIF has d=8, K%® has d=9, etc.,
in (2.12).] Possible singularities at (x,—x,)®~0

r

in (2.4) or (2.12) ostensibly come only from the
c-number kernels, although it seems possible
that singularities from the operators might be
felt through the integrals over dz;. Actually,
because of the irreducibility properties of the
kernels and operators in (2.4), which forbid any
pair of z;’s from terminating in a common vertex
either in the kernels or in the operators, the
integrals over singularities of the operators are

Xy Xq X
ORI RS O= 05
X2 X2 X2

FIG. 7. Bethe-Salpeter equation for the three-point
function.
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only felt, after integration, as logarithmic
deviations from the singularities of the kernels
integrated over entirely nonsingular operators.
In short, under the assumption of scale invari-
ance, the light-cone behavior of the bilocal
operator on the left-hand side of (2.4) or (2.12)
is entirely governed by the light-cone behavior
of the integrals

i
f Hdec(xlxz; 2;)e1 (2.13)

(modulo logarithmic terms).
The operator ¥(x)y* P(0) is similarly governed
by the ¢ numbers

j
J‘ Hdz Tr " K, (x; 2;);m1 (2.14)

which, by translational invariance, depend only
on the difference variable x=x,~x,. As an ex-
ample, consider the j=1 term in (2.12). The
function F*(x) defined by

F”(x)=igTry“fszF(x-z)SF(z) (2.15)

must be a vector with dimension 2. It is im-
possible to construct such an object unless we
allow a mass M to appear explicitly, in which
case the form

) =25 D) (2.16)
where D(x?) is a dimensionless function of
In(x?/M?), is allowed. This is precisely the
form of F*(x) in perturbation theory, as is
readily verified. [In general, explicit mass
factors can appear raised to positive powers
but not negative powers in integrals of the type
(2.14), in finite orders of perturbation theory.]
Thus x +F may be logarithmically divergent in
general, and the first term on the right-hand side
of (2.12) may contribute a logarithmic singularity
to P(x)y - x¥(0) [there is no singularity in the
skeleton theory, where the Sy in (2.15) are free
propagators]. Similarly, one may show that
the other two terms in (2.12) contribute at most
logarithmic singularities to ¥(x)y - x ¥(0).

Next consider the term :9(z,) ¥(z,) B(2,): 55
appearing in (2.4), and its corresponding kernel
for j=3 in (2.14). The kernel, integrated over
11’ dz, must be a Dirac matrix and a vector,
with dimension —1. The only allowed forms are
x* D(x?) or ¥* v - x D(x?), where D(x?) is possibly
logarithmically singular, or other less singular
forms with explicit positive powers of a mass

J

M. But both of these objects, when multiplied
by x*, are of the form x?D(x?) and #not singular
on the light cone. Similarly, the only allowed
form for the three-boson kernel, of dimension
0 after integration, is Mx* D(x?), which con-
tributes no singularities upon multiplication with
x* to form P(x)y +xP(0). It is easy to check that
these forms are all that arise in perturbation
theory.

All other integrated kernels have negative
dimensions, which prevents them from contrib-
uting light-cone singularities to P(x)y +x $(0),
by a simple extension of the above argument.
We have thus made it plausible that the operator-
valued integral equation (2.12) contains all po-
tential light-cone singulavities of the fermion
bilocal operator (less, of course, c-number
terms). Similarly, all light-cone singularities
(at worst logarithmic) in :B(x,) B(x,):, come
from the fermion and boson bilocal operators.

The reader may easily verify for himself the
nature of the singularities (if any) in the various
kernels in the tree approximation, using the
extension of the generalized BJL limit given in
the Appendix. For the much harder problem of
the full skeleton theory, see II.

III. IMPLICATIONS OF THE
OPERATOR EXPANSION

In this section, we discuss the relation of the
fermion bilocal expansion (2.12) to the canonical
results®® and to the usual Wilson’*? expansion
at short distances. For completeness, we dwell
briefly upon certain curious features encountered
in perturbation theory (but presumably not in the
real world): It is possible that the electropro-
duction structure functions W, and vW, become
functions of w=-¢%/2v only in the Bjorken scaling
limit, and yet there are stronger singularities
on the light cone than the canonical ones implied
by (2.10). Conversely, there may be pieces of
W, and vW, which fall far below scaling, yet con-
tribute to the leading singularities on the light
cone. Both types of anomalous behavior are
connected with singularities of scaling at the
threshold, w=1.

In the Wilson expansion, one extracts from an
ill-defined operator such as :¥(x) ¥(x): a well-
defined local finite part called N(J(x) ¥(x)), by
an expansion in terms of local operators and
singular c-number functions®™*:

DY)~ Co(x=9) B(x) +C,y(x=) O B(x) +C 4(x=) N@(x) $(x)) + N@(x) P(x)) ++ -+ , (3.1)

x>y

where the functions C; are singular at x =9, and the omitted terms are finite. Let us extract the O(g)
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terms of (3.1) from the light-cone expansion, by
taking the trace:

X))~ ig f dzTrS p(y=-2) S p(2-x) B(z) +0(g?)

x>y

fdpe"’(""” Tr(f+M)(P ~d +M)
(21r)4

0*~M?) [(p-q)*-M"]

Xf dq 5y -igx 2
(2,")4 B(ge +0(g? ,

(3.2)
where we have introduced the Fourier decom-
position

Blx) = (—21;5— [ g e 50 (3.3)

for the boson operator. The integral over p in
(3.2) is readily carried out; the leading terms
are

CORNWALL AND

GEORGE TIKTOPOULOS 8

By converting ¢ to -[J and comparing with (3.1),
we find, to O(g),

4gM*>
3

C,(x) :77——2;% + Inx?,
(3.5)

Cyl1) = g Inx?

The function C, in (3.1) is of O(g?); we shall not
calculate it explicitly.

The significance of the Wilson expansion in
perturbation theory is that it automatically ac-
counts for the infinities which are ordinarily
relegated to the renormalization constants (thus,
using the Wilson expansion, only finite renormal-
izations remain). To illustrate,* let us demand
that the equation of motion for the boson field be
expressible solely in finite quantities, and write

(O +m?) B(x) = gN((x) P(x)) , (3.6)
_2_—5_? +4g3 In(x-y)? sg ¢ In(x-y)?
(=Y with m and g finite. Thus the equation of motion
+nonsingular terms . (3.4) for the propagator is
(O, +m?) (0] =iT(B(x) B(y)) | 0) = =5,(x—y)—ig (O] TN ((x) ¥(x))) B(y)[ 0) . (3.7)

The second term on the right-hand side is, using (3.1) and (3.5),

~ig (O|TQV(¥(x) ¥(x)) B(5)) |0 =1im, ~ig (O[T(¥(x) ¥(x")) B(y)| 0) +

B (e
+ 3.7 In(x—x")

ig?
s (0178 BN 0

O, O[T(BH)RHN |0 +0(g*) . (3.8)

To O(g?), the right-hand side of (3.8) is, in the limit x =,

4 2k 3M*2

~ik(x~y T (ﬂ ]é M)(ﬁ+M
(2)4fdke K ’fdp(pz i Sl

M) (p-k)2-M?)(k2=m

P pem)

- R - (3.9)

It will be found, using the ordinary techniques of symmetric integration, that the integrand of (3.9) be-
haves like p~° at large p for fixed %, thus establishing the finiteness of (3.7) for general values of x~y.
[There are infrared singularities in (3.9), but they are easily removed by a suitable definition of the

nonsingular terms in the Wilson expansion (3.1).]

Another specialized situation which can be recovered from the general light-cone expansion of Sec. II
is that of light-cone commutators. We record the canonical fermion anticommutator from Ref. 10, using

scalar bosons instead of vectors:

(09,30} =}iigete)2,50,5,57) o 5(0)

i J: dE e(x™—£) e(8) [iv'o, —g:B(0, %k, , £) +M][iv's, —gB(0,%,, &) :-M]y*

2 - — - 1
+ 16% f dgdg’ e(x™—£) e(£’) e(£-€") v*:9(0, 0,£) ¥(0, O, %'):V*} 0(k) (Pi=zv'r?).

(3.10)

[Some c-number terms in (3.10) have been omitted.] Since (3.10) depends explicitly on g only through

terms of order g and g2,

it is apparent that (3.10) is the light-cone commutator corresponding to the

light-cone T product of Eq. (2.12), with the lowest-order expressions for the kernels KZ¥ and KT 3

substituted:
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W T = g | dzS,(e-2) B(2) $p(2-)

+ig? f dz,dz, Sp(x=2,)[:¥(z,) a(22): Ap(2,=2,) +Sp(2,=2,) 1 B(2,) B(2,):] Sp(2,=y) ++ 2+,

(3.11)

where S is the free fermion propagator, and A, the free boson propagator. The easiest way to go from
the T product of (3.11) to the light-cone commutator in (3.10) is by way of the generalized BJL limit,® in
which one extracts the coefficient of /¢~ in the Fourier transform of (3.11) as ¢~ —, with other com-

ponents of ¢ held fixed:

-iq~ f dx ' :(x) P(0):, - ,f dx~ dX, eiq+x-_i€"° %y o), zp—(o)}x"'*—'o

(g +P)* (g +kR)?

+0(g?) + polynomials (3.12)

[okserve that (y*)?=0]. It is straightforward to
check, using the convolution theorem and the
basic identity

ool [ A e :
e(x7)= - e e , (3.13)

that (3.12) generates all four of the O(g) terms in
(3.10). A similar calculation verifies that the
light-cone limit of the O(g?) terms in (3.11) also
yield the rest of (3.10).

If (3.11) were the only T product which yielded
the canonical light-cone commutator (3.10), we
would be forced to conclude that Bjorken scaling
could not be a consequence of the canonical field
theory. The reason is that the simplified kernels
of (3.11), which generate uncrossed ladder graphs
in the Bethe-Salpeter equation, are known not to
lead to scaling.' Fortunately (or perhaps un-
fortunately), one cannot draw this conclusion;
for one thing, (3.10) may be ill defined, because
it contains the product : B(x) B(x): which per-
turbation theory indicates is logarithmically
singular. Let us ignore this potential difficulty
for now. It is clear from the Appendix that the
bilocal terms in the light-cone commutator
:9(x)P(0): +., must vanish or cancel, if
1P (x)y-x ¥(0): is to be nonsingular, as is re-
quired by our scaling criterion. [Terms which
involve the boson field linearly, as in (3.12),
could survive; they contribute terms to the
current correlation function (2.5) which violates
our scaling criterion in the real part, not the
imaginary part as measured in deep-inelastic
electroproduction.] While the bilocal terms
cannot have vanishing matrix elements (or else
the scaling functions vanish), they may cancel,
since the leading singular term in :B(x) B(y): is
a c-number kernel integrated over the fermion

r

bilocal.

To conclude this section, we comment on cer-
tain pathological behavior which is realized in
perturbation theory, and which violates the usually
assumed connection between scaling and light-
cone singularities. The first instance of such
behavior comes from self-energy and vertex
corrections to the current-correlation function
(2.5); see Fig. 8. Cutting these graphs across
the self-energy and vertex corrections yield
imaginary parts which scale, in the sense that
W, and vW, become functions of w only, but which
have poles at w=*1, These poles come from
the single-fermion lines in Fig. 8, which yield
propagators of the form (¢%% 2v)~!~ 1% w. These
poles make the expressions (2.10) and (2.11)

. meaningless, since the integrals over w diverge.

They are absent in the skeleton theory or in the
full theory if Z, and Z, are finite. The question
is, can such terms be accommodated within the
general framework of operator expansions out-
lined in Sec. II ? Without going into details, it
appears that the answer is yes.?® Clearly, the
self-energy correction of Fig. 8(a) requires

only a change in the c-number function C(x)

[see Eq. (2.8)] which multiplies the fermion bi-
local in the light-cone expansion of the commuta-
tor of two currents. As for the vertex correction
of Fig. 8(b), it can be taken into account in lead-

(a) (b)

FIG. 8. (a) Lowest-order self-energy correction to
the current correlation function (p|T(J* x)J%(y))|p).
(b) Lowest-order vertex correction. Currents indicated
by wavy lines.
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ing order by modifying the matrix element (2.11)
of the fermion bilocal to the extent that pole
terms in F,(w) or F;(w) of the type (1-w)™!
should be replaced by (1-w-M2x?)~! thus yielding
terms like Inx? in (2.11).

Thus there are graphs which scale, but which
have stronger light-cone singularities than are
usually associated with scaling. (Of course, it
is highly unphysical to have a pole in the scaling
functions at w=1; in fact, we expect the scaling
functions to vanish there.) Conversely, there
may be contributions to W, and vW, which fall
below scaling, but which show up on the light
cone in the form of additional terms in (2.10).
These terms have already been discussed in Ref.
27, but without using light-cone language. Write
the current-correlation function (2.5) as

Tuy = [-quppy+V(puqy+pyqu)_V2gpu]TZ
+(gpuq2-ququ)TL ) (3.14)

where T, and T, obey the Deser-Gilbert-Sudar-
shan® (DGS) representation. The simplest form
for T, is

_ (" ' _dph(s, B)
Te= lo do L1 ¢®+2Bv—0 +i€ ’ (3.15)
with
fw doh(o,B)=0, g,=0,(8)=0. (3.16)
%o

The restriction (3.16) is necessary for scaling
to hold. It is equivalent to the statement

1o, 8)= 5= 2(0,B), 805, =g, B)=0. (3.17)

Now calculate the imaginary part vW, [ see (2.6)]
for 2v+¢®=0:

VW, = 3 vg® j do dg h(o, B) 5(q* +2Bv—0) e(q® + 2Bv)
Z+2
_ 12 a ( __._G'qz)
—4qf do[dcg %73,

9%
a=<o-a2)/zv-,\

=30 2(@®+ 2y, N+iw J‘ do gp(o, w) +=++ ,
% (3.18)

1.2
2v 88

g(o, B)

where the omitted terms do not contribute to
scaling, and the subscript g indicates the partial
derivative with respect to that variable. In order
that scaling hold, it must be that g(o, B) decreases
faster than ¢! at infinity. Then the scaling func-
tion is

GEORGE TIKTOPOULOS 8

Fz(w)=>i-wfm dogglo, w)=1wgs(w) .  (3.19)
%o

Now if g(o, 1)#0, insertion of the expression
(3.19) for F,(w) into the light-cone commutator
(2.10) does not yield the correct result. The
correct result is found by taking the Fourier
transform of the imaginary part of (3.14) and
going to the light cone:

ip|[TH(x), I(0)][p
==[p'p’=p -0 (p* 8" +p" ") +g 7 (p - 8)%]

x 3[e(x°) 6(x?)] J:i dwet @ P L g(w) 4+ -

(3.20)
(we omit the inessential longitudinal terms),
where
g(w)=f do g(o, w) . (3.21)
%o

Comparison of (3.19), (3.20), and (3.21) with

the previously given light-cone commutator (2.10)
shows that the following modification must be
made in (2.10) so that it agrees with (3.20):

Fyo(w) = Fy(w)-5g(1) [6(w=1) +d(w+1)]  (3.22)

[integrate by parts, and use g(1)=g(~1)]. In
other words, the light-cone commutator is de-
termined not only by the scaling functions F,(w),
F,(w), but also by the quantity g(1), which is
an integral over a piece of the imaginary part
which does not contribute to scaling [see (3.18)
and the remarks below this equation]. As
mentioned in Ref. 27, it would be highly unphys-
ical if g(1) were not zero, since then there would
be contributions to the imaginary part which, at
fixed s (=q*+2v+M?), would grow with v [see
(3.18)]. However, in perturbation theory one
has no assurance that this will not happen.

For certain other anomalies with occur in
perturbation theory, associated with the behavior
of F,(w), see Schnitzer."

IV. SUMMARY AND CONCLUSIONS

We have given a generalization of the Wilson
expansion to the entire light cone, in which op-
erator products are expanded as a sum of c-
number kernels integrated over special operator
products with certain irreducibility properties.
The generalized expansion with an infinite number
of terms holds as an identity, but it simplifies to
only a few terms on the light cone. By special-
izing this truncated expansion to the short-dis-
tance regime, we have recovered the Wilson
expansion; by specializing to commutators, we
recovered expressions similar—but not neces-
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sarily identical—to those found canonically. It
has been necessary to extend the genaralized
BJL limit to find terms only logarithmically
singular on the light cone, which violate scaling
if they appear in fermion bilocals.

The estimation of singularities associated with
specific terms in the operator expansion is
merely plausible, depending as it does on as-
sumptions of conformal quasi-invariance. In a
companion paper® we are able to settle the ques-
tion of singularities completely to any finite
order in perturbation theory; in all cases, the
result found this way agrees (up to logarithms)
with that based on conformal quasi-invariance.

After all this work, we have nothing new to say
about scaling in deep-inelastic electroproduction.
Our only result in this direction is that if scaling
holds for two-particle matrix elements, it also
holds in an operator sense (i.e., for all matrix

1
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elements). Unfortunately, this result is of less
than overwhelming practical utility. We hope to
report in the near future on the kernel K .,p,
whose properties govern scaling, without using
the popular leading-logarithm approximation.
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APPENDIX: LIGHT-CONE SINGULARITIES OF
FEYNMAN GRAPHS

Given any matrix element of the T product of
two currents J(x) and K(0), the generalized BJL
limit! prescribes that the light-cone commutator
of these currents is found as'®

i f dx e** (A | T(J (x) K(0)) IB)__. polynomials — ‘71_—[ dvmd%, it TR, (Al[T(x), K(0)]#aolB) ++-+ .

As long as one need deal only with commutators
on the light cone, this result is sufficient to
isolate all light-cone singularities. But deep-
inelastic electroproduction is governed by the
Wightman product $(x)$(0), which can have
terms singular near the light cone which do not
contribute to the Fourier transform of the com-
mutator (Al); the prototypical example is
In(x®*~iex®). Since it is just terms of this sort
which violate scaling in perturbation theory, we
must extend the BJL limit to search for terms
which are singular on the light cone for T prod-
ucts or Wightman products, but not in com-
mutators. We shall investigate forward single-
particle matrix elements only (using the DGS*®
representation), although the results are easily
generalized.

Consider the matrix element of two scalar
currents:

T, q)=i [ axeGITIW KON . (A2

The properties of T(p, q) will be the same as of
an invariant amplitude for the case of currents
with spin. The most general form of T is a sum
of terms of the type

hy (A 8) (P q)¥
J @ea [(q+BbF 2t

N=0,1,...; M=1,2,... (A3)

(Possible terms like ¢?7 in the numerator, with
J <M-1, can be eliminated by integration by

(A1)

r
parts.) The Fourier transform of such a term
is

f ) . . Neiﬁp-a 9 \M-1 .
Dy 0%, DD s, (55 Artes 2.
(A4)
« The Feynman propagator has the form
22) = =A 1) 2_s-\1/2
Ap(x;2%) = WH& [A(x*~ie)'/?] (A5)

£ 20 4mi(x%—ie€)

2 AZx? v
—-é—ﬂ?< -2 +--)1n[§yh(—x2+i5)‘/2]
ia? ( 5A2x? )
* 16T 1- T , (A6)
where Iny=0.5772..., and the arguments of

(-x2+1i€)'/2 and of the logarithm are chosen in
the conventional way, that is,

In(-x%+i€)Y 2 =1In(|x?|*/2)+iL 7 6(x?) . (AT)

It is straightforward to find that the only singular
terms of (A4) obey the condition

N=M=2. (A8)

Terms with N <M -2 have no singularities on the
light cone. In particular, terms with M=1, 2 are
singular for any allowed N. Of course, those
terms for which N>M-1 are of O(1/¢”) or larger
in the generalized BJL limit, and contribute to
the light-cone commutator (Al); they also con-
tribute to the light-cone T product or Wightman
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product. We are interested in the terms with

N =M -2 which are singular in T products on the
light cone, but not contribute to the light-cone
commutator. In the generalized BJL limit, these
terms decrease with a power law (¢”)~ %, where
1<a <2 (barring pathological oscillations in the
limit; logarithmic factors are ignored). For
simplicity, we discuss only the case @ =2, which
corresponds to the finiteness of [d\2/iy, , 4.

With the aid of (A4) and (A6), the light-cone
singularity is easily found to be of the type (x +p)¥
xInx%. Note that we may force this function to
vanish arbitrarily rapidly for small x by choosing
N large enough, but it is always singular for small
x%. The equivalent momentum-space statement
is that (A3) for N =M -2 decreases like (q)~¥"*
when all components of ¢ are large, but only like
(¢7)% in the generalized BJL limit. On the other
hand, a term in (A3) which vanishes as (g~)~¢
with o« > 2 is definitely not singular.

It is not hard to see why « =2 is the boundary
between singular and nonsingular behavior.
Barring delicate oscillating behavior, a one-
dimensional Fourier transform F(x) f dq e”**F(q)
is not singular for any finite real x, if F(0) exists.
A similar statement can be made for a multi-
dimensional Fourier integral only if it is known
that the result is independent of the choice of
integration variables and of the order in which
the integrations are performed. But this is not
the case for singular Feynman integrals; as an
example, try to evaluate

e-iqr

=A% +ie (49)

AF(x; )\2) = (23,.)4 J' dqqz

by setting X, =0, and first doing the integration
over 4,. A similarly infinite answer results if
the denominator in (A9) is squared. Now con-
sider inverting the Fourier transform in (A3)
to get (A4). To check for singularities on the
light cone, set x*=X%,=0. The integral over §,
is finite for N +2<2M, and yields an integral

which behaves like (¢7)¥~**! for large q~. This
integral over g~ diverges if N =M -2, and con-
verges otherwise, which is precisely the criteri-
on [(A8)] found earlier. If neither x* nor x~
vanishes, so that x+0, then the integrals can

be carried out because of the oscillatory factor
exp[i(g*x~+q~x")].

There are other cases of interest. When the
integral over ¢, does not converge, there is
always a short-distance singularity and a fortiori
a light-cone singularity. Insertion of tensorial
indices leads to new features, as illustrated
in the following example:

Fr=q=°(2¢"p - q-p* °) . (A10)
One finds that, for u =+, F*~(g~)"? at infinity,
yet the Fourier transform F*(x) behaves like
P Inx?, which seems to be an exception to the
general rule that amplitudes decreasing as fast
as (¢7)"? have no light-cone singularities. How-
ever, such exceptions always have short~dis-
tance singularities, which are easily found by
checking the behavior as gll components of ¢
become large. In any case, tensorial structure
is necessary; this phenomenon cannot happen
for scalar integrals.

In summary, a Feynman integral has a singular
Fourier transform on the light cone if it behaves
in the generalized BJL limit like (¢~)~* with
a <2, and is not singular if @ >2. In field theories
with spin, the behavior in this limit is completely
independent of how fast the Feynman integral con-
verges when all components of ¢ approach in-
finity. [The factors (p +¢q)¥ do not appear in the
Feynman integrals of ¢* theory, so this remark
does not apply there.] Finally, it is worth noting
that all the remarks of this appendix hold equally
for Wightman products, for all those singularities
which do nof appear in the light-cone commutator
(Al). This is, of course, because a T product
and a Wightman product differ by a (retarded)
commutator.
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A systematic investigation, in perturbation theory, is presented of the light-cone behavior of multiparticle
matrix elements of time-ordered products of local fields: § d*x e { B|TY; (x){,(0) |a ). In the limit
g _ — 0, the contribution of any single Feynman graph is of the form q_ﬁ (Ing _)". The main result here is.a
rule by means of which the integers 8 and 7y can be read off from the topology of the graph. The
implications of this investigation for local field theories are organized and discussed in operator language in
a companion paper. A by-product of the special methods here developed to obtain asymptotic estimates in
perturbation theory is a refinement of Weinberg’s theorem for the Euclidean region: the determination of
the logarithmic factors in the asymptotic form of Feynman amplitudes when a set of external momenta ¢,
g, ... is allowed to approach infinity according to ¢; = g/, N> .

i. INTRODUCTION

This is the second of two papers' dealing with
light-cone singularities of bilocal operator prod-
ucts as manifested in perturbation theory. The
present paper is devoted exclusively to a system-
atic investigation of the asymptotic contribution of
an arbitrary Feynman graph to Fourier-trans-
formed multiparticle matrix elements of time-
ordered products:

Jatxei= (81 79,00 | @)
in the generalized Bjorken-Johnson-Low (BJL)

limit®: ¢_- « with ¢,,q, fixed.

[ For reasons of typographical clarity, the no-
tation used in this paper differs from that in I.
For any vector ¢*, the quantities ¢, are not de-
fined as vector components, but rather as scalar
products: ¢, =q* =M, *q, M¥ =2"Y2(1,0,0, 1),
Thus q_ or ¢~ is numerically equal to the — com-
ponent of the contravariant vector. ]

The asymptotic behavior of any single Feynman
graph turns out to be of the form ¢ _®(Ing_)?.
main result here is the formulation of a rule ac-
cording to which the integers 8 and y can be read
off from the topology of any given graph. The ap-



