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A systematic study is made of the limits of validity of the eikonal approximation in nonrelativistic
potential scattering theory. We suggest that for a large class of potentials, and for all momentum
transfers, each term of the eikonal multiple-scattering series gives the asymptotic value (for large
incident wave numbers) of the corresponding term in the Born series. This property, together with the
requirement of unitarity, implies that in weak-coupling situations, the eikonal approximation is con-
sistently worse than the second Born approximation. For intermediate couplings we find that the

eikonal method is remarkably good at all angles for potentials of the Yukawa type. For the case of
strong coupling (~vo~&E) we find that for all potentials studied there is good agreement between

exact and eikonal results at small angles. Analytical and numerical results are given for a variety of
interaction potentials.

I. INTRODUCTION

Originally introduced more than twenty years
ago in quantum scattering theory, ' the eikonal ap-
proximation has attracted a considerable amount
of interest, particularly in recent years after the
work of Glauber, ' who devised a very convenient
many-body generalization of the method. The ei-
konal approximation has been used extensively and
with considerable success in the analysis of inter-
mediate and high-I nergy hadronic collisions. '
More recently, atomic scattering processes have
also been studied by means of the eikonal approx-
imation. '

Although several derivations and modifications

of the eikonal scattering amplitude have been pro-
posed, there is at the present time no systematic,
detailed study of the range of validity of the eiko-
nal approximation. Since the numerous applica-
tions of the eikonal method encompass atomic,
nuclear and high-energy collisions, i.e., the whole
range of microphysics, it seems highly desirable
that the fundamental limitations of the method be
well understood.

The present work is precisely an attempt to pave
the way for such an understanding of the limits of
applicability of the eikonal approximation. Al-
though some of our results are also valid in more
general situations, ' we shall confine our attention
to nonrelativistic scattering by a real, central
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potential, where "exact" solutions are readily ob-
tained to check the accuracy of our statements.

We begin in Sec. II by an analysis of the basic
formulas relevant to the eikonal approximation.
Section III is devoted to a detailed comparison be-
tween the Born series and the eikonal multiple-
scattering series obtained by expanding the eikonal
scattering amplitude in powers of the interaction
potential. We suggest that in the limit of high in-
cident wave numbers a remarkable set of relation-
ships hold between the corresponding terms of the
eikonal and Born series for all momentum trans
fers and a large class of scattering potentials.
These relations, together with the requirement of
unitarity allow us to show that in the ~ca& coupling
case (i.e., when the Born series is rapidly conver-
gent), the eikonal amplitude gives a consistently
poorer approximation to the exact amplitude than
does the second Born approximation (although the
eikonal results are nevertheless fairly good at all
angles). We also prove that as the coupling in-
creases the eikonal method improves steadily. In
Sec. IV we make a detailed numerical study of the
accuracy of the eikonal approximation for inter-
mediate and»«ng coupling cases and for a vari-
ety of interaction potentials. It is shown that in
the intermediate coupling case, IV, I/E&1, where

V, is a typical strength of the potential and E the
incident particle energy, the agreement between
the eikonal and the exact scattering amplitude is
excellent at all angles for potentials of the Yukawa

type. For strong couplings, lV, l/E&1, this agree-
ment persists at snzall angles for all interactions
studied. These results are of course quite un-
expected in view of the conventional criteria of
applicability of the eikonal approximation. ' We
also present in Sec. IV an analytical study of the
scattering by a potential of the form V(r) = &/r'
(s &2), where an evaluation of the eikonal scatter-
ing amplitude by the method of stationary phases
leads to a result for low-energy scattering which
agrees with the semiclassical formula for small
angles, ' even though lV, l/E»1. The main results
and conclusions of our work are summarized in
Sec. V.

II. THE EIKONAL SCATTERING AMPLITUDE

Let us consider the nonyelativistic scattering of
a spinless particle of mass m by a potential V( r)
of range a. We denote by k; and kf the initial and
final wave vectors and by U(r) =2m V(r)/h' the
reduced potential. We shall also call &p a typical
strength of the potential V( r ) while U, is the cor-
responding strength of the reduced potential. The
energy of the particle which undergoes the scatter-
ing is given by E= 5'k'/2m, where k=

l k;l =
l k/ l is

where

e-„,(r) = ( rl k; )
}-3/2 i)); )

(+)
x)I(~ (r') d r', (2.1)

(2.2)

is the incident plane wave "normalized" in such a
way that in momentum space

(2.3}

Furthermore, the free Green's function appearing
in Eq. (2.1}is given by

iK {r -r')
Go(') ( r, r ') = —(2w) ' 1im, , d K (2.4a)

P

&p)r -r '1e
4w lr —r'f

and satisfies the equation

(V-, '+)1,")G,"(r, r') = 5(r —r').

(2.4b)

(2.5)

From Eqs. (2.1) and (2.4a) one readily obtains the
asymptotic behavior

(+) e&k
0 („(r)~ (2w} '/' e'"(" +f

r~~ y'

where the scattering amplitude is given by

f =-2w'(@)„;Ul @), )
(+)

Here

(2.6)

(2.'I)

C-„(r)=(2w) ' 'e'"f' (2.8)f
is a plane wave corresponding to the final wave
vector kf, we shall denote by 6) the scattering
angle between k& and kf .

Let us now assume that the de Broglie wave-
length of the incident particle is small with respect
to the range of the potential or, in other words,
that

Aa»1. (2.9)

It is then natural to factor out the free incident
+)

plane wave from the total wave function 4 (, . and
to write'

@-„, (r) =(2w) ' 'e' ("V(r),(+)
(2.10)

where rp(r) is a slowly varying function when kz
is large. Substituting the ansatz (2.10) in Eq. (2.1)
we find that the function p(r ) satisfies the equation

its wave number. The stationary scattering wave
{+)

function @- (r ) which corresponds to an incident
ki

plane wave of momentum h k; and exhibits the be-
havior of an outgoing spherical wave then satisfies
the Lippmann-Schwinger equation

(r)=e-„,(r)+ fG' (rr'), ))(r')
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i( K-k ) ~ R

rp(F)= ( —(dw)
' fdR fdk

x U(r —R) q(r —H),

(2.11)

zzpp propagator, obtained by omitting the term P'
in the expression (2k;.p+P' —ie) '. The quantity
G(')(R) is given by

i' R

G,"(R)=(2))) 'e'" '

dp —
. , P' (2.19)

G,"(H) = —(2))) 'e'"("' ip R

dp
2 k;.p+ p —K

(2.12)

where the limiting process e -0' is always im-
plied. Hence Eq. (2.11) becomes

rp(r)=1 —(2m) 'I(r),
wher. e

(r)=Ifdaf dj

(2.13)

x U( r —R) y(r —R).

Because the product Uy is slowly varying, we ex-
pect this integral to be dominated by small values
of P/0, a point to which we will return below. We
may therefore expand" ' the quantity (2k; p+P'
—ie) ' in powers of P/k. Choosing the z axis (in
p space) in the direction of the vector k, , we have

1 1
2 ki'p +P —zc 2kPg+P —2c

1 1
1 — p +

2kP, —ie 2kP, —je

(2.15)

where we have set B= r —r'. This equation is still
exact. It is an easy matter, however, to obtain an
approximate form of y(r) by using the fact that
the product Up is slowly varying on the scale of
the incident wavelength. To do so we concentrate
first our attention on the free propagator Go~'~.

Using its momentum space representation (2.4a)
and introducing the new variable

p=K-k;,
we have

while the expressions of I('(r) and I(')(r) are
given by

ip R

I(')(r)= dRdp . U(r —R)y(r-R)2', —ic
(2.20)

It should be noted that the Green's functions G, '

and Go~' are singular functions which always act
upon "smooth" functions [see, for example, Eq.
(2.14)] in order to be well defined. It is in this
sense that Gt' may be shown to be "small" com-
pared to Go when ka» 1. In fact, it is clear by
looking at Eqs. (2.13)-(2.21) that the contribution
of G(" in evaluating I(r ) will be of order U, /k',
where U, is a typical reduced potential strength and
we confine our attention to distances of the order
of magnitude of the range of thepotential. [Clearly,
if we compute the scattering amplitude according
to the integral representation (2.7) only such dis-
tances are important. ] From Eqs. (2.13)-(2.21),
we see that it is not enough that the contribution
of G,' be small compared to that of G,'; it must
be small compared to unity. Thus we require
U() /k' « I for the validity of this method.

It is now a simple matter to show that the linear-
ized propagator (2.18) directly leads to the eikonal
scattering wave function. Indeed, performing the
p integral in cartesian coordinates and returning
to the original variables r(x, y, z) and r'(x', y', z')
one readily obtains

G(l)( r~ ~rd) eik. (d-d')
2k

x 5(x —x') 5(y —y')8(z —z'), (2.22)

Hence we can also develop

G,'( H) = G'"( H) + G02'( 8) + "

I( r ) = I(')( r ) + I(')( r ) + ~ ~

where

ip ~ R

G,'"(R) = —(27() 'e'"(' dp
2kPg —ie

(2.16)

(2.17)

(2.1S)

where

1, z&z
O(z —z') =

0, z &z'.

ce

I(')(x, y, z) = (2w)' — dZ U(x, y, z —Z)

(2.23)

is the Green's function corresponding to a lineax- x y(x, y, z —Z). (2.24)
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Hence the function y'"( r ), obtained by retaining
only the term I~'~ on the right of Eq. (2.13), sat-
isfies the equation

rp~'~(x, y, z) =1 ——J dzU(xy, z —, z)
0

x y&')(x, y, z Z) (2.25)

unreasonable to expect that an improvement on
Eq. (2.28) may be achieved by performing the z
integration in the phase along a direction perpen-
dicular to the momentum transfer. ' We shall dis-
cuss the importance of this modification in Sec.
III. We then obtain the well-known result

so that
d'b e'~')' (e'x& b) 1),

2mi
(2.30)

e
y'"(x, y, z) = exp —— U(x, y, z')dz'

2k where we work in a cylindrical coordinate system
such that

(2.26) r =4+en (2.31)
Notice that y "varies negligibly over distances of
order k ' since U, /k' is small. Thus for distances
which are large compared with k ' (but not neces-
sarily as large as a) the product Uy(') varies
slowly. Hence the important values of P in the
Fourier transform of Uy appearing in Eq. (2.14)
are small compared to k (but not necessarily of
order a '). Thus the expansion (2.15) of the prop-
agator in powers of P/k is justified.

Let us now return to the original ansatz (2.10).
Using Eq. (2.26), we deduce that the approximate
scattering wave function Cz( r) which we have ob-
tained, namely the eikonal wave function, is such
that

z

4z(r) =(2v) '~'exp ik; r ——
I U(x, y, z')dz'2k~„

(2.27a)

or, in terms of the potential V(r),
8

4'z(r) =(2w) '~'exp ik; r - V(x, y, z') dz'

fz( & ) = —— d r e'~ ' U( r )4p

g

x exp —— U(b, z') dz', (2.28)
2k

where

4=k; —kf (2.29)

is the momentum-transfer vector, of length b
=2ksin(28). Since the actual phase of the scatter-
ing wave function should be evaluated in the semi-
classical limit along a curved trajectory, it is not

(2.27b)

where v; = 5 k,./m is the incident velocity and the
integral is evaluated along a straight line parallel
to k;.

The eikonal scattering amplitude may now be ob-
tained in the usual way' by using the integral rep-
resentation (2.7) together with the eikonal scatter-
ing wave function (2.27). Thus

and n is perpendicular to ~. Furthermore, the
eikonal phase-shift function is given by

y(b ) = —— U(b, z) dz.
2k

(2.32)

For potentials which possess azimuthal symmetry
Eq. (2.30) simply reduces to the Fourier-Bessel
transform

fz( &) = —, db M,(nb)(e x( ) 1'

0
(2.33)

which is the form we shall use in subsequent sec-
tions.

Before leaving this section let us comment
briefly on the angular range of validity of the ei-
konal approximation. At first sight, it might seem
that the angular range of validity of Eq. (2.28) is
unrestricted, since we have made no mention of
angular restrictions in the derivations of this sec-
tion. However, if the reader will look back at the
discussion following Eq. (2.21) he will see that we
have neglected quantities of order U, /k' coming
from higher terms in the expansion of the propa-
gator. What we are doing here is neglecting a
function of r because it is small compared to an-
other function of r. It must be remembered, how-
ever, that even though f,(r ) &f,(r ) for all r, it
doesnotfollowthat f,( &) &f,( n) when

~
&~ becomes

large. (Here we use f to denote the Fourier trans-
form off.) This is precisely the situation which
we have to deal with here: The functions involved
in the solution of Eq. (2.11) must be multiplied by
U(r) and Fourier-transformed with respect to the
transform variable 4=k& -kf in order to obtain
the scattering amplitude which is the quantity of
physical interest. For example, a function of
relative order U, /k' might have a Fourier trans-
form of relative order U, 4'/k' which is not neces-
sarily negligible when A = k (i.e., for scattering
angles of the order of 60 or greater). Thus, al-
though the requirement that & be nearly perpen-
dicular to k; suggests an angular validity criterion
of the form' 8 &(ka) ' '; the situation is in fact
considerably more complicated than simple kine-
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matical arguments of this sort would suggest. It
is to this question that we now turn our attention.

konal approximations. For the moment we con-
centrate our attention on Imf» and Imf». For a
simple Yukawa potential of the form

III. THE EIKONAL MULTIPLE SCATTERING
EXPANSION AND THE BORN SERIES

-r /g

U(r) =U, (3.8)

Let us return to the eikonal scattering amplitude
(2.33) and define the eikonal multiPle scattering
expansion

it is well known that the second term f» of the
Born series is given by the expression'

fz= Z fz.
n=1

where

(3.1)
U 2

24(a 4+4k'a '+k'a')'~'fz!k, a) =

4a '
x 2(a-4 ~4k2a-2 ~ k2~2)1/2

oo

f~".(~&) IxV)l ~&& (~.2)
0

It is worth noting that the quantities fz„are alter-
natively real and imaginary. The exact scattering
amplitude f.x has a similar expansion in powers of
the interaction potential. namely the Bom sexes

x Bn~
n =1

where

f,„=—2z'(C-„, i
UG&'U" G,'&Ui e-„.) .

(3.3)

(3.4)

In this last expression the potential U appears n
times and the free Green's function Goi'~, (n 1)-
times. We shall also define fz„and fz„, respec-
tively, as the sum of the first n terms of Eqs. (3.1)
and (3.3). Thus

(3.5)

(3.8)

%e now investigate the relationships between the
quantities fz„and fz„when ka»1. First of all,
we recall that

(3.7)

for al1. momentum transfers. ' It is important to
remark that this result obtains for all angles only
when the ~ axis of the coordinate system in position
space is chosen to be perpendicular to the momen-
tum transfer 6, so that the vector 3, of length
6=2ksin( —,8) entirely lies in the plane of impact
parameters b. In what follows we shall always
adopt this choice of coordinate system.

Let us now consider the second terms fz, and

fz, of the series (3.1) and (3.3), respectively.
Since Ref z2=0 while in general Refz, 00, there
is no analog of Eq. (3.7) for Rejz, and Ref z2
We shall return shortly to this point while discuss-
ing the relative merits of the second Born and ei-

(a '+4k'a '+k'b, ')'t'+km
(a '+4k'a '+k'L')'~' —k~

X(b, k) = —~ SC,(b/a),
U

(3.10)

where Kp is a modified Bessel function of order
zero. Substituting in Eq. (3.2) and evaluating the
resulting integral when n=2, we get"

Up'

2&(4k'a '+ k'6')

(4k'a '+ k2~2)" + kt&ln
(4k'a '+ k'~')'" ka

' (3.11)

Let us now return to Eq. (3.9). For large k we see
that

Imfz, (k, 6) =As, (b)/k, (3.12a.)

where &»(~) depends only on ~, and terms of
higher order in k ' have been neglected. More-
over, from Eq. (3.11) we note that we can write

Im fz, =Az, (a)/k,

and comparing Eqs. (3.9) and (3.11}we find

x„(~)=a„(~)

(3.12b)

(3.13a)

for all momentum transfers. Thus, when k is
sufficiently large so that Eq. (3.12a) holds, we
have for all momentum transfers

Im f»(k, A) = Im fz, (k, b, ) . (3.13b)

Furthermore, we show in Appendix A that Eq.
(3.13a) holds for an arbitrary superposition of
Yukawa potentials, namely,

U(r} = U, p(o.) — dn,
a &00

where p(o.') is a weight function.

(3.14)

(3.9)

On the other hand, for the same interaction poten-
tail (3.8) the eikonal phase-shift function is given
by
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TABLE I. Comparison of Imf&2 and Imf&2 for a Yuka-
wa potential U(x) =-e "/r and for various values of the
scattering angle 0 and the wave number 4 . The numbers
in parentheses indicate powers of 10.

TABLE II. Comparison of Imf&& and Imf&2 for a super-
position of two Yukawa potentials U(r) =-(e "
—1.125e ")/x and for various values of the scattering
angle 0 and the wave number k.

0

(degrees)
6

(degrees) Imf@g

10

0
90

180

0
90

180

0
90

180

0
90

180

0
90

180

2.00(-1)
1.59(-1)
1.34{—1)

1.1S(—1)
5.66(—2)
3.94(-2)

8.11(-2)
2.48(-2)
1.58(—2)

4.95{—2)
v.58(-3)
4.52{-3)

2.49(-2)
1.31{—3)
7.46(-4)

2.5o(—1)
1.9O(—1)
1.56(—1)

1.25(—1)
5.85(—2)
4.04(-2)

8.33(-2)
2.51{-2)
1.eo(-2)

5.oo (—2)
v.eo(-3)
4.54(—3)

2.50(-2)
1.31(—3)
v.46(-4)

10

0
90

180

0
90

180

0
90

180

0
90

180

0
90

180

e.vv(-2)
4.1O(-2)
2.es(-2)

3.46(-2)
4.86(-3)
1.ov(-3)

2.30(-2)
4.V3(-4)

-1.67 (—4)

1.38(—2)
-1.15(-4)
-9.29(-5)

6.92 (-3)
-2.4V(-5)
—1.22(—5)

6.92(-2)
3.63(-2)
2.15(-2)

3.4e(-2)
4.56(-3)
1.O9(-3)

2.31(-2)
5.10(-4)

—1.13(-4)

1.3S(-2)
-1.O4(-4)
-8.65(-5)

6.92(-3)
—2.43(-5)
-1.2O(-5)

U(r) = U,(e " —1.125 e '")/r, (3.15)

where we have chosen Up —1. Interactions of the
form (3.15) give a nontrivial structure in the dif-
ferential cross section, even in first Born approx-
imation and can be used to reproduce some of the
features of strong interaction forces. " We note
from Table II that the asymptotic behavior sets in
more slowly with increasing wave number for the
potential of Eq. (3.15) than for the simple Yukawa
potential (3.8). Moreover, the angle at which the
agreement is poorest now depends on the wave
number.

Restricting ourselves to Yukawa-type potentials,
we now investigate the relat onship between Bef»
and f». Since the analytic evaluation of higher-

Since the relation (3.13b) deals with the region of
large k, it is interesting to ask when this asymp-
totic behavior actually sets in. Comparing Eqs.
(3.9) and (3.11), we see that ka does not have to
be much greater than one for the asymptotic rela-
tion (3.13b) to hold with fair accuracy in the case of
a single Yukawa potential. This is illustrated in
Table I, where Imf» and Imf» are compared
for a potential of the form (3.8) with" " U, = —1,
a = 1 and for various values of the scattering angle
8 and the wave number k. Note that the agreement
between Imf» and Imf» is always poorest in the
forward direction, a fact which is easily under-
stood by a detailed examination of Eqs. (3.9) and
(3.11). A similar comparison is made in Table II
for a superposition of two Yukawa potentials of
different ranges, namely,

order terms of the Born and eikonal series is
extremely difficult, we proceed as follows. %e
first obtain fz„which is purely real, by a
numerical evaluation of Eq. (3.2) for n =3. Then
to find Be f», we first evaluate the "exact"
scattering amplitude f,„by using the partial-wave
method and integrating the relevant radial Schro-
dinger equations by means of the Numerov method.
We then substract f» from f,„ to obtain the desired
value of f». This, evidently, is an approximate
procedure since

f„fa2=fas+f s4—+fa5+ '" (3.16)

TABLE III. Comparison of RefI3& with f&& for a Yuka-
wa potential U(r) .=-e "/r and an incident wave number
k =5.

8

(degrees) f/3

0
30
60
90

120
150
180

—3.84(—3)
-3.O1(—3)
-2.O5(—3)
—1.52(—3)
-1.24(-3)
-1.1O(—3)
—1.oe(—3}

—3.91(—3)
-3.O2(-3)
-2.O4(-3)
-1.51(-3)
-1.23(-3)
-1.O9(-3)
—1.O5(-3}

but it is quite aeeurate for ueak coujling, in which
case the correction terms on the right of Eq. (3.16)
are very small with respect to f». Table III
shows the comparison of Be fe, with f» for a
simple Yukawa potential (3.8) of unit range a = 1
and "strength" U, = —1 and an incident particle of
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TABLE IV. Comparison of Ref&3 with f@3 for a super-
position of two Yukawa potentials U(r) =-(e "
—1.125e ~")jr and an incident wave number k =5.

TABLE V. Comparison of Imf&4 with Imfz4 for a Yu-
kawa potential U (r ) = -e "/x and an incident wave num-
berk =5.

8

(degrees)
8

(degrees) Imf@g

0
30
60
90

120
150
180

-2.79(—4)
-9.41(-5)
—4.52 (—6)

5.78(—6)
5.67(-6)
4.95(-6)
4.84(—6)

-2;87(-4}
-9.31(-5)
-6.52(-6)

4.16(—6)
4.67(-6)
4.27(-6)
4.10(—6)

0
30
60
90

120
150
180

-3.13(—4)
-2.85(—4)
-2.37(-4)
-2.00(—4)
-1.76(-4)
-1.63(-4)
—1.59(-4)

-3.51(—4)
-3.16(-4)
-2.58(-4)
—2.16(—4)
—1.89(—4)
-1.75(-4)
—1.70(—4)

=Uo &3+Up g4+'" (3.17)

and determine g, and g, (and hence Im f» and
Im f~4) by using Zq. (3.17) for two different values
of U, (for example U, = —1 and U, =+1). Table V
shows the comparison of Im fs, and Im fe, for a
Yukawa potential 'of the form (3.8) with a strength
parameter U, = —1 and an incident wave number
k=5. As in the case of Re f~, and f», the agree-
ment between Im f&, and Im f~, is excellent at a&l

momentum transfers. This strongly suggests that
if we write

fs„(k, b, ) ~ As„(&)/k" '+O(k "), (3.18a)

then, defining As„(&) by

f,„(k, ~)=A „(~)/k" ',
we have

(3.18b)

wave number k= 5 (measured in units of the inverse
range). The agreement between Re fs, and fs, is
seen to be excellent for all values of the momen-
tum transfer. A similar comparison is made in
Table IV for the potential (3.15). The agreement
is still good but not as good as in Table III. This
is not surprising in light of the comparison made
between Tables I and II.

A similar procedure can be used to compare
Imfa4 with Imf~, . In this case, subtracting
Imf s, from Im f,„gives two terms of similar order
in k, namely Im f» (which is not contained in
the eikonal multiple scattering series) as well as
Imf~4. However, since the former is proportional
to Up and the latter to U,', we may use the sub-
traction procedure for two values of U, in order to
obtain both Im f» and Im f~, . Thus we write

Im f,„—Im fs, = Im f» + Im fs, + "

Yukawa potentials) Moore"' has in effect proved
that the first term in As„(4), which is propor-
tional to ln" '&/6', is equal to the first term in
A&„(4). However, for Yukawa type potentials
As„(4) and As„(L) are linear combinations of
terms of the form ln &/b' (0 «m «n —1), so a
general proof of Eq (3.18. c) is not trivial.

Let us now examine some of the consequences
of the relations (3.18). We first consider the weak
coupling case which we define by the inequalities

(3.19)

where v = h k/m is the particle velocity and

Q2
(3.20)

In this case the Born series converges and Eq.
(3.3) may be rewritten for ka»1 as"

y,„(k, t) =y„(~)+, — +tA(t) . a(z)

«(~) . D(~)t
+

p2
+ 2 y3 I+

=fs, (&) +fs.+fs, +"', (3.21)

where we denote the expressions in square brack-
ets by f» and fz, , respectively. We note that the
quantities A and B coming from f» are propor-
tional to U,', while C and D, arising from f~, , are
proportional to Up'. The k dependence of the var-
ious terms has been exposed and is easily checked
by requiring the scattering amplitude (3.21) to
satisfy the optical theorem order by order in pow-
ers of U, and k '. Now using the relations (3.18),
the corresponding eikonal amplitude is given by

A,„(~)=A,„(~) (3.18c) fE(k, b) =f~, (b,)+i +, + ~ ~
. a(t ) c(~)

for all n and all values of the momentum transfer,
for potentials of the form (3.14). We note in this
connection that for a Yukawa potential (and by a
straightforward extension for a superposition of

=fa, (&) +fs.+fs, + " . (3.22)

Thus we see that the eikonal amplitude selects in
each term of the Born series the dominant contri-
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TABLE VI. The real part of the scattering amplitude for a superposition of two Yukawa po-
tentials U(r) =-(e " —1.125e ")/x and an incident wave number j'p =5.

6

(degrees) fB2 fZ+fB2 f cx

0
30
60
90

120
150
180

7.188(-1)
2.4V4(-2)

-3.316(-4)
-1.225(-3)
-1.os3(—3)
-9.577 (-4)
-9.163(-4)

6.633(-4)
-2.O61(-4)
-6.6o6(-5)
-9.4os(-6)

4.184(-6)
7.580(-6)
8.2 53(-6)

V.194(-1)
2.453(—2)

-3.976(-4)
-1.235(-3)
-1.o vs(-3)
—9.501(-4)
-9.081(-4)

v.185(-1)
2.465(—2)

-3.381(-4)
-1.221(—3)
-1.ov8(-3)
-9.534(—4}
-9.122(-4)

7.191(—1)
2.444(—2)

-4.041(-4)
-1.231(—3)
-1.ov4( —3)
-9.459 (—4)
—9,039(-4)

V.191(—1)
2.444(—2)

-4.O21(—4)
-1.229(—3)
—1.073(—3)
-9.452(—4)
-9.O32(-4)

bution (to order k ') which is alternatively real
and imaginary. It should be noted that in this way
the eikonal amplitude (3.22) satisfies the optical
theorem to each order in powers of U, and k ' in
a very particular way.

I.et us compare in more detail Eqs. (3.21) and
(3.22). We see that neither f» nor fs are correct
to order k '. Indeed, f» lacks the real term
C(h)/k' while the real term A(&)/k' is missing in

fs Now, .since 4(&) is proportional to Uo', while
C(&) is proportional to U, ', it is clear that when

U, is sufficiently small the second Born amplitude

fs, is actually more accurate than fs. This is
clearly illustrated in Table VI where fs„Re f»,
Re f», Re fs, and Re f,„are shown for a "double
Yukawa" potential (3.15) with U, = —1 and an inci-
dent wave number k= 5. We have also displayed in
Table VI the quantity Re ( fs+f») which adds to
the eikonal amplitude (3.22) the important missing
term Re f» ~A(4)/k'. The improvement of the
eikonal amplitude due to this addition is seen to be
spectacular. Because of Eq. (3.13b) no such situa-
tion arises for the imaginary part of the amplitude
which is given in Table VII. Indeed, since Imfs
= Imf» because the coupling is weak, we should
expect that Imfs = Imf» ——Imf, .„, which is seen
to be the case.

The comments which we have just made about
the real part of the scattering amplitude apply
evidently also to the ealeulation of the differential
cross section, since the terms involving A(&),
B(b), and C(b,) in Eq. (3.21) contribute equally in
correcting the first Born differential cross section
to order k '. Hence, because only B(A) and C(A)
appear in the eikonal approximation, the differen-
tial cross section is given more accurately by the
second Born approximation when U, is sufficiently
small.

As a further illustration of these remarks, we
present in Table VIII the results of similar calcu-
lations for the real part of the amplitude corre-
sponding to a "double Yukawa" potential (3.15) when

U, = —3 and k= 5. Since the coupling is now some-

Uo"'= (".d )
(3.23)

TABLE VII. The imaginary part of the scattering am-
plitude for a superposition of two Yukawa potentials
U{r) = -(e "—1.125e ")/y and an incident wave number
k =5.

8

{degrees) fB2 fex

0
30
60
90

120
150
180

1.383(—2)
2.3so(-3)
4.532{—5)

-1.153{—4)
-1.093(-4)
-9.V19(—5)
—9.288(—5)

1.383{—2)
2.363(-3)
5.812(—5)

—1.040(—4)
-1.008(-4)
—9.019{—5)
—8.632(-5)

1.384(-2)
2.364 (-3)
3.796(—5)

—1.161(—4)
-1.085{-4)
—9.592(—5)
—9.155{—5)

what larger we expect the term C(4)/k' in Eq.
(3.22) to become more important. Indeed, we see
from Table VIII that neither the second Born ap-
proximation —which lacks the term C(&)/k' —nor
the eikonal method —which misses the term
A(b)/k' —offers a, significant improvement over the
first Born result for the real part of the scattering
amplitude. Nevertheless, by comparing the results
of Tables VI and VIII we see that the eikonal method
has already improved significantly (at all angles)
since it includes the term C(4)/k' whose impor-
tance increases with the coupling. Moreover, if
we add Re fs, to Re fs, as we did in Table VI, we

see from Table VIII that again a major improve
ment in the real part of the amplitude is obtained,
as we expect from the foregoing discussion.

Before we eonelude this section, we would like
to emphasize that the theorem (3.13a) and the con-
jecture (3.18c) should only be applied to interactions
having the form of an arbitrary superposition of
Yukawa potentials of the form (3.14). In fact, we
show in Appendix B that the relation (3.13a) holds
only for small momentum transfers in the case of
a Gaussian potential and of a polarization potential
of the form
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TABI K VIII ~ The real part of the scattering amplitude for a su er
potentials U (x) = —3(e "—1.12 " /

'
u e or a superposition of two Yukawa

e — . 58 ")/x and an incident wave number jp = 5.

e

(degrees) fg+fg&

0
30
60
90

120
150
180

2.156(O)
V.422(-2)

-9.947(-4)
-3.eve( —3)
—3.24S(—3)
-2.8 v3(-3)
-2.749(-3)

5.9VO( —3)
—1.854(-3)
-5.945(-4)
—8.467 (-5)

3.766(—5)
6.822 (-5)
v.428(-5)

2.162(0)
V.236(-2)

—1.589(-3)
-3.761(—3)
-3.21O(-3)
-2.805(—3)
-2.675(—3)

2.149(O)
7.172(—2)

-1.169(—3)
-3.565(—3)
-3.123(-3)
-2.v58(—3)
-2.639(—3)

2.154(O)
6.986(—2)

-1.v63 (-3)
-3.649 (—3)
—3.085(—3}
-2.69O(—3)
-2.565 (-3)

2.154(O)
e.986(-2)

-1.689(-3)
-3.6O4(-3)
—3.O62( —3)
-2.677(-3)
—2.553(-3)

IV, THE INTERMEDIATE AND
STRONG COUPLING CASES

We now turn to the case of "intermediate" cou-
pling which we define by still requiring that

ka»1 (4 1)
together with the inequality

(4 2)

10—

I v. l

However, we relax the condition (3.19) so that we

now have

far, fa
2k

1 (4 3)

We show in Figs. 1-8 the real and imaginary parts
of the eikonal scattering amplitudes corresponding
to the following interactions:

(a) a simple Yukawa potential of the form (3.8)
with U, = —5 and a = 1,

(b) the same interaction with U, = —10,
(c) a "double Yukawa'* potential of the form (3.15)

with U, = —20, and
(d) a polarization potential of the form given by

Eq. (3.23) with U, = —10 and d=. l.
We have performed all the calculations leading

to Figs. 1-8 for the value 4 = 5, For comparison
with the eikonal results, we have also plotted the

I I

I
I I

I

I i
I

I t

I
I I

0.1

0.01

0.1

f I

30

~ I

~
I

l~
)I
I
)I

I

60
I I I I I

90 120 150 180

FIG. 1. The real part of the scattering amplitude for
a Yukawa potential of the form given in Kq. (3.8) th

U&
———5, a = 1, and@ = 5. The solid curve shows the

exact result, the dashed curve gives the eikonal result,
and the dash-dotted curve is the second Born approxima-
tion.

30 60 90 120 150 180

FIG. 2. Same as Fig. 1 except that the imaginary part
of the amplitude is shown.
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J
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1I/2
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modifications made in going from Eq. (2.28) to Eq.
(2.30) are useful in extending the angular validity
of the eikonal approximation. The differential
scattering cross section is then given by

do' 1 Air I'(~ (s+1)) ~V
'~' 1

dn 4s 2 I'(-,'s) E, [sin(-, 8) ]
"'"

(4.15)

There are several points to be made concerning
these results. First, note that if the potential of
Eq. (4.5) is cut off at distances much smaller than

b, , then the result of Eq. (4.14) is still valid. Sec-
ond, the singularity at 6=0 in Eq. (4.14) is spuri-
ous; it results from the fact that we have assumed
Abo large, whereas for 8 small Ab, becomes small.
Thus, Eqs. (4.14) and (4.15) cannot be used for
very-small-angle scattering. Finally, let us ask
what is the value of

~ V(r) I/E in the important
regions of space, i.e., in the vicinity of r= b, .
We have

V(b, ) 21'(2s)sin(8/2)
E v m I'(=2(s+ I))

6
I I I I I I I I I I I I I I I I I

30 60 90 120 150 180 sin(2 8).
'l7S

(4.16)

FIG. 14. Same as Fig. 13 except that the imaginary
part of the amplitude is shown.

(4.11)

the two pha, ses, y„ in Eq. (4.8) take the form

If we make the change of variable y = b/b„where

b, = [C(s)Ugh~]"
= f C(s) V, /[2E sin(-,' 6) ] f '~',

Thus, for 8&60', tV(b, )/EI &1. For still smaller
angles, we would expect IV(r)/E~ to become suffi-
ciently small in the important regions of space so
that the eikonal result Eq. (2.33) will be valid, even
though tVO~/E is not small. Thus, it is plausible
that for more general potentials the range of va-
lidity of the eikonal method may be much greater
than is suggested by the crude criterion ~V, ~/E &1.

X
= b,b, (y +1/y' ') —3v/4. (4.12) V. SUMMARY AND CONCLUSIONS

Thus, if bp» I we can evaluate the integrals in Eq.
(4.10) by the method of stationary phases. Assum-
ing U, positive only the second phase occurring in

Eq. (4.11) has a stationary point, located at

(s —))C(s)U)'S0b ~~ t
~

~I

I

~~~ ~0~
~ ~s

I Is
v wl'(-,'(s+1))V,
2EI(-,'s)sin (-,'8) (4.13)

The main contribution to Eq. (4.10) comes from
the vicinity of b = b, . The evaluation of Eq. (4.10)
is now straightforward. One finds

bs , s~b,f (6) = —2~ . () 8)
exp

(4.14)

with b, determined via Eq. (4.13). This result
agrees with the semiclassical result' for angles
such that sin2 8 = ~ 8, which suggests that the

We have presented in this work a systematic
study of the eikonal approximation in the simple
case of nonrelativistic potential scattering. In
particular, we suggest that the eikonal amplitude
has the following remarkable properties:

(1) For a large class of potentials, given by Eq.
(3.14), each term of the eikonal multiple scattering
series gives the asymptotic value (as h-~) of the
corresponding term in the Born series for all mo-
mentum transfers.

(2) In the weak coupling case, i.e., when the Born
series is rapidly convergent, the eikonal amplitude
gives a consistently poorer approximation to the
exact amplitude than does the second Born approxi-
mation fs, =f»+fa, . However, by adding Re fa,
to the eikonal result one obtains an extremely good
value of the scattering amplitude. Moreover, the
agreement between the eikonal and exact results
improves as the coupling increases.

(3) For intermediate couplings such that IV, ~/E
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s 1, ka large and U,a/2k = 1 we find that the eikonal
amplitude reproduces very well the exact result
for all scattering angles and Yukawa-type poten-
tials.

(4) Finally, even for strong coupling cases, i.e.,
when (V, ~)/E &1, we still find that f& =f,„ for small
momentum transfers and ka somewhat larger than
unity.

These results strongly suggest that the tradi-
tional criteria for the validity of the eikonal approx-
imation are only sufficient conditions which are
often unnecessarily stringent.

w„(~)=a„(~), (A2)

f„=2.f qd( I«l ii)i)

(A3)

where

where A»(b, ) and A»(A) are given, respectively,
by Egs. (3.12a) and (3.12b).

I.et us first calculate Imf»(k, a). We start
from the general expression

APPENDlX A

We want to prove that for an arbitrary superposi-
tion of Yukawa potentials of the form

and the limit e-0' is always understood. For po-
tentials of the type (A1) we have

oo -nr
U(r) = U, p(n) dn,

n &p0

(A1) («'I Ul «)=(2v') 'Uf «- (A5)

one has for all values of g and therefore

U' 2 1
I (q2 k2 ~)[(~ k )2+n2] [(~ k )2 p2]

Using the Feynman integral representation

[at+b(1 —t)]'

we may rewrite Eq. (A6) as

U 2

f . 2',. «ii(~) f d=«i&)P)

where we have set

r2= n't+ p'(1 t)+t(1 —t)r"

and

A= tk +(1 —t) kg.

1
dt dq (q' —k' —ie) [(j—A)'+ I"]

' '

(AV)

(A6)

(A9a)

(A9b)

The q integral may now be readily evaluated to yield'

~ ~(q' —k' —ie') [(q —5)'+ I"]
' 1 (k' —I"—A'+ 2ikI") (AIO)

so that

U' 2 1 dt
I(2ikI n2t P2(1 t))

' (A11)

where we have used the fact that

I' +A =k +n t+P'(I —t).

We now consider the particular case k- , so that we may write

lim f» ——i lim Im fz,
k

(A12)

U' 2

4k
«P(~) f d«P)8) j (A13)
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or, using Eq. (A9a),

lim Im f~,(k, n) = ~ dn p(n) dpp(p)
U 2 dt4k, p2+ n' —p2+a2 t —r2t2

The integral on the variable t is easily evaluated, and yields

1 1
f32+ (n2 P2+ g2)f g2f2 nP(u2 1)1/2 ).

where

n'+)62+ 62

2eP

Hence

U 2

lim . Imf~2(k, b) = ~ dnp(n) t dpp(p) 2, f2 ln[u+(u' —1)'~'].
nP u' —1 'f'

We now evaluate 1m f »(k, &), which is given by

(A14)

(A15)

(A16)

(Air)

Im f»(k, &) = — Z,(ab) g'(b, k) b db,
0

with

1
X(b, k) = —— U(b, z)dz.

2k

For a potential of the form (Al), we have

g(b, k)=
k U, p(n)K, ( n)b dn,
1

(A18)

(A19)

(A20)

where K, is the modified Bessei function of order zero. Hence, substituting Eq. (A20) into Eq. (A18), we

obtain

U2 oo

bmf, (b, a) = ~ da p(a) dPp(P) r J (ab)l( (ab)l( (Pb)bdb

The integral on the b variable yields'

&0(&b)&o(nb)&0(pb)bdb=, ,f, ln[u+(u' —1)'~2],r 1

where the quantity u is given by Eq. (A16). Hence

Imf, (b, a) d' f dap(a) r dP=p(l)), ),p )a[a+(a' —))'a]

(A21)

(A22)

(A23)

and Eq. (A2) follows by comparing Eqs. (A17) and (A23). We also remark that it is a simple matter to
extend the validity of Eq. (A2) to a superposition of exponential potentials.

APPENDIX 8

We now turn to two cases, the polarization potential and the Gaussian potential, for which the results
(3.13) do not hold. Taking the polarization potential to be of the form

UoU(r)= (, d, ), b

we have

f~ —. Zo(eb) exp =——4, ' »f2 —1 bdbk " i &Uo

so that

(Bl)
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s.= —„, ~
—-4 ~o» —

~2+d2 "u

This last integral is of the Hankel-Nicholson type and can be evaluated for all n. We find

@~V
" 6 ('" '~ X(,„,~.,(4d)

4k 2d, n! I"(3n/2)

In particular for the case e=-1 we recover the familiar first Born approximation

mUQfbi= — s =fa& ~

4d

For the case n = 2 we find

. m'Uo'f , = ' — .( ).

As far as the second Born approximation is concerned, we have

8-1&;-ql & ~-1~-&~I&
f —dqg' —k' —gE

2
Uo

32d

The imaginary part of this expression is easily evaluated when the scattering angle 6) is such that 8=0 or
9= n. In the former case, kq=k;, and we have immediately

U2 -2alI,. -ql

Using (x —ie) '=&x '+its(x), we obtain

U 2

Imf~, (8 = 0) = ', k exp[—4kd sin(, 8, ) ] sin&, d&,dg, ,

where 8, and p, are the polar angles of the vector q. This leads to
2U' 2

Imfs, (8=0) = — ', — [1 —{4kd+1)e 4' ].
Comparing with Eq. (a4) and assuming kd»1 so that the exponential term in Eq. (as) can be neglected, we
see that Imfs, (8= 0) = 1m', (8= 0).

For 6) = m, however, the situation is different. Proceeding as before, we find

Imf~, {8=m) = ~2k
n U~ exp[- 2kd[sin( —,'8, )+ cos(—,'8, )]] sin&, d&, .

Clearly, if ka»1, the main contribution comes from the regions near 8, =0 and 8, =m, and the contribu-
tions are equal. Thus

Imf»(8= w) = o; ke ' ' exp[- 2kd sin(8, /2)] sin&, d&, .
0

Neglecting terms of order e '+, we have

2U 2

imf„(8= ~) = (a6)

Comparing this result with Eq. (a4) we see that

Imf~, (8= w) x Imf~, (8= ~),

the two terms differing by a factor ~'~'(kd)'~'/8 when kd» 1.
For the case of a Gaussian potential of the form

U{~)=U, e-" '
the eikonal phase is readily evaluated, leading to

~(~t)~e~ -i ' "e-"" -1 kdk
s . ' '~ '

2u

(av)
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Hence

The integral is straightforward and yields

(Bs)

We recover the familiar first Born approximation when n=1, namely

3 -a262 jefzi= —4 ~ «Ua& =f8' ~

The second Born approximation is given by

o -a Ik -ql /4 -a ! q-k/I A
32m

' q'- a' —se

or

+= o / -a (k +q -!k.+k&!q)/a -a (k, +q +!k +k/Iq)/&q

If we are interested only in" Im fs, the remaining integration is trivial, giving

0 (e-aak [I-~a (6/2) ] -aakaf 1+cos(8/2) ] )32kcos(a 8)

On the other hand, f» is pure imaginary, and

8 S-a k g)a (6/a) /2
U2 ~

32k

(B11)

(B12)

according to Eq. (B8). It is obvious that for small values of 9 [in fact, for 8 « I/(ka)' 'j, Im fs, and Im fs,
agree. For larger values of the scattering angle, however, this agreement is lost. When 6I= m, for exam-
ple, the two expressions (B10) and (B12) differ by a factor (ka)'e ' ' /'.
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