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A systematic study is made of the limits of validity of the eikonal approximation in nonrelativistic
potential scattering theory. We suggest that for a large class of potentials, and for all momentum
transfers, each term of the eikonal multiple-scattering series gives the asymptotic value (for large
incident wave numbers) of the corresponding term in the Born series. This property, together with the
requirement of unitarity, implies that in weak-coupling situations the eikonal approximation is con-

sistently worse than the second Born approximation.

For intermediate couplings we find that the

eikonal method is remarkably good at all angles for potentials of the Yukawa type. For the case of
strong coupling (|V,|> E) we find that for all potentials studied there is good agreement between
exact and eikonal results at small angles. Analytical and numerical results are given for a variety of

interaction potentials.

I. INTRODUCTION

Originally introduced more than twenty years
ago in quantum scattering theory,’ the eikonal ap-
proximation has attracted a considerable amount
of interest, particularly in recent years after the
work of Glauber,? who devised a very convenient
many-body generalization of the method. The ei-
konal approximation has been used extensively and
with considerable success in the analysis of inter-
mediate and high-energy hadronic collisions.?
More recently, atomic scattering processes have
also been studied by means of the eikonal approx-
imation.*

Although several derivations and modifications

of the eikonal scattering amplitude have been pro-
posed, there is at the present time no systematic,
detailed study of the range of validity of the eiko-
nal approximation. Since the numerous applica-
tions of the eikonal method encompass atomic,
nuclear and high-energy collisions, i.e., the whole
range of microphysics, it seems highly desirable
that the fundamental limitations of the method be
well understood.

The present work is precisely an attempt to pave
the way for such an understanding of the limits of
applicability of the eikonal approximation. Al-
though some of our results are also valid in more
general situations,® we shall confine our attention
to nonrelativistic scattering by a real, central
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potential, where “exact” solutions are readily ob-
tained to check the accuracy of our statements.
We begin in Sec. II by an analysis of the basic
formulas relevant to the eikonal approximation.
Section III is devoted to a detailed comparison be-
tween the Born series and the eikonal multiple-
scattering series obtained by expanding the eikonal
scattering amplitude in powers of the interaction
potential. We suggest that in the limit of high in-
cident wave numbers a remarkable set of relation-
ships hold between the corresponding terms of the
eikonal and Born series for all momentum tvans-
Jfers and a large class of scattering potentials.
These relations, together with the requirement of
unitarity allow us to show that in the weak coupling
case (i.e., when the Born series is rapidly conver-
gent), the eikonal amplitude gives a consistently
poorer approximation to the exact amplitude than
does the second Born approximation (although the
eikonal results are nevertheless fairly good at all
angles). We also prove that as the coupling in-
creases the eikonal method improves steadily. In
Sec. IV we make a detailed numerical study of the
accuracy of the eikonal approximation for ¢nter-
mediate and stvong coupling cases and for a vari-
ety of interaction potentials. It is shown that in
the intermediate coupling case, |V,|/E<1, where
V, is a typical strength of the potential and E the
incident particle energy, the agreement between
the eikonal and the exact scattering amplitude is
excellent at all angles for potentials of the Yukawa
type. For strong couplings, |V,|/E>1, this agree-
ment persists at small angles for all interactions
studied. These results are of course quite un-
expected in view of the conventional criteria of
applicability of the eikonal approximation.? We
also present in Sec. IV an analytical study of the
scattering by a potential of the form V(»)=a/7°
(s >2), where an evaluation of the eikonal scatter-
ing amplitude by the method of stationary phases
leads to a result for low-energy scattering which
agrees with the semiclassical formula for small
angles,® even though |V,|/£>>1. The main results
and conclusions of our work are summarized in
Sec. V.

II. THE EIKONAL SCATTERING AMPLITUDE

Let us consider the nonrelativistic scattering of
a spinless particle of mass m by a potential V(T)
of range a. We denote by k; and E, the initial and
final wave vectors and by U(T)=2m V(T )/%? the
reduced potential. We shall also call V; a typical
strength of the potential V(T ) while U, is the cor-
responding strength of the reduced potential. The
energy of the particle which undergoes the scatter-
ing is given by E=72K?*/2m, where k=|k;|=|k;| is

its wave number. The stationary scattering wave

function \If*) (T) which corresponds to an incident
plane wave *of momentum % K; and exhibits the be-

havior of an outgoing spherical wave then satisfies
the Lippmann-Schwinger equation

), - - - -
\II%: (F)= +fG§,+)(r,r’)U(r')
Gy
o 44 (¥)d ¥, (2.1)
where
<I>Ei(?)=<ﬂﬁi)
=(2m)=3/2 oil T (2.2)

is the incident plane wave “normalized” in such a
way that in momentum space

(kilk;)=0(k!-k,). (2.3)

Furthermore, the free Green’s function appearing
in Eq. (2.1) is given by

xK (r -r")

GH(F, )=~ (2m)° lim f dK (2.4a)
€"’0
1 eik[?-?'l
- = 47 'F—_f' (2.4b)
and satisfies the equation
(V2 + B)GS (T, ) = 6(F - T). (2.5)

From Egs. (2.1) and (2.4a) one readily obtains the
asymptotic behavior

+), - N R i
¥y, (F) ~ (2m) ettt 4+ f ) (2.6)
where the scattering amplitude is given by
f=—2m ey Ul ¥%)) (2.7)
Here
@7 (F)=(2m) 7" etfyt (2.8)

is a plane wave corresponding to the final wave
vector k;; we shall denote by 6 the scattering
angle between k; and k; .

Let us now assume that the de Broglie wave-
length of the incident particle is small with respect
to the range of the potential or, in other words,
that

ka >> 1. (2.9)

It is then natural to factor out the free incisient
plane wave from the total wave function ¥, ° and
to write®

£(5) = (2m 2 T (), (2.10)

where ¢(T) is a slowly varying function when ka
is large. Substituting the ansatz (2.10) in Eq. (2.1)
we find that the function ¢(T) satisfies the equation
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@(T)= 1—(211)‘3dede

XU(F—R)¢(?—§),

—€

(2.11)

where we have set R=%~¥%'. This equation is still
exact. It is an easy matter, however, to obtain an
approximate form of ¢(T) by using the fact that
the product Uy is slowly varying on the scale of
the incident wavelength. To do so we concentrate
first our attention on the free propagator Gf,’“).
Using its momentum space representation (2.4a)
and introducing the new variable

ﬁ =K- 1;:' s
we have
-R

i’UO

i
G(+)R___2 3 :k Rfd e
(R)=-(2m)" 2kip+b -

(2.12)

where the limiting process € -0* is always im-
plied. Hence Eq. (2.11) becomes

o(T)=1-(2n) % I(T), (2.13)
where
lp 3
1x)= defdPZk 2K, p+p2 - i€
XU(F=R) @(¥-R). (2.14)

Because the product Ug is slowly varying, we ex-
pect this integral to be dominated by small values
of p/k, a point to which we will return below. We
may therefore expand”*® the quantity (2k;'p +p?
—i€)™! in powers of p/k. Choosing the z axis (in
P space) in the direction of the vector k;, we have

1 1
2k;p+p° - i " 2kp,+P% — i€
1 1 2
= 2kpz—i€<1- sip,—ie Pt >
(2.15)

Hence we can also develop

GSP(R) = GP(R) + G (R) + -+ (2.16)
and

I(F)=IO(F)+ID(F)+- -, (2.17)
where

-

ip R

(V(R) = — —s il R g €7
CPR === fapst—  (19)

is the Green’s function corresponding to a linear -
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ized propagator, obtained by omitting the term p*
in the expression (2K;§+p%?~i€)™'. The quantity
G{P(R) is given by

el

G (R)=(2n)® ot Rfdp sz (2.19)

while the expressions of IV(F) and I®(¥) are
given by

-»-

i

(1) F-Ro(7-R
1O(F) = dedpz Z—GU(r R)¢(T -R)
(2.20)
and

-->

*R
I®(F)= dedp (Z—M)——-—)—zsz(?_R)w(?-R).
(2.21)

It should be noted that the Green’s functions G{V
and Gf,z) are singular functions which always act
upon “smooth” functions [see, for example, Eq.
(2.14)] in order to be well defined. It is in this
sense that G{® may be shown to be “small” com-
pared to G{¥ when ka > 1. In fact, it is clear by
looking at Eqs. (2.13)—(2.21) that the contribution
of G{¥ in evaluating I(¥) will be of order U,/k?,
where U, is a typical reduced potential strength and
we confine our attention to distances of the order
of magnitude of the range of the potential. [Clearly,
if we compute the scattering amplitude according
to the integral representation (2.7) only such dis-
tances are important.] From Egs. (2.13)-(2.21),
we see that it is not enough that the contribution
of G{?) be small compared to that of G{V; it must
be small compared to unity. Thus we require
U, /k* << 1 for the validity of this method.

It is now a simple matter to show that the linear-
ized propagator (2.18) directly leads to the eikonal
scattering wave function. Indeed, performing the
D integral in cartesian coordinates and returning
to the original variables ¥(x, v, 2) and ¥'(x’, y’, 2")
one readily obtains

G(l)( > “/)_ __;;ketki(t-z )

Xd(x—x")0(y-y)0(2-2"), (2.22)

where
1, z>z'
O(z-2")=
( ){0, z2<z'. (2.23)
Then

Iy, y, z)=(277)3§lEf dZU(x, y, 2~ 2)
[¢]

x@(x,y,z2~2). (2.24)
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Hence the function ¢¥(T), obtained by retaining
only the term I*) on the right of Eq. (2.13), sat-
isfies the equation

95,3, =155 [ dZU(xy,z-2)
5% J,

XoW(x,y,2-2) (2.25)

so that
¢ (x, v, 2) = exp[— 'ﬁ% U(x, v, z’)dz’] .

£

(2.26)

Notice that cp“) varies negligibly over distances of
order k7! since U,/k® is small. Thus for distances
which are large compared with 2™ (but not neces-
sarily as large as a) the product U(p(” varies
slowly. Hence the important values of p in the
Fourier transform of U¢ appearing in Eq. (2.14)
are small compared to % (but not necessarily of
order a™'). Thus the expansion (2.15) of the prop-
agator in powers of p/k is justified.

Let us now return to the original ansatz (2.10).
Using Eq. (2.26), we deduce that the approximate
scattering wave function ¥z(¥) which we have ob-
tained, namely the eikonal wave function, is such
that

. z
\IIE(?)=(21r)'3/2exp[i§,--‘f-——21-k f Ulx, y,z’)dz'j'
(2.27a)

or, in terms of the potential V(T),
. z

‘PE(F)=(2W)'3/ZeXp[iErf- ;lv— f V(x, v, 2') dZ'] )
i -0

(2.27b)

where V;= % Kk,;/m is the incident velocity and the
integral is evaluated along a straight line parallel
to k;.

The eikonal scattering amplitude may now be ob-
tained in the usual way® by using the integral rep-
resentation (2.7) together with the eikonal scatter-
ing wave function (2.27). Thus

f(B)== o [ aFetTu(E)

Xexp[—z—lkf_ U(B,z’)dz’], (2.28)

where
A=k, -k (2.29)

is the momentum-transfer vector, of length A

=2ksin(36). Since the actual phase of the scatter-
ing wave function should be evaluated in the semi-
classical limit along a curved trajectory, it is not

unreasonable to expect that an improvement on
Eq. (2.28) may be achieved by performing the z
integration in the phase along a direction perpen-
dicular to the momentum transfer.? We shall dis-
cuss the importance of this modification in Sec.
III. We then obtain the well-known result

fo= 51’:—2. f 2b e BF (e (B) 1), (2.30)

where we work in a cylindrical coordinate system
such that

F=b+zn (2.31)

and 7 is perpendicular to A, Furthermore, the
eikonal phase-shift function is given by

+ 0

X(B)=- o=

2% ). U(b, z)dz. (2.32)

For potentials which possess azimuthal symmetry
Eq. (2.30) simply reduces to the Fourier-Bessel
transform

fa(a)=k fmdb b (8b)(e ) - 1) (2.33)
t Jo

which is the form we shall use in subsequent sec-
tions.

Before leaving this section let us comment
briefly on the angular range of validity of the ei-
konal approximation. At first sight, it might seem
that the angular range of validity of Eq. (2.28) is
unrestricted, since we have made no mention of
angular restrictions in the derivations of this sec-
tion. However, if the reader will look back at the
discussion following Eq. (2.21) he will see that we
have neglected quantities of order U,/k* coming
from higher terms in the expansion of the propa-
gator. What we are doing here is neglecting a
function of T because it is small compared to an-
other function of ¥. It must be remembered, how-
ever, that even though f,(T) <f,(T) for all T, it
does not follow that f;( A) <f,(A) when | A| becomes
large. (Here we use f to denote the Fourier trans-
form of f,) This is precisely the situation which
we have to deal with here: The functions involved
in the solution of Eq. (2.11) must be multiplied by
U(T) and Fourier-transformed with respect to the
transform variable 3=E,~ —-IT:, in order to obtain
the scattering amplitude which is the quantity of
physical interest. For example, a function of
relative order U,/k* might have a Fourier trans-
form of relative order U;A%/k* which is not neces-
sarily negligible when A=~k (i.e., for scattering
angles of the order of 60° or greater). Thus, al-
though the requirement that A be nearly perpen-
dicular to k; suggests an angular validity criterion
of the form? 6 <(ka)~'/%; the situation is in fact
considerably more complicated than simple kine-



2626 BYRON, JOACHAIN, AND MUND

matical arguments of this sort would suggest. It
is to this question that we now turn our attention.

II. THE EIKONAL MULTIPLE SCATTERING
EXPANSION AND THE BORN SERIES

Let us return to the eikonal scattering amplitude
(2.33) and define the eikonal multiple scatteving
expansion

fE=ZfEn3 (3.1)
where
Fon=— :Tk! i"fm I (Ab) [x(D)]" b ab. (3.2)

It is worth noting that the quantities f En are alter-
natively real and imaginary. The exact scattering
amplitude fex has a similar expansion in powers of
the interaction potential, namely the Born series

fx =2 Fons (3.3)
n=1
where
fon==21° (27, | UGHU-G{VU| &, ) . (3.4)

In this last expression the potential U appears =
times and the free Green’s function G{*’, (n-1)
times. We shall also define fz, and fz,, respec-
tively, as the sum of the first # terms of Eqgs. (3.1)
and (3.3). Thus

JSEn= ngJ (3-5)
and
JBn= 2:: f_Bj . (3.6)

We now investigate the relationships between the
quantities f 5, and f g, when ka > 1. First of all,
we recall that

fE1=f81 (37)

for all momentum transfers.? It is important to
remark that this result obtains for all angles only
when the z axis of the coordinate system in position
space is chosen to be perpendicular to the momen-
tum transfer K, so that the vector A , of length
A=2Fksin(30) entirely lies in the plane of impact
parameters b. In what follows we shall always
adopt this choice of coordinate system.

Let us now consider the second terms f E» and
f B, of the series (3.1) and (3.3), respectively.
Since Refr,=0 while in general Refs,#0, there
is no analog of Eq. (3.7) for Ref5, and Refz, -
We shall return shortly to this point while discuss-
ing the relative merits of the second Born and ei-

|

konal approximations. For the moment we con-
centrate our attention on Imfp, and Imfg,. For a
simple Yukawa potential of the form

-r/fa

e

U(r)=0, (3.8)

it is well known that the second term f_Bz of the
Born series is given by the expression®

U2
2A(a"* +4k%a ™% + F2A%) 2

f_Bz(k; A) =

Aa™?t
2(a~* +4k%a "% + BPA%)2

X [2 tan™!

ril (a"‘*+4k2a'2+k2A2)1/2+kA>]
N @ da 2+ a0 2 _pa) |

(3.9)

On the other hand, for the same interaction poten-
tail (3.8) the eikonal phase-shift function is given
by

U,

x(b, k) =— =+ K (b/a), (3.10)
where K, is a modified Bessel function of order
zero. Substituting in Eq. (3.2) and evaluating the
resulting integral when #=2, we get®

— U2
SE= g AR )

(4R%a 72 + B2A%)1/2 | pA
(4FPa™ + B0 _pA

XIn (3.11)
Let us now return to Eq. (3.9). For large k we see
that

Imfy,(k, A)=Ag,(A) /R, (3.12a)

where Ag,(A) depends only on A, and terms of
higher order in 2™! have been neglected. More-
over, from Eq. (3.11) we note that we can write

Im fp, = Ag,(8)/, (3.12b)
and comparing Egs. (3.9) and (3.11) we find
Aps(A)=Ag,(8) (3.13a)

Jor all momentum transfers. Thus, when % is
sufficiently large so that Eq. (3.12a) holds, we

have for all momentum transfers
Imf,,(k, A) =Im fy,(k, A). (3.13b)

Furthermore, we show in Appendix A that Eq.
(3.132) holds for an arbitrary superposition of
Yukawa potentials, namely,

e

U(r)=U(,fm> p(a) ;w do, (3.14)

where p(a@) is a weight function.
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TABLE I. Comparison of Imf g, and Imfg, for a Yuka-
wa potential U (#) =—e~"/r and for various values of the
scattering angle 6 and the wave number 2. The numbers
in parentheses indicate powers of 10.

TABLE II. Comparison of Imfg, and Imfg, for a super-
position of two Yukawa potentials U (r) =—(e™"
—1.125¢7%7) /» and for various values of the scattering
angle 6 and the wave number k.

0 [/

k (degrees) Imfp, Imf g, k (degrees) Imfp, Imfg,
1 0 2.00(-1) 2.50(-1) 1 0 6.77(-2) 6.92(—2)
90 1.59(-1) 1.90(-1) 90 4.10(-2) 3.63(-2)
180 1.34(-1) 1.56(-1) 180 2.68(—2) 2.15(~2)
2 0 1.18(-1) 1.25(-1) 2 0 3.46(=2) 3.46(—-2)
90 5.66(—2) 5.85(—2) 90 4.86(—3) 4.56(—3)
180 3.94(-2) 4.04(-2) 180 1.07(=3) 1.09(-3)
3 0 8.11(-2) 8.33(—2) 3 0 2.30(-2) 2.31(-2)
90 2.48(-2) 2.51(-2) 90 4,73(—4) 5.10(—4)
180 1.58(-2) 1.60(—2) 180 —1.67(—4) ~1.13(—4)
5 0 4,95(-2) 5.00(—2) 5 0 1.38(-2) 1.38(-2)
90 7.58(-3) 7.60(-3) 90 -1.15(-4) —1.04(—4)
180 4.52(-3) 4.54(-3) 180 —9.29(-5) —8.65(—5)
10 0 2.49(-2) 2.50(—2) 10 0 6.92(-3) 6.92(—~3)
90 1.31(-3) 1.31(-3) 90 —2.47(-5) —2.43(-~5)
180 7.46(—4) 7.46(—4) 180 -1.22(-5) -1.20(-5)

Since the relation (3.13b) deals with the region of
large %, it is interesting to ask when this asymp-
totic behavior actually sets in. Comparing Egs.
(3.9) and (3.11), we see that ka does not have to
be much greater than one for the asymptotic rela-
tion (3.13b) to hold with fair accuracy in the case of
a single Yukawa potential. This is illustrated in
Table I, where Imf5, and Imfz, are compared
for a potential of the form (3.8) with'*'!? Uy=~1,
a=1 and for various values of the scattering angle
6 and the wave number k. Note that the agreement
between Imfp, and Imfz, is always poorest in the
forward direction, a fact which is easily under-
stood by a detailed examination of Egs. (3.9) and
(3.11). A similar comparison is made in Table II
for a superposition of two Yukawa potentials of
different ranges, namely,

Ur)=Ufe" -1.125e¢7*") /7, (3.15)

where we have chosen U,=—1. Interactions of the
form (3.15) give a nontrivial structure in the dif-
ferential cross section, even in first Born approx-
imation and can be used to reproduce some of the
features of strong interaction forces.!* We note
from Table II that the asymptotic behavior sets in
more slowly with increasing wave number for the
potential of Eq. (3.15) than for the simple Yukawa
potential (3.8). Moreover, the angle at which the
agreement is poorest now depends on the wave
number.

Restricting ourselves to Yukawa-type potentials,
we now investigate the relationship between Re f 5,
and fz,. Since the analytic evaluation of higher-

order terms of the Born and eikonal series is
extremely difficult, we proceed as follows. We
first obtain fz,; which is purely real, by a
numerical evaluation of Eq. (3.2) for n=3. Then
to find Re fp,, we first evaluate the “exact”
scattering amplitude f, by using the partial-wave
method and integrating the relevant radial Schr6-
dinger equations by means of the Numerov method.
We then substract fp, from f,, to obtain the desired
value of fp,. This, evidently, is an approximate
procedure since

fex"f82=f-B3+f—B4+st+'"; (316)

but it is quite accurate for weak coupling, in which
case the correction terms on the right of Eq. (3.16)
are very small with respect to fz,. Table III
shows the comparison of Re fg; with fg, for a
simple Yukawa potential (3.8) of unit range a=1
and “strength” U,=—1 and an incident particle of

TABLE I, Comparison of Refg; with fz; for a Yuka-
wa potential U (r) =—e™"/r and an incident wave number
k=5,

6
(degrees) Refp; Tes

0 -3.84(-3) —3.91(-3)
30 -3.01(-3) -3.02(-3)
60 —2.05(=3) —2.,04(-3)
90 -1.52(-3) -1.51(=3)
120 -1.24(-3) -1.23(=3)
150 -1.10(-3) -1.09(-3)
180 —1.06(-3) —1,05(-3)
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TABLE IV, Comparison of Refgs with fgs for a super-
position of two Yukawa potentials U (r) =—(e™"
—1.125¢7%7) /r and an incident wave number £ =5.

6

(degrees) Refps Jas3

0 —2.79(—4) —2.87(—4)

30 -9.41(-5) —9.31(-5)
60 —4.52(—6) ~6.52(—6)

90 5.78(—6) 4.16(—6)
120 5.67(—6) 4.67(~6)
150 4.95(—6) 4.27(-6)
180 4.84(—6) 4.10(—6)

wave number k=5 (measured in units of the inverse
range). The agreement between Re f_BS and fz, is
seen to be excellent for all values of the momen-
tum transfer. A similar comparison is made in
Table IV for the potential (3.15). The agreement

is still good but not as good as in Table III. This
is not surprising in light of the comparison made
between Tables I and II.

A similar procedure can be used to compare
Imfps with Im f; £s- In this case, subtracting
Imfp, from ImJ, gives two terms of similar order
in 7Y, namely Im f5, (which is not contained in
the eikonal multiple scattering series) as well as
Imfs,. However, since the former is proportional
to U,® and the latter to U,*, we may use the sub-
traction procedure for two values of U, in order to
obtain both Im f5, and Im f5,. Thus we write

Im fox = Im fp, =Imf—83+1mf_B4+ ot

=U g +Uyg, + (3.17)

and determine g, and g, (and hence Im f5, and

Im fg,) by using Eq. (3.17) for two different values
of U, (for example U,=~1 and Uy=+1). Table V
shows the comparison of Im fp, and Im fz, for a
Yukawa potential of the form (3.8) with a strength
parameter U,=-1 and an incident wave number
k=5. As in the case of Ref_33 and fz,, the agree-
ment between Im fp, and Im f z, is excellent at all
momentum transfers. This strongly suggests that
if we write

Fan(ly B) ~ Ap,(A)/E" 40 (R™), (3.18a)
R0
then, defining Ag,(A) by
-}—cEn(k) A) =AE,,(A)/k"-1 ’ (3.18b)
we have
Apn(BA)=Ag,(8) (3.18¢)

for all » and all values of the momentum trvansfev,
for potentials of the form (3.14). We note in this
connection that for a Yukawa potential (and by a
straightforward extension for a superposition of

TABLE V. Comparison of Imfg, with Imf, for a Yu-
kawa potential U (#r) =—e~"/7 and an incident wave num-
berk =5,

0
(degrees) Imfg, Imfg,

0 -3.13(—4) —3.51(—4)
30 —2.85(—4) —3.16(—4)
60 -2.37(—4) —2.58(—4)
90 ~2.00(—4) —2.16(—4)
120 ~1.76(—4) —1.89(—4)
150 ~1.63(—4) —1.75(~4)
180 —1.59(—4) —1.70(—4)

Yukawa potentials) Moore’ has in effect proved
that the first term in Az,(A), which is propor-
tional to In""*A/A%?, is equal to the first term in
Ag,(A). However, for Yukawa type potentials
Apgn(A) and Ag,(A) are linear combinations of
terms of the form In"A/A% (Osmsn-1), soa
general proof of Eq. (3.18¢) is not trivial.

Let us now examine some of the consequences
of the relations (3.18). We first consider the weak
coupling case which we define by the inequalities

[Vola _ U ]a

o - 2k b (3-19)
where v="7%k/m is the particle velocity and

NARILA

—EL= —kJZ?—«l. (3.20)

In this case the Born series converges and Eq.
(3.3) may be rewritten for ka >>1 as'*

ok, )= () +[ A i 2]

J{E;e—?l "‘Z%(TA_)]‘"

=f5,(A) +fpa+Ffas+er, (3.21)

where we denote the expressions in square brack-
ets by fg, and fp,, respectively. We note that the
quantities A and B coming from f, are propor-
tional to U;?, while C and D, arising from fz;,are
proportional to U. The % dependence of the var-
ious terms has been exposed and is easily checked
by requiring the scattering amplitude (3.21) to
satisfy the optical theorem order by order in pow-
ers of U, and 27'. Now using the relations (3.18),
the corresponding eikonal amplitude is given by

Fall, ) =fni(m)+i B CD)

=f5,(8) '*‘sz +f_E3+"'- (3.22)

Thus we see that the eikonal amplitude selects in
each term of the Born series the dominant contri-
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TABLE VI, The real part of the scattering amplitude for a superposition of two Yukawa po-
tentials U @) =—(e™" — 1.125¢™%") /r and an incident wave number . =5.

]
(degrees) St Ie2 fm fE fE+fm Sex

0 7.188(-1) 6.633(—4) 7.194(-1) 7.185(—1) 7.191(-1) 7.191(-1)
30 2.474(-2) —2.061(—4) 2.453(-2) 2.465(-2) 2.444(-2) 2,444(-2)
60 -3.316(-4) —6.606(—5) —3.976(—4) —3.381(—4) —4.041(-4) —4.021(—4)
90 -1.225(-3) —9.408(-6) -1.235(-3) -—1.221(-3) -1.231(-3) -1.229(-3)
120 -1.083(-3) 4,184(—-6) -1.078(-3) —1.078(-3) -1.074(-3) -—-1.073(-3)
150 —-9.577(—4) 7.580(—6) —9.501(—4) —9.534(—4) —9.459(—4) —9.452(~—4)
180 -9.163(—4) 8.253(—6) —9.081(—4) =9.122(—4) —9.039(—4) =—9.032(—4)

bution (to order 2~') which is alternatively real
and imaginary. It should be noted that in this way
the eikonal amplitude (3.22) satisfies the optical
theorem to each order in powers of U, and &~ in
a very particular way.

Let us compare in more detail Egs. (3.21) and
(3.22). We see that neither fz, nor f; are correct
to order 272, Indeed, fp, lacks the real term
C(A)/F? while the real term A(A)/k? is missing in
fz- Now, since A(A) is proportional to U7, while
C(a) is proportional to Uy, it is clear that when
U, is sufficiently small the second Born amplitude
S, is actually more accurate than fz. This is
clearly illustrated in Table VI where fz,, Re fBz ,
Re fz,, Re fg, and Re f, are shown for a “double
Yukawa” potential (3.15) with U;=~-1 and an inci-
dent wave number £=5. We have also displayed in
Table VI the quantity Re ( fz+fp5,) which adds to
the eikonal amplitude (3.22) the important missing
term Re fp,~A(A)/k? The improvement of the
eikonal amplitude due to this addition is seen to be
spectacular. Because of Eq. (3.13b) no such situa-
tion arises for the imaginary part of the amplitude
which is given in Table VII. Indeed, since Imfg
=~ Imfg, because the coupling is weak, we should
expect that Imfr =~ Imfp, ~ Imf,,, which is seen
to be the case.

The comments which we have just made about
the real part of the scattering amplitude apply
evidently also to the calculation of the differential
cross section, since the terms involving A(A),
B(A), and C(A) in Eq. (3.21) contribute equally in
correcting the first Born differential cross section
to order 272. Hence, because only B(A) and C(A)
appear in the eikonal approximation, the differen-
tial cross section is given more accurately by the
second Born approximation when U, is sufficiently
small.

As a further illustration of these remarks, we
present in Table VIII the results of similar calcu-
lations for the real part of the amplitude corre-
sponding to a “double Yukawa” potential (3.15) when
U,=-3 and k=5. Since the coupling is now some-

what larger we expect the term C(A)/%* in Eq.
(3.22) to become more important. Indeed, we see
from Table VIII that neither the second Born ap-
proximation—which lacks the term C(A)/k*—nor
the eikonal method—which misses the term
A(A)/R*—offers a significant improvement over the
first Born result for the real part of the scattering
amplitude. Nevertheless, by comparing the results
of Tables VI and VIII we see thatthe eikonal method
has already improved significantly (at all angles)
since it includes the term C(A)/%* whose impor-
tance increases with the coupling. Moreover, if
we add Re fp, to Re fz, as we did in Table VI, we
see from Table VIII that again a major i@prove-
ment in the real part of the amplitude is obtained,
as we expect from the foregoing discussion.

Before we conclude this section, we would like
to emphasize that the theorem (3.13a) and the con-
jecture (3.18c) should only be applied to interactions
having the form of an arbitrary superposition of
Yukawa potentials of the form (3.14). In fact, we
show in Appendix B that the relation (3.13a) holds
only for small momentum tvansfevs in the case of
a Gaussian potential and of a polarization potential
of the form

U,

N ol

(3.23)

TABLE VII. The imaginary part of the scattering am-
plitude for a superposition of two Yukawa potentials
U(r)=—(e " —1.125¢%) /r and an incident wave number
k=5,

0

(degrees) I ) fex
0 1.383(-2) 1.383(-2) 1.384(-2)
30 2.380(—3) 2.363(=3) 2.364(—3)
60 4.532(—5) 5.812(—5) 3.796(—5)
90 ~1.153(—4)  —1.040(—4) —1.161(—4)
120 -1.093(—4)  —1.008(—4) —1.085(—4)
150 —9.719(=5)  —9.019(—5)  —9.592(—5)
180 —9.288(—5)  —8.632(-=5) —9.155(=5)
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TABLE VIII. The real part of the scattering amplitude for a superposition of two Yukawa
potentials U (*) =—3(e”™" — 1.125¢727) /» and an incident wave number & =5,

0
(degrees) fB T TE Fe+ Sex
0 2.156(0) 5.970(—3) 2.162(0) 2.149(0) 2.154(0) 2.154(0)
30 7.422(—2) -1.854(-3) 7.236(-2) 7.172(-2) 6.986(—2) 6.986(—2)
60 —-9.947(-4) —5.945(—-4) —-1.589(-3) —-1.169(-3) —-1.763(-3) ~1.689(~3)
90 —3.676(-3) —8.467(—-5) -3.761(-3) —3.565(—3) —3.649(-3) —3.604(—3)
120 —3.248(-3) 3.766(—5) -3.210(-3) -3.123(-3) —3.085(-3) -3.062(-3)
150 ~2.873(-3) 6.822(-5) ~2.805(-3) —2.758(-3) —2.690(-3) —2.677(-3)
180 —2.749(-3) 7.428(-5) —2.675(—3) —2.639(-3) —2.565(—3) —2.553(-3)
IV. THE INTERMEDIATE AND now have
STRONG COUPLING CASES
Gla (4.3)
We now turn to the case of “intermediate” cou- 2 :

pling which we define by still requiring that

ka > 1 (4.1)
together with the inequality

—IlE/?—' <1. (4.2)

However, we relax the condition (3.19) so that we

0.1

001

FIG. 1. The real part of the scattering amplitude for
a Yukawa potential of the form given in Eq. (3.8) with
Uy=-5, a=1, andk =5. The solid curve shows the
exact result, the dashed curve gives the eikonal result,
and the dash-dotted curve is the second Born approxima-
tion.

We show in Figs. 1-8 the real and imaginary parts
of the eikonal scattering amplitudes corresponding
to the following interactions:

(a) a simple Yukawa potential of the form (3.8)
with U;=-5 and a=1,

(b) the same interaction with U, = - 10,

(c) a “double Yukawa” potential of the form (3.15)
with U,=~ 20, and

(d) a polarization potential of the form given by
Eq. (3.23) with U,=—10 and d=1.

We have performed all the calculations leading
to Figs. 1-8 for the value 2=5. For comparison
with the eikonal results, we have also plotted the

I

| i 1
30° 60° 90° 120° 150° 180°

FIG. 2. Same as Fig. 1 except that the imaginary part
of the amplitude is shown.
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30° 60° 90° 120° 150°  180°

FIG. 3. The real part of the scattering amplitude for
a Yukawa potential of the form given in Eq. (3.8) with
Uy=-10, a=1, andk = 5. The solid curve shows the
exact result, the dashed curve gives the eikonal result,
and the dash-dotted curve is the second Born approxima-
tion.

T l"l T [ T T h“fl T

10 -

[ T B
30° 60° g0° 120° 150° 180°

FIG. 4. Same as Fig. 3, except that the imaginary part
of the amplitude is shown.

exact results. Furthermore, we display in Figs.
1-6 the values of the amplitudes given by the sec-
ond Born approximation and in Fig. 7 that given by
the first Born approximation. We note that for all
Yukawa-type potentials the eikonal rvesults have the
corvect sign and reproduce very well the structure
of the exact amplitude. We also see that the first
and second Born approximations both do very
poorly in the case of the single and double Yukawa
potentials (see Figs. 1-6). For example, if we
analyze in detail Fig. 5, which shows the real part
of the scattering amplitude for a double Yukawa
potential, we see that the eikonal result follows
very well the exact amplitude, with only a shift of
the second zero spoiling the agreement somewhat.
We emphasize that even at 6=180° the agreement
between the two curves is striking. The first Born
approximation does not agree with the exact results
except at very small angles. It exhibits only one
zero and has the wrong sign at large angles. The
second Born approximation offers no worthwhile
improvement. An examination of Fig. 6, which
gives the imaginary part of the scattering ampli-

IIIII‘II‘II]I!TIT
Re f

10 B B
@

1F AA =
r \

[ \

r

0.1,__*

[

H

r

0.01:—

F

-

L
L1

30° 60° 90° 120° 150° 180°

FIG. 5. The real part of the scattering amplitude for
a superposition of two Yukawa potentials of the form
given in Eq. (3.15), with {j=—20, 2 =5. The solid curve
shows the exact result, the dashed curve gives the eiko-
nal result, and the dash-dotted curve is the second Born
approximation.
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tude for a double Yukawa potential, leads also to T T T T T T T
the conclusion that the eikonal result is excellent
at all angles. Here the second Born approximation
has the correct sign for all values of 6 but is seen
to be consistently poorer than the eikonal result at
all scattering angles. 1
The reason for this agreement at large angles in
the intermediate coupling case and for Yukawa-
type potentials is undoubtedly related to the asymp-
totic properties which are discussed in Sec. III
[see Egs. (3.18)]. The Bornseriesis fairly rapidly 10
convergent and the large-angle term-by-term
properties persist in the total amplitude. Also, the
fact that |U,| is large means that the terms of the
Born series missing from the eikonal series are un-
important compared to those included in the eikonal 10
series.
Finally, we may remark that the wide-angle dis-
agreement found for the simple Yukawa potential
in Fig. 3 is due to the fact that the exact scattering
amplitude is about to pass through zero. Clearly 10
any expanded picture of the vicinity of a zero of
the exact amplitude will show similar disagree-
ment (this would be the case, for example, be-
tween 50° and 80° in Fig. 4). Corrections to the B
eikonal result play a major role at such points. 00— 3'0e ' o0° e
The situation is particularly striking in Fig. 3

T T

T T

T T T

~

T

T

T T

T

120°

FIG. 7. The real part of the scattering amplitude for
a polarization potential of the form (3.23), with U= —10,
d=1, andk=5. The solid curve shows the exact result,
the dashed curve gives the eikonal result, and the dotted
curve is the first Born approximation.
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FIG. 6. Same as Fig. 5, except that the imaginary

part of the amplitude is shown.

FIG. 8. Same as Fig. 7 except that the imaginary part

of the amplitude is shown.
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LENNN SN BN B S SR B S SRS NN SN MU SR RN BN R

Llellnlllllllllle
30° 60° 90° 120° 150° 180°

FIG. 9. The real part of the scattering amplitude for
a Yukawa potential of the form given in Eq. (3.8) with
U= -20, a=1, andk =2. The solid curve shows the
exact result and the dashed curve gives the eikonal re-
sult. Born values are not shown since they are in gross
disagreement with the exact results.

because the amplitude really varies most signif-
icantly as a function of the momentum transfer,
and the momentum transfer changes by only about
10% as one moves from, say, 120° to 180°.

Before leaving our discussion of intermediate
coupling, let us comment briefly on the results for
the polarization potential shown in Figs. 7 and 8.
We see that at small angles the agreement between
exact and eikonal results isverygood, but atlarger
angles this agreement does not persist. This is in
accord with the discussion in Appendix B where we
show that for potentials of the polarization type the
term-by-term properties of Egs. (3.18) do not hold
for all angles.

Finally, we come to the strong coupling case for
which |V,|/E>1. We compare in Figs. 9-14 the
eikonal and exact amplitudes for the single Yukawa,
double Yukawa, and polarization potentials con-
sidered above, with Uy=-20 and k=2. For this
case the Born series does not converge. However,
in all cases the agreement for both the real and
imaginary parts of the amplitude is good at small
angles. This agreement is quite unexpected in
view of the conventional criteria of validity for
the eikonal approximation.

In order to gain some insight into this question,

-3}
B 1 L | | 1 | 1 1

6
L1
30° 60° 90° 120°

-
150°  180°

FIG. 10. Same as Fig. 9, except that the imaginary
part of the amplitude is shown.

FRRE (SN U NS ST TN (NN UM TUN NN NN TU BN N |

0 30° 60° 90° 120° 150° 180°

FIG. 11. The real part of the scattering amplitude for
a superposition of two Yukawa potentials of the form
given in Eq. (3.15), with Uy= —20, & =2. The solid
curve shows the exact result and the dashed curve gives
the eikonal result. Born values are not shown since they
are in gross disagreement with the exact results.
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-1+ .
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FIG. 12. Same as Fig. 11 except that the imaginary
part of the amplitude is shown.

let us consider the problem of scattering by a
potential of the form

U(r)= ;,%s', s>2, (4.5)

We choose this form for mathematical convenience;
the ideas involved apply to much more general po-
tentials. In particular, the apparent singularity

of Eq. (4.5) at =0 is of no consequence. If one
likes, Eq. (4.4) can be replaced by U(7) =U,/(7*
+d?)*” and under most circumstances our results
will be unchanged. If we assume that the criteria
for the validity of the eikonal approximation are
satisfied, then the scattering amplitude is given

by Eq. (2.59):

0= % [ agan

4 ° dz
-7 2 -
x[exp( '3k ’/:w W) 1:]bdb.
(4.6)
Doing the phase integral and integrating by parts

once with respect to b, we find

70~ (s =10 [ gt el i (0~

L
30 50 90° 120° 150° 180°

FIG. 13. The real part of the scattering amplitude for
a polarization potential of the form (3.23), with U= —20,
d=1, andk =2. The solid curve shows the exact result
and the dashed curve gives the eikonal result. Born
values are not shown since they are in gross disagree-
ment with the exact results.

f(8)=~(s- 1)C(s)—%2 fomJl(Ab) b_s‘l-T

C
Xexp (— i ﬁ(fl—?ﬂ)db, (4.7)
where
/2
C(s)= f cos®2 gde
0
=§\/;I‘(%(s—l)), (4.8)

I'(zs)

Let us assume that we are interested in sufficient-
ly large values of A so that for important impact
parameters we may write

1/2
J,(Ab) =<—ﬂ%§5> cos(Ab — 37/4). (4.9)

Then Eq. (4.7) becomes

———JC(S)U - 37 +exp{— i(Ab+ (;E)Ss)_tlj - %ll)]}db

(4.10)
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30 80° 90 120° 150° 180°

FIG. 14. Same as Fig. 13 except that the imaginary
part of the amplitude is shown.

If we make the change of variable y=5/b,, where
bo=[C(s)U/RA]®

={C(s)V,/[2E sin(36)]}17, (4.11)
the two phases, X,, in Eq. (4.8) take the form
K. =Aby(y£1/y°7Y) = 31/4. (4.12)

Thus, if ,>1 we can evaluate the integrals in Eq.
(4.10) by the method of stationary phases. Assum-
ing U, positive only the second phase occurring in
Eq. (4.11) has a stationary point, located at

- <(s - 1)C(s)Uo>‘/s

kA

_(VrD(5(s + )Y,

1/s
N <2Er(§s)sin (59)> (4.13)

The main contribution to Eq. (4.10) comes from
the vicinity of b=b;. The evaluation of Eq. (4.10)
is now straightforward. One finds

f(8)= ‘ﬁéi-‘(ﬁ) exp [-—i(SAbS - 1)] )

sin(z s—=1 2

(4.19)
with b, determined via Eq. (4.13). This result

agrees with the semiclassical result® for angles
such that sinz6 ~306, which suggests that the

modifications made in going from Eq. (2.28) to Eq.
(2.30) are useful in extending the angular validity
of the eikonal approximation. The differential
scattering cross section is then given by

do _ _1_<ﬁr(é(s+1)) AN 1 )
dQ  4s\ 2T(3s) E ) [sin(36)]27%"
(4.15)

There are several points to be made concerning
these results. First, note that if the potential of
Eq. (4.5) is cut off at distances much smaller than
bs, then the result of Eq. (4.14) is still valid. Sec-
ond, the singularity at 6=0 in Eq. (4.14) is spuri-
ous; it results from the fact that we have assumed
Ab, large, whereas for 6 small Ab, becomes small.
Thus, Eqgs. (4.14) and (4.15) cannot be used for
very-small-angle scattering. Finally, let us ask
what is the value of |V(»)|/£ in the important
regions of space, i.e., in the vicinity of »=b;.

We have

V(b) | 2T(3s)sin(6/2)
E | VaT(E(s+1))

~ 2(7%)1/2 sin(36). (4.16)

Thus, for §<60° [V(b,)/E|<1. For still smaller
angles, we would expect |V(#)/E| to become suffi-
ciently small in the important vegions of space so
that the eikonal result Eq. (2.33) will be valid, even
though [V,[/E is not small. Thus, it is plausible
that for more general potentials the range of va-~
lidity of the eikonal method may be much greater
than is suggested by the crude criterion |V, |/£<1.

V. SUMMARY AND CONCLUSIONS

We have presented in this work a systematic
study of the eikonal approximation in the simple
case of nonrelativistic potential scattering. In
particular, we suggest that the eikonal amplitude
has the following remarkable properties:

(1) For a large class of potentials, given by Eq.
(3.14), each term of the eikonal multiple scattering
series gives the asymptotic value (as £ —«) of the
corresponding term in the Born series for all mo-
mentum transfers.

(2) In the weak coupling case, i.e., when the Born
series is rapidly convergent, the eikonal amplitude
gives a consistently poorer approximation to the
exact amplitude than does the second Born approxi-
mation fp, =ﬁn +fp,. However, by adding Re f;z
to the eikonal result one obtains an extremely good
value of the scattering amplitude. Moreover, the
agreement between the eikonal and exact results
improves as the coupling increases.

(3) For intermediate couplings such that |V,|/£
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=1, ka large and Ua/2k=~1 we find that the eikonal Ag,(A)=Ag,(A),
amplitude reproduces very well the exact result

ov all scatteving angles and Yukawa-type poten-
4 by Egs. (3.12a) and (3.12Db).

8

(A2)

where Ag,(A) and Ag,(A) are given, respectively,

tials. "
(4) Finally, even for strong coupling cases, i.e., Let us first calculate Imf g, (k, 4). We start
when [V,|/E >1, we still find that fz ~f, for small from the general expression

momentum transfers and ka somewhat larger than

- - 1 o
. P Ulgy ———— (&lUlk
unity. SBa=2T qu<kfl IQqu__kz_z-E\QI %),

These results strongly suggest that the tradi-
tional criteria for the validity of the eikonal approx-
imation are only sufficient conditions which are
often unnecessarily stringent. where

APPENDIX A <§'IU!’1§>=(2n)'3f S EET piyaF,

We want to prove that for an arbitrary superposi-

tion of Yukawa potentials of the form tentials of the type (A1) we have

o=, J, | ole) S den (A (R UIR)=2m) 7, [ da A2

A+ a

one has for all values of A and therefore

ra UZ f f - 1
= -0 = pre > M
Tar= gy [ dwnt@) [ aeold) [ 48 TR A
Using the Feynman integral representation

v ,
o [at+b(1-DF

a”lpTr=
we may rewrite Eq. (A6) as

= U2 1 - 1
fB2= ﬁfdap(a)fdﬁp(ﬁ)l dtqu (qz_kz_ie)[(a_K)2+l-‘2]2’

where we have set

I2=a?+p%1-t)+#1 - t) a2

and
KItE'--F(I—t)Ef.

The § integral may now be readily evaluated to yield®

J @ g - =T
Y F-F-i(§-RP+T%2  ~ T(FF-T2-K+2kT)

so that

_ U2 1 dt
Fa=- g—fdap(a)fdﬁf’(ﬁ)fo T(2kT - o - BA1-1)

where we have used the fact that

T2 =k +a%+B%(1-1).

We now consider the particular case k-, so that we may write

lim fp,=ilim Im fjp,

p > R~> %

=i%§fdap(a)fdﬁp(3)fol %

(A3)

(A4)

and the limit € -0 is always understood. For po-

(A5)

(A8)

(A7)

(A8)

(A9a)

(A9Dp)

(A10)

(A11)

(A12)

(A13)
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or, using Eq. (A9a),

. = Uy ! dit
}21_120 Im f p,(k, &) = Z% f dap(a) deP(ﬁ)j; Fi(E-F o) —np (A14)

The integral on the variable { is easily evaluated, and yields

1 1

1
- 2 __1)\1/2
j; at Fr(P-Bi+ ) — N2 apud—1)" Infu+ (u* - 1)*], (A15)
where
o+ B+ A
2ap (A186)
Hence
. F Qo_z 1 2 1/2
lim Imfg,(k, A)= dap(a) | dBp(B) ——5—7% Infu+@? - 1)172]. (A17)
oo 2k aBu®-1)
We now evaluate Imfg,(k, A), which is given by
Im (k8= £ [ 5,(a8) x3(6, B) b, (A18)
0
with
1 A
X(b, B)== 5 f U(b, 2)dz. (A19)
For a potential of the form (Al), we have
X6, )= % U [ pla)Kj(@b)da, (A20)

where K, is the modified Bessel function of order zero. Hence, substituting Eq. (A20) into Eq. (A18), we
obtain

_ Uz ©
Im [ palk, 8)= 22 [ aap(@ [ aso®) fo J(AB)K ( ab)K,(Bb)b db. (A21)
The integral on the b variable yields'®
= . 1
fo T AD)K (8K (BE)Y db = Gz Infu+ (- D], | (A22)

where the quantity « is given by Eq. (A16). Hence

Im fg,(k, A) = %’; f dap(a) f dBp(B) a—ﬁ‘(uzl—_ﬁr/g Infu+(@? - 1)*2 ] (a23)

and Eq. (A2) follows by comparing Egs. (A17) and (A23). We also remark that it is a simple matter to

extend the validity of Eq. (A2) to a superposition of exponential potentials.

APPENDIX B

We now turn to two cases, the polarization potential and the Gaussian potential, for which the results
(3.13) do not hold. Taking the polarization potential to be of the form

U(r)= (B1)

L,
(7,2+d2)2
we have
kB (~ i mg
fe= 7 j‘: Jo(Ab)[eXp (— % Z(bedz—)s72-> - l]bdb

so that
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N N —

This last integral is of the Hankel-Nicholson type and can be evaluated for all n. We find

Faerein (- 2Y (2) " Bt .

In particular for the case #=1 we recover the familiar first Born approximation

_ U _
Fo=-gp e =Fa, . (B3)

For the case =2 we find
= U2 [A\?
R el
Tra=1gap <2d> Ky(ad). (B4)
As far as the second Born approximation is concerned, we have

_ U2 e-lii-alde-l;;l:f]d
fBZ 32d2 f qz—kz—ie

The imaginary part of this expression is easily evaluated when the scattering angle 6 is such that 6=0 or
6=mu. In the former case, ks=k;, and we have immediately

Fanl6=0)= fe_mm_md*
B2 32d2 qz—kz—iE q.

Using (x —i€)"'=Px ™' +inb(x), we obtain

Imfz,(6=0)= —2 64d2 k f exp[- 4kd sin(36,)]sin6,d6,d¢,,
where 6, and ¢, are the polar angles of the vector 4. This leads to

2 2
Imfa, (6=0) = 1—2—8’—]3;- [1 - (4kd +1)e™]. (B5)

Comparing with Eq. (B4) and assuming kd >>1 so that the exponential term in Eq. (B5) can be neglected, we
see that Imfg, (6=0)= Imfzg, (6=0).
For 6=, however, the situation is different. Proceeding as before, we find

Imfp,(6=17) = 32d2 kf exp{~ 2kd[sin(36,) + cos(364)]} sinb, dé,.

Clearly, if ka >>1, the main contribution comes from the regions near 6,=0 and 6,=, and the contribu-
tions are equal. Thus

m
Imfp, (0= 1) = L o2t [ expl- 2kdsin(s, /2)]sin0,d0, .
0

164°
Neglecting terms of order e™**, we have
UZ
Imfp, (0= m) =~ 20 g2t (B6)

16d°k
Comparing this result with Eq. (B4) we see that
Imfz, (6= 1) # Imfz, (6=7),

the two terms differing by a factor 7/2(kd)*’2/8 when kd > 1.
For the case of a Gaussian potential of the form

Ur)=U, e~/ (B7)

the eikonal phase is readily evaluated, leading to

fe= 7 fowJo(Ab)[exp(- i %ﬁ e'°2/"2> -'1] bdb.
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Hence
fEn: i"lp 1r <_ v UQll> f JO(Ab)e_,,bz/az bdb.
n! 2k A

The integral is straightforward and yields

i"a’k (_ HUQg)" o =202 /an

fen= Tl 5% (B8)

We recover the familiar first Born approximation when z =1, namely
fE1=—%ﬁa3er-a2A2/4 =fe: - (B9)

The second Born approximation is given by

- Uozasf -a2|%;-3 12 a2 3Ty 12 40
]TBZ_ 327, e i € q2_k2_i€ (BIO)

or

_ UZla? f°° (a2 + 2T, +T| 2,2, 2. 1% % qdq
= - PR i B Al _ =a*(k* +{ +%, + X lo) 2 _ue4y .
fgz —4"—-$'T8|ki+kf o (e i f e i i ke )qz-—kz—i€
If we are interested only in'® Imfp, the remaining integration is trivial, giving

= U,%a* - - -
Imez =—2_k—7r(;)(l.—[—s(§9) (e a2p2[1-cos (6/2)] - a2p2[1+c08(6/2) ] ) (Bll)

On the other hand, fg, is pure imaginary, and

_ 2,4
Imfz,= e’ o~a%k? sin(6/2) /2 , (B12)
32k
according to Eq. (B8). It is obvious that for small values of 6 [in fact, for 0 « 1/(ka)1/2], Im fp, and Im fg,
agree. For larger values of the scattering angle, however, this agreement is lost. When 6=1, for exam-
ple, the two expressions (B10) and (B12) differ by a factor (ka)ze'kz‘I2 f2
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