2600 J. C. BOTKE 8

*Work supported by the National Science Foundation.

3. C. Botke, preceding paper, Phys. Rev. D 8, 2584
(1973).

’R. Eden, P. Landshoff, D. Olive, and J. Polkinghorne,
The Analytic S-Matrix (Cambridge Univ. Press,
Cambridge, England, 1966); V. N. Gribov and A. A.
Migdal, Yad. Fiz. 8, 1002 (1968) [Sov. J. Nucl. Phys.
8, 583 (1969)]; 8, 1128 (1968) [Sov. J. Nucl. Phys. 8,
703 (1969)]; I. J. Muzinich, F. E. Paige, T. L. True-
man, and L.-L. Wang, Phys. Rev. D 6, 1048 (1972).

*H. D. 1. Abarbanel, Phys. Rev. D6, 2788 (1972); G. F.
Chew, ibid. 7, 934 (1973).

‘In order to conform with the standard inclusive reaction
notation, the transverse masses are defined differently
here than they were in I.

5In response to a question by C. Lovelace at the Sixteenth
International Conference on High Energy Physics,
(National Accelerator Laboratory, Batavia, Il., 1972)
about what effect a positive cut would have on phenome-
nology, C. Michael replied, ‘“Absolute disaster.”

SA. H. Mueller, Phys. Rev. D 2, 2963 (1970).

"R. Aviv, R. L. Sugar, and R. Blankenbecler, Phys. Rev.
D 5, 3252 (1972).

PHYSICAL REVIEW D

VOLUME 8, NUMBER 8

15 OCTOBER 1973

2" Nonet as Gauge Particles for SL(6,C) Symmetry

C. J. Isham
Imperial College, London, England

Abdus Salam
International Centre for Theoretical Physics, Trieste, Italy, and Imperial College, London, England

J. Strathdee
International Centre for Theoretical Physics, Trieste, Italy
(Received 19 January 1973)

We construct an SL(6,C) gauge-invariant Lagrangian which describes a nonet of massive
positive-energy 2%+ particles. Of importance for the model are the concepts of covariant constraint and
spontaneous symmetry breaking. The distinguishing feature of the present theory is the set of conserved
currents which generate the algebra of SL(6,C). We also present gauge-invariant and
unitarity-preserving quark and meson (quark-antiquark composite) Lagrangians.

I. INTRODUCTION

The recognition of gauge symmetries of the sec-
ond kind among physical theories and the associa-
tion of gauge particles with them has alternated
between internal and spin-containing symmetries.
First in this context was Weyl’s recognition of the
electromagnetic vector potential (with its associ-
ated helicity-one photon) as the gauge field corre-
sponding to an internal symmetry, U(1). Second
was the recognition by Weyl and by Fock and
Ivanenko that the vierbein field (helicity-two grav-
iton) was the gauge field corresponding to the spin-
containing symmetry SL(2,C). Third was the as-
sociation by Yang and Mills and by Shaw?® of the
spin-one isotriplet field with the internal symme-
try, SU(2).

Continuing the discussion initiated in a recent
note,? this paper is concerned with the construc-
tion of a model whose Lagrangian is invariant
under SL(6, C) transformations of the second kind.
This symmetry incorporates both the internal
SU(3) and the spin-containing SL(2,C). In common
with other gauge theories, this model involves a

set of gauge fields with universal coupling. A new
feature is the central role played by spontaneous
symmetry breaking. This is absolutely necessary
if the ghosts or infinite-dimensional multiplets
implicit in an unbroken noncompact symmetry are
to be avoided. One consequence of the spontane-
ous symmetry breaking is that we shall not be
troubled by the presence of massless gauge par-
ticles. Indeed, this scheme is intended as a sym -
metry of stvong intevactions.

The main problem is to set up a suitable La-
grangian for the gauge fields and to analyze their
particle content. In this paper we shall exhibit an
SL(6, C)-invariant Lagrangian whose structure is
such that only 2* states (singlet and octet) are
caused to propagate and thereby represent the
gauge degrees of freedom.

The symmetry group which we are using has the
structure of a semidirect product

(P®SU(3))-SL(6, C),

where P denotes the Poincaré group, and SU(3)
the internal symmetry according to which physi-
cal states are classified. These are unbroken.
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The remaining factor, SL(6,C), is a gauge sym-
metry of the second kind and it is going to be
spontaneously broken.

The spin-unitary-spin—containing SL(6, C)
transformations are of two kinds: (a) pure gauge
transformations which approach the identity as-
ymptotically and so do not affect state vectors,
and (b) asymptotically rigid (or first kind) trans-
formations which do affect the state vectors and
which are spontaneously broken, i.e., which fail
to leave the ground state invariant. It is neces-
sary to distinguish between these two kinds of
transformation since in order to compute anything
one must begin by choosing a gauge, i.e., by vi-
olating the invariance with respect to the trans-
formations (a). The transformations (b), on the
other hand, need not be violated by the gauge-
choosing mechanism. Their violation by the spon-
taneous mechanism is therefore a meaningful ef-
fect; the two mechanisms are logically distinct.

In this paper we shall deal with the classical
equations of motion and their interpretation.
Quantum effects are not considered. Thus, we
shall look for a P® SU(3)-invariant solution of
the classical equations to represent the vacuum
state. This solution will not be invariant under
the rigid SL(6,C) transformations which are there-
fore to be thought of as spontaneously violated.
We next consider the effect of small perturbations
about the ground-state solution. The propagation
of these excitations in the linear approximation
determines the bare-particle content of the sys-
tem. We shall require that these perturbations
carry positive energy and propagate with finite
(less than light) velocities. To this extent the
ground state is stable. In principle it would be
possible to test this stability more deeply at the
classical level by performing a complete canonical
analysis and setting up the Hamiltonian. However,
we shall not attempt this here.

The gauge field system involves, a priori, a
large number of independent components. Many
of these can be eliminated through the imposition
of SL(6,C) covariant constraints. Since the gauge
symmetry must in any case be spontaneously bro-
ken, the imposition of such constraints will not
lead to any further loss of symmetry. Their use
is optional. We shall make heavy use of such
constraints in order to simplify the structure of
our Lagrangian.

The plan of the paper is as follows. In Sec. II
the various fields are introduced, and the action
of the group on them defined. A gauge-invariant
Lagrangian is exhibited. [As a simple illustra-
tive example the SL(2, C) gauge -invariant Lagran-
gian of Weyl is given in Appendix A.] The notion
of covariant constraint is introduced and gauge

conditions are discussed. In Sec. III the vacuum
solution and bare-particle spectrum are obtained.
(The same is done for an alternative Lagrangian
in Appendix B.) Section IV contains some general
remarks about the structure of the gauge system
and what is likely to happen when interactions are
taken into account. The extension to SL(6,C)

® SL(6,C) gauge symmetry is sketched briefly.
Section V discusses the existence of conserved
currents which close on the algebra of SL(6,C).
Section VI considers the interactionof the gauge
fields with matter. It is suggested that, though
the new theory is unitarity~-preserving, the pre-
dictions of the old phenomenological SL(6, C) the-
ory may perhaps be expected to persist in the
present theory.

II. AN SL(6,C)-INVARIANT LAGRANGIAN

We propose to set up a Lagrangian which is
invariant under SL(6, C) transformations of the
second kind. Although we shall be concerned only
with the gauge field part of the system, it is use-
ful in establishing the notation to introduce a 12-
component quark field § and its adjoint ¥. These
transform under the action of the full symmetry
group

(P ®SU(3))- SL(6, C)
according to
Px) =9 (x") = a(A)w Q(x)P(x),
P =9’ (x") =P ()w a(d) ™,

where x, =A ,, x, +b, is a Poincaré transformation
and the matrices a(A), w, and  are expressible by

2.1)

a(A) =exp[%i9aﬂ(A)0aB] )
w=exp(zi WAk, (2.2)
Q(x) =exp{3i[QF (x) + 3% 5(x) 0,5 + QE(x) |27},

with real parameters. The transformations (2.1)
form a group in the sense that two successive ac-
tions combine according to the rule

— !,
@)W, A, R, =a,a,w, W0, ,

where Q/ is given by
[ -1 -1
Ql=a,'w," R a,w,.

This rule is consistent only if the transformations
a'w™'Qaw are themselves in SL(6, C) (which of
course they are).

The system of gauge fields to be used in con-
structing the Lagrangian comprises three dis-
tinct types, B,, S, and L,, which are expressed
in the Dirac basis by
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B, =(B% +:Bsp1 Oup +Bis%)zr"
S=expli (P* + 3Py Oup + PE)2A"] (2.3)
Ly = (LA o Yo+ Loash YN .

The components B}, B%, P* P! (k=1,2,...,8),

K5
and Bf (457, Pﬁm], L’fm, Lﬁas (k=0,1,...,8) are
all real.

The gauge fields transform according to
B,~QBQ™ - (1/i)08,27,

S-Qs, (2.4)
L-qLQ™

under the gauge group SL(6, C), and according to
B, =A ,a0Ba 0™
S~awSaw™, (2.5)
L,~Ayawl,a?w™

under the asymptotic symmetry group P® SU(3).

The vector B, is the basic gauge field. It is
used in the forming of covariant derivatives, viz.,

V,=98,p+i By,
v,S=98,S+iB,S, (2.6)
v,L,=8,L,+i[B,, L,].

The analog of B, in Yang-Mills theory is the field
which carries the gauge quanta and couples to the
conserved isospin current. In gravitation theory
B, plays the role of a connection but there it is
essentially the derivative of the field which car-
ries the gauge quanta. (It will turn out to have a
similar status in the present model.)

The scalar, S(x), is more subtle. If there were
no gauge symmetry of the second kind but only the
spontaneously broken 7igid SL(6, C), then S would
carry the Goldstone modes. These would be 70
massless excitations represented by the compo-
nents P(x) in (2.3). In systems where gauge sym-
metry of the second kind is present these Gold-
stone modes are not excited. More precisely,
they are exactly compensated by the longitudinal
modes in B, (x) insofar as gauge-independent
quantities are concerned. They can appear in
gauge-dependent quantities. [ However, it is pos-
sible to choose a gauge in which P(x) =0 (that is,
S=1) and the corresponding modes in B, (x) are
suppressed. This is the so-called unitary gauge. ]
Notice that the components of S transform as bo-
sons under the asymptotic symmetry P® SU(3),
but as quarks under the gauge symmetry SL(6, C).

The third set of fields, L,(x), can be usefully
introduced into the gauge system. They are not
strictly necessary from the group-theoretical
point of view, but they can be made to play the

|

role of canonically conjugate variables to the

B, (x). It is just the existence of this possibility
which distinguishes gauge theories based on a
spin-containing symmetry, such as Weyl’ s

SL(2, C) gauge-invariant vierbein version of grav-
ity theory, from those, such as Maxwell or Yang-
Mills theory, which are based on a purely internal
symmetry. In being conjugate to the connection
By, the field L, has many resemblances to the
vierbein field in general relativity theory. In fact,
it will become the carrier of gauge quanta. More-
over, it will be made to have a nonvanishing value
in the ground state,

<L}L> =Y. (2.7)

This equation reflects the absence of SL(6, C)
symmetry in the ground state. It is, of course,
invariant under P® SU(3). In gravity theory the
analogous equation would be

<Lua> =MNyas (2.8)

where 7 denotes the Minkowski tensor. This
equation (first introduced by Einstein, though not
in this quantum formulation), while being Poin-
caré-invariant, exhibits the lack of SL(2, C) gauge
invariance in the vacuum. (It also exhibits the
breaking of the coordinate transformation group
in Einstein’s theory, but from our present point
of view this is not the significance of this spon-
taneous symmetry breaking.)

Note that the covariant derivative of the vierbein
field L, given by (2.6) cannot be made to vanish
identically and here the resemblance to general
relativity is lost. There is no analog of Riemann-
ian geometry in the present scheme.

The variety of gauge-invariant Lagrangians
which can be invented for the system, B,, S, and
L,, is large. A fairly simple example, closest in
form to the Einstein-Weyl Lagrangian for SL(2,C),
is obtained by requiring that no more than four
fields and two derivatives occur in each term.
This is given by

£=% Tr[ - Kl—z(VuLyVl,Lu -V,L,v,L,)
+a L, (S%S™)L,(Sv,S™)
+B, Ly Ly +BL,L,L,L, +33L“L,,L“Ly],
(2.9)

inwhich Greek indices are tobe saturated with the
Minkowski tensor.® The real parameters a, B,
B,,B; are at present arbitrary., Our problem is

to find suitable values for them. That is, we
should like the Lagrangian (2.9) to yield a stable
P® SU(3)-invariant vacuum in which a 2* massive
nonet propagates.
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Since the vierbein field is not playing a funda-
mental group-theoretic role in this system, we
are free to reduce the number of independent
components contained in it by imposing con-
straints, Consider the quantities, 1%, and 1%,
defined by

S™L,S = (18 ot Do i YamNE . (2.10)

This structure is gauge-invariant. Indeed, ac-
cording to (2.3) and (2.6) we have

STL,S~awS"L,Satw™,

That is, %, is a nonet of second-rank tensors
while 1%, is a nonet of pseudotensors with re-
spect to P®SU(3).

To simplify the Lagrangian (2.9) and, what is
more important, to ensure that the ground state
value (L,) =y, is a stable solution, we shall im-
pose the constraints*

llfm- l’fxu =0’

1% =0.

(2.11)
(2.11")

For the constraints (2.11’) to be realized, one
can show that (L,) =y, is a sufficient condition.
In the unitary gauge these SL(6, C)-covariant con-
straints take the simple form

Lﬁa'l"ixp =0,
Lies=0.

It will be shown in Sec. III that the free-field
approximation to the Lagrangian (2.9) reduces to
the Pauli-Fierz® form for the following special
values of the parameters:

B, = ~3M2/24%,
(2.12)
By==Bs=M?/8:.

IIIl. VACUUM SOLUTION AND PARTICLE SPECTRUM

Having adopted the Lagrangian (2.10) and the
constraints (2.11), our problem now is to deter-
mine the free parameters in such a way that a
consistent perturbative scheme of stable solutions
can be set up. This means, first, that the Euler-
Lagrange equations should have a P® SU(3)-in~
variant solution, and, second, that small pertur-
bations about this solution should carry positive
energy. We shall require, further, that these
small excitations have the character of 2* nonet.

Because of the SL(6,C) gauge invariance, the
classical equations of motion are underdetermined.
They must be supplemented by a set of 70 gauge
conditions. A convenient choice of gauge for the
considerations which follow is given by P(x)=0
or, equivalently,

S(x)=1, (3.1)

These conditions specify the so-called unifary
gauge® This gauge has the advantage that no zero-
mass excitations appear in it, In other gauges
such as, for example, the Landau gauge, 9,8, =0,
zero-mass excitations do arise but only in gauge-
dependent quantities.’

Rather than deal directly with the equations of
motion, we shall require that the values

(Lyy =%, (B =0, (S) =1 (3.2)

represent an extremum of the action with respect
to small variations. The parameters @,f;,5;,
B, must be adjusted so as to ensure this. The
small variations must, of course, be compatible
with the constraints (2.11) and with the gauge con-
dition (3.1). Into the Lagrangian substitute the
expressions
Lu=7u+‘pﬁa7’oc>‘k ’ (3.3)
B, = (B} +3 B} g %p+ Bisn)z N, )

where ¢f,=¢%,. Treat the components ¢ and B
as small quantities and retain only the first- and
second-order contributions. The single first-
order term is proportional to go‘,’,p and will vanish
if we take

Bl+8ﬁg"4ﬁ3=o- (3.4)

The second-order terms then assume the form
£ —- _Z_Bk ( k 13
(2) = = Kg ulval ‘ppa,u "nw.:‘p >\oc,}\)

1
=% (Bl Butuer = Bliuen Bhven )
+ (B B% + Bt B )+ 8B,0%,0%,
+4(Bg - Bg)q)fm (p,;;u . (3'5)

The excitation spectrum to which the Lagrangian
(3.5) gives rise can best be analyzed by elimi-
nating the algebraic variables B. That is, one
solves the algebraic equation 98 ,,/8B=0 to ob-
tain (provided @ #0)

B =0,

B, =0, (3.8)

Bﬁ[uo{] = <P’fw_a - (P'fm,u - %nw‘Pk)\x,a"“%nuu(ka)\,y ’
and substitutes these expressions back into (3.5).
The result is

1
£y = 7(—2_ ((pﬁu,a‘pfw.ot ~2 goixp,u ‘p?x vy = %(Pﬁp,a(P’; U,Dt)

+8B,0%, 0%, +4(B, - B) Pk, 0% . (3.7)

The values (2.12) have been chosen such that (3.7)
takes the well-known Pauli-Fierz form
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1
"B(z) =F[ (pfw,a(P,:w,a_ 2(»0’;;‘,11 (p’fxu,u - %¢ﬁu, oc(pz’f v, o
-~ M2(@}, Pl = Pu @) . (3.8)

The parameter x, which can be removed from the
bilinear expression £(,, by the rescaling ¢ —-«o,
B~kB, is to be interpreted as the universal cou-
pling constant of our gauge theory.

The arbitrary parameter @ must not vanish. In
the simpler gauge model in which SL(6,C) is re-
placed by SL(2,C) this parameter can vanish, in
which case the Weyl-Einstein Lagrangian results.?

A different SL(6,C)-invariant Lagrangian, which
also contains one free parameter (in addition to
k and M), is treated in Appendix B.

IV. INDEPENDENT DEGREES OF FREEDOM

Let us consider what happens to the first two
equations of motion (3.6) when we take into account
the complete Lagrangian £, rather than just its
bilinear part £,,.

The fields B} and B} no longer vanish as a
consequence of the equations of motion. However,
since the complete Lagrangian contains no deriv-
atives of B, the modified equations will simply
express the fields Bf, and Bﬁs as implicit but pure-
ly algebraic functions of the other fields in the
theory (¢%, and Bfp;). The two fields Bf and
B! are thus algebraic composites of the other in-
dependent fields, with no propagation character
of their own. Indeed, it was to guarantee this
algebraic-composite character for Bﬁ and B? that
the S-field-containing term was introduced into
the Lagrangian in the first place.

It is perfectly possible to introduce one simple
additional term in the Lagrangian which would
ensure a propagation of 1~ and 17 particles cor-
responding to these Yang-Mills-like fields Bﬁ and
Bf;. The term in question has the same form as
the third term in (2.9) except that (SV,S™) is re-
placed by B,,; i.e., take

Lyy=5 @' TrLyB, L,B,,, 4.1)
where B, denotes the covariant curl

B,,=8,B,-9,B,+i[B,,B,]|. (4.2)
The bilinear generated by (4.1) is proportional to

a’[(8,B% —8,B}Y +(9,B5 - 8,B% . V]. 4.3)
The important point to observe is that (4.3) in-
volves B} and B}, fields alone. There is 7o con-
tribution to the spin-2* bilinears. This is not, of
course, true of the trilinear and quadrilinear
terms which arise in the interaction Lagrangian

given by (4.1). These will in general involve the
spin-2*-describing fields B}(,,; as well as their

first derivatives in combinations like (¢ 3)
X (aqu[ocB] )2 .

This appearance of first derivatives of B’fl[ab] is
a new feature, peculiar to the Lagrangian (4.1).

It is to be stressed that these derivatives do »o?
appear in the bilinear terms, where their pres-
ence would signal ghosts, but only in the trilinear
and quadrilinear interaction terms. Their exis-
tence must mean that BY,,; are no longer alge-
braic variables canonically conjugate to the ¢%,’s,
but are independent dynamical variables. The
particle spectrum given by the bilinear terms
would thus probably be altered. Also, the stabil-
ity of the vacuum can no longer be taken for
granted.

In view of these uncertainties, the safest pro-
cedure seems to be to discard (4.1). The theory
as it stands will therefore #o! allow for the prop-
agation of Yang-Mills-like® degrees of freedom
B, and Bf;.

To summarize, of the eight sets of fields intro-
duced into the theory (viz., ¢},, @%,5, Biasy, Bj,
Bt P% s, P, and Pf) two sets (¢}, and the anti-
symmetric parts of ¢*,) are removed by imposing
SL(6,C) covariant constraints. Three sets,
P=Ptg Pt and P! are eliminated by choice of
a special gauge. Two further sets, Bﬁ and B’Zs,
are completely determined as algebraic functions
of the rest, through the Lagrangian field equa-
tions. There then remain in the theory just the
symmetric parts of ¢%, (9%, =¢*%,) and their can-
onically conjugate variables B’;,[aﬂ] . Our choice
of the constants B,, 8,, B, was dictated by the re-
quirement that the bilinear part of the Lagrangian
should coincide with the Pauli-Fierz Lagrangian
describing the propagation of a nonet of 2 parti-
cles only.®

Does this requirement guarantee that in addition
to these 2* degrees of freedom, represented in
the rest frame by the traceless symmetric fields,
o, - %5“ ¢¢ ., no further degrees of freedom
[corresponding to rest-frame spin-one fields
¢o; (=¢,,) and spin-zero fields ¢ and ¢%; | will
ever get excited as a consequence of the inter-
action terms and propagate, for example, as
composite bound-state fields?

It is clear that, in the absence of a higher-gauge
symmetry affecting just these degrees of freedom,
we cannot answer this question in any general
manner. For Einstein’s generally covariant the-
ory of an SU(3) singlet helicity~-two particle, gen-
eral covariance does provide just the requisite
higher symmetry GL(4,R) which guarantees that
the spin-one ¢,; fields do not propagate. But for
the zero-spin degrees of freedom ¢, and ¢;;
(even in the Pauli-Fierz theory) there is no such
higher symmetry, nor any guarantee of absence



of propagation, as has recently been stressed by
Boulware and Deser,!°

We conjecture that if the SL(6,C) symmetry of
the present paper is extended to a still higher
symmetry—possibly U(6,6)—we shall be able to
construct a theory where the nonpropagation of all
the unwanted degrees of freedom is guaranteed by
the extended gauge invariance of the theory, rath-
er than by the choosing of special values for the
parameters. In this sense the theory presented
in the present paper will need further elabora-
tion.

One last remark: One can construct a theory of
2* and 2~ nonets which utilize both (p(ﬁ,f and ¢%,;
degrees of freedom by extending the gauge group
to SL(6,C) ® SL(6,C). The formalism is a simple
extension of that presented in Sec. II with

Q(x) = exp 3i [ Q% (x) + 308 5(x) 0, 5 + QE(x) % [ A*
X exp [27 (x) + 30 Zy(x) 0,5 +Q2F(x)y ] A% .
(4.4)

Note that Q is not pseudounitary; @(x)* 2 (x). We
introduce the two distinct gauge fields, B, and

C,, and two sets of vierbein fields, L), and L%,
which transform as

(B+iC),~Q(B +iC)“Q'l—lZ.SZB“Q‘1, (4.5)

(B=iC),~@™(B - iC),,ﬁ_li(s‘z)-l 8,8, (4.6)

and

L, ~-QLLa, 4.7)
2~ (@)1 120 (4.8)

We also introduce the field S, which is expressed
in the Dirac basis by

S=exp[i (P* +5P%y0,5 + PEy\* /2]

afVa
Xexp [ (@ +3Q%50us+ QEWNE /2],

which transforms according to S-QS. The covar-
iant derivatives

Vleu=8ule+i[Bu’Llu] ‘{Cp’ Llu}’ (4.9)
v, L% =08,1%+i[B,, I2]+{C,, L%}, (4.10)

transform like L}, and L%, with quantities like
(WL, V,L%) transforming as scalars under SL(6,C)
® SL(6,C).

To replace the covariant constraint (2.11), we
shall require that Lf, be expressible as a function
L}, and S. The new constraints analogous to
(2.11") are given by

S‘ILLS‘1 = (1R ora+ l’fmsi Ya¥ AR

- ) 4.11
S I2S= (1% o= Lol varN* (4.11)
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Note that these constraints guarantee that in the
expression

1 172 _7k JR k k
s TrLy Lj =1 Lio+lios Lias

‘the two fields %, and 1%, occur symmetrically

with the same metric. In addition, the larger
gauge group SL(6,C)® SL(6, C) permits the im-
position of constraints similar to (2.11):

kR _Jk
lua‘lap,

1%, =1

k
pes = ops s

which makes the symmetry between %, and I,
even more piquant, It is an easy matter now to
construct the required Lagrangian (replace
L,L, by L,L% everywhere) which ensures the
propagation of 2" and 2~ nonets.

V. SL(6,C) CURRENT ALGEBRA

So far in this paper we have been dealing with
purely field-theoretic matters. To conclude, we
shall make a few brief remarks on the algebraic
potential of this kind of model and, in particular,
indicate how a set of conserved SL(6,C) currents
could be constructed.

The first step is to define canonical momenta
and impose the usual Poisson-bracket relations.
Of course, when a Lagrangian carries a gauge
symmetry of the second kind, the canonical mo-
menta are not all independent. However, this
problem is easily circumvented by the standard
method of imposing a gauge-choosing mechanism;
one merely adds to the gauge-invariant Lagrangian
a Lagrange-multiplier term which breaks sym-
metry transformations of the second kind while
respecting those of the first kind. In this way one
can arrange that, for example, the canonical mo-
menta

I, =08/0L,, (5.1)
are all independent, The infinitesimal (rigid)
transformations,

oL, =i[69,L,],

are then generated (in the sense of Poisson brack-
ets) by the functional

GG=fd3x% Tr(oQ[ L,,I0,]).

This suggests that a suitable definition for the
current 4-vector would be

0,
Ju=i[l’u’£:1]+”'- (5.2)

(We have not written in all the independent contri-
butions to this current. Each field whose time
derivative appears in the Lagrangian would make
such a contribution.) It is well known! that, for
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gauge theories, currents constructed in this way
either vanish when the equations of motion are
used or take the form

JU.: G“F‘w, (5.3)

where F, is antisymmetric.'> The form of F,, can
be modified by adding to the original Lagrangian a
4-divergence which is variationally insignificant,
Whatever the chosen form, however, one can be
sure that, in view of their canonical derivation,
the time components of these currents must sat-
isfy the SL(6,C) algebra.

For illustration, we construct currents for the
Weyl-Einstein Lagrangian which is SL(2,C)-gauge-
invariant, In the Lagrangian (2.9), set a=8,=8,
=8,=0 to obtain

£=5Tr(V,L,V,L, -V, L,V ,L). (5.4)

A little algebra? then shows that it can be cast in-
to the more familiar form

£=% Tr(%—[Lu;LUJBu,,> +surface term

1 .
=-4—1:Tr(ZBu3“[L“,Lv] -1 [B;qu] [L}ULV])

+surface term. (5.5)

Discarding the surface term, we compute the de-
rivatives

3L 1

aBu =_7:a“[LM, Lu]+[B;1y [Lp) Lu]]’
oL 1 1

aL“'y "ZTT’[.“/[L)\, B)\]*‘;[Bpa Lv]-

According to (5.2),
Jll = [Lln [Lu) Bu]]+[Ly’ [B;“ Lu]]
=[B,,[L,, L,]]. (5.6)

We adopt this as the definition of the current. One
can easily verify that, barring Schwinger terms,
it generates the algebra of SL(2, C). Note that it
equals

3L 1
55, 7 ullw Lo,

so that when the field equations are satisfied the
first term vanishes and
J,,:—%—au[Lu,L,,]. (5.7)

In this form J, is identically conserved. (Our
derivation is incomplete, of course, because we
have not explicitly shown how to overcome the
gauge difficulties through inclusion of the contri-
bution of the Lagrange multiplier.)

In connection with the matter field contributions
to the current, it should be remarked that the vari-
able which is canonically conjugate to the quark

field ¢ (for example) is not Py, but, rather, yL,.
(The Poisson bracket of y and i is therefore quite
complicated.) Nevertheless, the current retains
the simple form —L ,¢3. That is, the SU(3) cur-
rents, in particular, take the form

YL, Y, (5.8)

which is obtained from the naive current by the
simple replacement y, =(L,)~L,.

VI. SL(6,C) GAUGE-INVARIANT QUARK
LAGRANGIAN AND SU(6) SYMMETRY

The SL(6, C) gauge-invariant quark Lagrangian
is simple to write down:

L£=3i YL,V p+H.c. —mPp. (6.1)

Likewise, the Lagrangian describing a 35 of SU(6)
interacting through the exchange of the gauge nonet
of 2* gluons is given by

L=2iTre[L,, v, &]-mee, (6.2)

where & is the second-rank multispinor. Both
these are familiar Lagrangians from the Barg-
mann-Wigner!? theory of SU(6) supermultiplets,
except that the Dirac matrix y has been replaced
by the field L, and the ordinary derivative 8, by
the covariant derivative vV, . This change, how-
ever, is decisive in that whereas previously the
kinetic-energy terms in the multispinor Lagran-
gians were notoriously noninvariant for the
SL(6, C) symmetry, the replacement of ¥, =(L, )
by L, and 8, by V, makes the kinetic-energy terms
also part of a gauge-invariant construct. A paral-
lel change which occurs in the SL(6, C) currents
has been noted in the last section. The variable
canonically conjugate to ¥ is not v, but P (x)Ly(x),
so that the correct (conserved) set of SL(6, C)
quark currents involves replacing Ey", in the
earlier versions of SL(6, C) theory, by (x)L,(x).
The important question which arises here is
this. We possess now an SL(6, C) gauge-invariant
Lagrangian, describing a positive-frequency nonet
of 2* particles; we also possess SL(6, C)-gauge-
invariant Lagrangians describing quarks (6.1) and
the quark-antiquark system (6.2). Presumably,
with some effort one can construct gauge-invariant
Lagrangians for higher SU(6) quark supermulti-
plets, where everywhere the Dirac matrix y, =(L,)
will be replaced by L,(x), and &, by V. In con-
trast with the old SL(6, C) theory, in the new La-
grangian the kinetic-energy terms are part of an
SL(6, C) gauge-invariant structure. The question
is: How in practice does the availability of this
unitarity-preserving SL(6, C)-gauge-invariant the-
ory [or, equivalently, of a spin-unitary-spin—
containing!* algebra of SL(6, C) conserved cur-
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rents] modify the earlier results of the phenom-
enological SL(6,C)? The answer seems to be:
hardly at all—except for the new couplings of the
2% ponet with matter. The reason is that crucial
to our theory is the spontaneous symmetry-break-
ing mechanism of Einstein, which replaces L (x)
by (L,(x)) =y, in the leading approximation. This
mechanism ensures that the physical particle
states are indeed Poincaré®SU(3) states. The
spontaneous symmetry-breaking mechanism im-
plies that the symmetry of the Lagrangian is not
reflected in the symmetry of the S matrix, which
for all quark multiplets still proceeds through the
familiar progression of the SU(6) residual sym-
metry for the one-particle states and the collinear
U@B)®U(3) for the residual symmetry of the ver-
tices. The only surprise in the situation is that the
purely gauge part of the Lagrangian described by
the L, B, and S fields gives rise to a multiplet of
pure spin-two particles, which constitutes only an
incomplete multiplet of the quark-based phenom-
enological SU(6). The situation here is completely
analogous to nonlinearly realized chiral theories,
which also display incomplete multiplets of the
larger symmetry group. Clearly the nonlinear
constraints like (2.11’) or (4.11) are playing a role
in producing our incomplete multiplet.

VII. SUMMARY

The principal ideas set out in this paper may be
summarized as follows:

1. To describe a nonet of 2* particles we pro-
pose the SL(6, C) gauge-invariant Lagrangian

1
£, =% Tr[_ 5 (VuL,V,L, =V, L,V,L,)

3m?
-5 WLy +5lLy, L)L,L,])

+aL,SV,ST'L “svvs“} .

The fields L, and S satisfy the SL(6, C) covariant
constraints (2.11) and (2.11’) of the text. Crucial
to the emergence of the particle spectrum is the
concept of spontaneous symmetry breaking which
is implemented through the relation L =y, +k¢,
where (L) =v, and ¢, is the physical field which
describes the propagation of 2* particles.

2. The interaction of the gauge field with quarks
is governed by the Lagrangian

£,=3iWL,V =V JL ) -mPy.
3. The Lagrangian which describes a 35 of SU(6)

and its interactions with the gauge fields is given
by

£,=Tr(z®[L,, v, 2] - m®d),

where & is a second-rank multispinor. Similar
Lagrangians could possibly be written for higher-
rank multispinors.

4. A conserved set of currents for L, B, and
the quark field, which close on the algebra of
SL(6, C), is given by

Ty =By, (L, L1+ 403, L} - L (V,87)L, .

5. The SL(6, C) gauge~-invariant matter Lagran-
gians such as £, and £;, which are constructed
from SL(6, C) multispinors, will describe the prop-
agation of multiplets of the rest symmetry SU(6).
Also, multispinor vertices [like Tr(®®®)] will ex-
hibit collinear SU(3)® SU(3) symmetry. However,
the propagation of the (nonlinearly realized) in-
complete SU(6) multiplet of 2* gluons described by
L, and B, will break this symmetry, though in a
well-defined manner.

6. We do not wish to insist on the superiority of
any one SL (6, C) gauge-invariant Lagrangian over
another.

7. As is well known, the theory of spin-2 inter-
actions is not renormalizable in the conventional
sense. The spontaneous symmetry-breaking mech-
anism used here does not appear to change this
situation—unlike the case of spin-1 gauge theories.
Different (possible nonpolynomial Lagrangian)
methods will need to be developed to deal with the
ultraviolet infinites. We feel that the important
point to stress is that SL(6, C)—or indeed SL(6, C)
®SL(6, C) or U(6, 6)®U(6, 6)—gauge-invariant La-
grangians can be constructed and that (through the
operation of the spontaneous symmetry-breaking
mechanism) they describe propagation of positive
frequency particles. Corresponding to each one of
these Lagrangians there exists an algebra of con-
sevved currents closing on SL(6, C) or SL(6, C)
®SL(6, C), etc. It is the existence of such Lagran-
gians and such algebras—rather than their partic-
ular form—which may possibly be significant for
symmetry physics.

APPENDIX A

For completeness we summarize here the treat-
ment of SL(2, C) gauge invariance given in Ref. 2.

The SL(2, C) gauge transformations p—Qy, are
respresentable in the form

Qx)=expl1i 5 (¥)0 45 ] -

The matrix © is pseudounitary, Q7'=y,Q"y,. The
gauge fields B, and L* are respresented in the
Dirac basis by

Bu :%Bu[aﬁ]oas s

L¥=LRy,.
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These fields transform according to
| -
B,~QB,Q7 - ~Q8,Q7",
Lt~ QL*Q™t.

Covariant derivatives are formed as in the text.
For example,

v,L"=9,L"+i[B,, L"],
B,,=9,B,-9,B,+i[B,, B,].

The simplest SL(2, C) gauge-invariant Lagrangian
for L and B is given by

iTr[L*,L"]B,, . (A1)

There is no need to introduce the Goldstone fields
S(x) in this case. Thus, the field values

(L) =", (B, () =0

are indeed a solution of the Euler-Lagrange equa-

J

tions, and small perturbations on this solution can
be shown to carry positive energy. The expres-
sion (A1) is equivalent to the Palatini form of
Einstein’s Lagrangian. The remarkable fact about
it is that it is also 2 scalar density under general
coordinate transformations if we adopt the trans-
formation rules

, ax?
Bp (x)"Bu(x) 259_6-_’7" Bu(x) I}
L¥ (x)~ L'#(x) = | det 2 8x'uL”(x)
ax’ ax?
APPENDIX B

The Lagrangian (2.9) is not the only gauge-
invariant one which gives rise to a pure massive
2* nonet. A different one-parameter family is
arrived at by considering the expression

£=3Tr(a,V,L,V,L, +a,V,L,V, L, +a;V,L,9,L,+2a,V,S ML, L,}V,S

+2a,V,8™(L,,L,]V,S+agL,L,+a,L,L,L,L,+a,L,L,L,L,). (B1)

This Lagrangian also reduces to the Pauli-Fierz
form in the free-field approximation if the follow-

ing values for the parameters a,,...,a4 are
adopted:
.1 1-3a __1_1-3a
“TE 20 0 BT T 1430
11-3a 3 M?
BTy 0 WTT e
lilea o 1M® (52)
BT T2q TR
8 l+a L1y
%2 173a’ BT8R

T
The components of B are given in this approxi-
mation by

B}, =0,
Bf,=0,

1+3a
Bi[va]:"l__'g;((pfw.a'wﬁa.u) (B3)

¢
+1 35(1"“}90';\)‘-‘1 _nua<pi)\,u);

provided a#-1, 3, +1.
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We consider the Abelian gauge theories in which the transverse and the longitudinal photons are coupled.
The unitarity relation holds because the unwanted absorptive part of the amplitude due to this coupling is
canceled by the fictitious particle. It is pointed out that, by introducing the Lagrange multiplier, one can see
the cancellations for all orders in perturbation expansions by looking at the equation of motion for the
Lagrange multiplier. The possible implication of this on the massless Yang-Mills fields is indicated.

I. INTRODUCTION

The gauge field theories with nonlinear gauge
conditions appear very much different from the
usual formulation with linear gauge conditions. Let
us take, for example, Abelian gauge theory. In the
theory of electromagnetic interactions of charged
particles with nonlinear gauge conditions (we shall
call it the NGC theory), the longitudinal photon
couples to the transverse photon. The new Feyn-
man rules involve two gauge parameters, three new
new vertices, and a fictitious particle. The uni-
tarity and the gauge invariance of the NGC theory
can no longer be proved to all orders in the usual
manner within the framework of canonical quan-

tization. Nevertheless, using the Feynman path
integral one can still formally prove that the NGC
theory is unitary and gauge-invariant in the ‘same
way as in the usual theory with linear gauge con-
ditions.

It has been pointed out that the general properties
of the S-matrix element formally proved by using
the path integral may not be correct if the boundary
terms due to integration by parts are not properly
taken into account.! Therefore, we carry out ex-
plicit calculations of the fourth-order diagrams
to show that the extra absorptive amplitude due to
the new vertices is indeed canceled by the fictitious
particle in any gauge.? Furthermore, by introduc-
ing the Lagrange multiplier x(x), one can derive



