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p-Meson Properties in a Nonpolynomial Lagrangian Theory
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Two possible explanations of the existence and the properties of the p meson are analyzed
within the framework of the nonpolynomial Lagrangian. It is found that the p meson boot-
strapping reciprocally with the B meson in the static Yrcu scattering provides a qualitatively
satisfactory description of the p-meson properties. On the other hand, the forces in the
7t.7). scattering are far too weak to generate the p meson. The calculations are performed
within the framework of the N//D method, and are free of a cutoff parameter.

I. INTRODUCTION

In a recent paper' it was argued that the nonpoly-
nomial Lagrangian given by Weinberg' can provide
a satisfactory description of at least the low-ener-
gy mN interaction. A static model calculation of
mN scattering in the I=—,', 2 and J = —,.', —,

' channels
was performed within the framework of the N/D
method and the Bethe-Salpeter equation. As a con-
sequence of including the multipion intermediate
states implied by the nonpolynomial Lagrangian, "
the theory did not require a cutoff and allowed a
calculation of all the low-energy parameters of mN

scattering, i.e., NNm and NN*m coupling constants
and N*-N mass difference. The agreement of the
results of these calculations with the experimental
results is good enough to justify some amount of
cautious optimism regarding the validity of the
nonpolynomial Lagrangian description for the mN

system.
It is certainly legitimate to inquire as to whether

the same Lagrangian can yield a correct descrip-
tion of the p-meson parameters. Here, we are
faced with two alternatives:

(1) The p and B (assumed to be a 2 state) me-
sons evolve together, 4 from a reciprocal bootstrap
mechanism, in the me channel, with p coming out
as a bound state and B as a resonance state of the
m~ system. This might be demonstrated within
the framework of the static model.

(2) The p meson bootstraps itself' as a resonance
state of the mm system, justification for which
would demand a relativistic calculation of mm scat-
tering, elastic or including m(d production.

The earlier attempts to solve this problem were
hampered by the need for a cutoff, which prevented
a detailed description of scattering and hence a
definite commitment to either of the two above
possibilities. However, with the development of
the nonpolynomial Lagrangian techniques, the sit-
uation is more encouraging. It is now feasible to
carry out calculations of m(d scattering, and of mm

scattering, without introducing a cutoff, and the
resulting predictions, being more complete, would

provide a less ambiguous description of the p-me-
son properties.

We first present a static model calculation of me

scattering, in 8 =1 and 2 channels, including the
multipion intermediate states within the framework
of the nonpolynomial Lagrangian. The method of
calculation is essentially the same as for mN sys-
tem, with the p™mesonexchange playing the role
of the nucleon exchange and B-meson exchange
that of the N* exchange. However, the reciprocal
bootstrap of the p, B system differs from that of N
and N* in that p is not one of the external parti-
cles. Therefore, because the two equations for the
coupling constants are linearly dependent, we end

up with three equations for four unknowns -two
coupling constants and two masses. Nevertheless,
these equations imply that, assuming the B meson
to be a resonance, its mass must be less than
1350 MeV, the p meson is lighter than the B meson,
and the renormalized mp~ coupling constant f as
defined by Peierls' has the value

f 2/4m=0. 7,

which should be compared with the value of 0.45
obtained by a semiphenomenological analysis. ' We
also have the standard relation between the cou-
pling constants of p and B mesons to the mv, i.e.,
+P 7TQ) 3 +B7f Qj'

These results are quite reasonable, but suggest
that while the p and B mesons are essential for the
existence of each other, the forces arising from
their exchanges are not quite strong enough to pro-
duce a completely satisfactory closed reciprocal
bootstrap. Perhaps the additional forces from the
mm channel may be sufficient. Unfortunately a cou-
pled-channel relativistic-bootstrap calculation with
nonpolynomial Lagrangian is very involved and we
leave it for a more ambitious future effort.

However, as a first step towards a relativistic
bootstrap, we do carry out an approximate calcu-
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lation of m~ scattering in the p-wave state with the
Weinberg interaction. The forces turn out to be
far too weak to produce a reasonable p-meson res-
onance, lending support to our assertion that p is
primarily composed of the ~~ state, though the
forces in the m~- me process may contribute. This
perhaps is the reason for the failure' of some of
the early efforts to bootstrap the p meson without

considering the B meson.

II. THE STATIC N/D EQUATIONS
FOR (nm)u ~ (mm)u

We carry out the reciprocal bootstrap calculation
of the p and B mesons within the static N/D method.
The techniques are similar to the ones used ear-
lier' for the mN system. The mph interaction part

of the chiral Lagrangian is described by the inter-
action Hamiltonian

((),~.)p. (t) ttA)
tnt ttvot8 1 2y2

where f is the renormalized t(p&o coupling constant
whose value is determined from a semiphenomeno-
logical analysis' of (t) decay to be f 2/4tt =0.45, a
=1/F, =0.8/m„; and (t)„p, and tP describe the

oo, p, and t( fields, respectively. The term t) t)$
will create or annihilate a P-wave pion, while the
a2(p2 terms create or annihilate s-wave pions.

We start with the unitarity relation for the scat-
tering amplitude T for one static (d, one p-wave

pion, and 2(r'+P'+n') s-wave pions going to one

static (t), one p-wave pion, and 2(r +p+n) s-wave
pions:

I I I
ot ~tt t (t)2(r'+2'+n')t (t)ot 10» ~ ~ t ~2(r 2++))n

Py2 2t.'/ I I I ~ II II II
(+0& lt t 2(r'+2'+n')i +0t +1 1 t +2(R+P+N))T

R,P, N

II II IIT(+0 t 1 9 ' ' ' t +2(R+P+N)$ +Ot +lt t +2(r +2+0))

'fon '7l l2(R+P+N) 0 5( t)on +1 +(t)2(R+P+N)

(2(o,")(2(t)")~ ~ ~ (2(t)" )(2tt)' "' '"

(2)

where we have taken the pion mass p. =0. The Born term from the exchange of the p or B meson in the u

channel is of the form

B I I I y'E(r', P', n')E(r, P, n)
T ((t)ot (t)tt ~ ~ ~ t 2(r'ro'+n')t +ot +tt ~ ~ ~ t &2(r+2+n)) ~ i ~ Em„+ ~(d] + ~(dg —E

where

r+p+n!F(r p n) = [(2r)!(2p)!(2n)tj'"a' "+2+")
r!p! 11!

y"=P~~ y~

with m„being the mass of the exchanged particle, y~ being the coupling constant of the particle exchanged

to the 7te system, and P«being the crossing matrix for angular momentum:

, ( 2 -810'I
P« = — -2 3 5

2

(5)

The total energy is E = m „+Q&ot. We note that the Born term is a function only of Qo&,' and Qo);, and also
that the r', P', n' and x, P, n dependence factorizes. These features are exploited by defining

T(tt)o& tt)1& ' ' ~ t td2(r'+2'+n')t (t)ot tt)lt ' t tt)2(r+2+n)) S((tt t (d)E(r t p t n )E(rt pt n) &

where

(t) = p(t).

(d = (Oq .

The factorizability of T is discussed in Ref. 1. Then the index-free amplitude S(to, to) satisfies the unitar-

ity relation
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ImS((u, (u) = is((u, (u) i'p((u),

where

(It +P+i(t)!(2B)!(ZP)!(2t(t)! 4(s, p, ~)

A, P, N

d 'q,d'q, ~ d'q, (u, '5((u, + (u, + . + (u, —(u)

(2(u, )(2(u, ) ~ ~ ~ (2(u, )(2v)"

(8)

The i-particle phase space can be written in a factorizable form by using the representation

5((u +(u + ~ ~ ~ + ~ —(u) = — exp[-it(~ —(u, —(u, —~ ~ ~ —(u )]dt0 1 l l

so that

O, (~)= 2, f e '"4 (((((((().('4(, (10)

where

g, (t) = (u,'e" Od(u„
0

0

With this form for p, ((u), summation in (8) can be carried out by interchanging the order of summation and
integration, so that

[f(( f P!NI ]~
I

j Oo oo

dte " g, (t) Q (2n+I)! [a'g, (t)]'"
n=0

2v g' 1 —a'a'[g (t)]' ' (12)

Of course the summation in (12) is only formal since g, (t) in (11) is not well defined. We give meaning to
(12) by interchanging the order of integrations in (12) and redefining

g, (t) = t (u, 'e" 'e " ' d0(o, u
0

6
(t+iu'"t )4 '

(13)
g, (t) = 4, (u, e" &e " &'od(u,

0

4v (t+iu'i t,)' '

(14)
3 -l'l(d

dg

(t '" )'- '(/2 )'
0

It should be noted that the summation in (12) is legitimate, provided to) a/2v. This is later reflected by
the scattering amplitude having a branch point at t, = /2 arevquiring a careful choice of the physical
branch.

We define

S(~) = &(~)/D(~),

where iV(& () has only the left-hand singularities and D((u) has the right-hand singularities. If S, ((u) de-

(15)
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scribes the left-hand singularities of S((d), we can write

1 ) ym3, ( )D'( m) 5' —(d

(d —(d " p((d )N((d')d(d '

1t „D ((d —(d) ((d —(3) —t E' )

(16)

(17)

where (d is the subtraction point. We analytically continue (17) from t, &a/2 (7to t, =0, which with the
proper choice of the branch leads to

N(~') p, (~') N(-(d') p, ((d')
((d' —(d)((d' —(d) ((d'+(d)((d'+(d) (18)

where p.v. denotes "principal value" and

p((d) = —,', (e~ —e —2 sin(d5)du, (19)
0

which for ~ = -~~ leads to

6y* rD(-(dp)
6((d + (de ) 2((d + (d

& )

with 5=(a/2m)u'", and

(50 Q

p, ((d) =--,', (2sin(d5+e )du,
0

ao g

p, ((d) =-,', e 'du .
0

(2o)
y= p5y*+yy& (27)

The zero of the corresponding D((d) is assumed to
yield the p meson. Therefore, for a linearized
D((d) = I+((d+(de)b obtained by expanding D((d) at
QJ = -GDgy

Asymptotically the functions p;((d) go as 1/(d so
that E(I. (18) does not need a cutoff.

For mes scattering in the J=2 channel, the con-
tribution to S, comes from p and B meson ex-
changes, which can be approximated as

ImS, ((d') = 2) (5(r)5((-d'+(dp) —p(5(r *)5((d'+(de),

(21)

where y = -,' f ', y * is the B5((d coupling constant,
cu =m —m, and ~~ =m~- m . If we take x
=-ez, we get

1 —(m ym, )(6.3 —).Dm )(35y'y ' =D.
+g +40p

(28)

The results (23) and (27) are standard, ' but (24)
and (28) are new and are obtained since our theory
does not require a cutoff.

Unfortunately, using y=x(5y" from (23) and (27),
we are left with two equations in 3 unknowns, y,
~p, and co~. We nevertheless can obtain some
broad results. We find, for example, that for
m~ &m, the value of y is rather stable, and f~

p

&m~. In particular, for (d~=2m„, we have

N(„) r „r*D(-&e)
2((d +(d&) 6((d +(d())

(22)

and

(d
p

1.2 Pl ~ y (29)

With this expression for N((d), the zeros of D((d)
can be studied and the 8-meson mass and coupling
constant can be obtained as a function of the input
parameters. The relations are particularly simple
for a linearized D((d) =1+((d +(d~)c obtained by ex-
panding D((d) at (d =-(dz,

(23)

1 —( + 3)(6.3 —1.5 y)(yy+ =D.
3 (de +(d

p

(24)

These calculations are repeated for the J=1
channel for which the contribution to S& is given as

ImS, ((d') = -5( p5y *5((d'+(de) —p)(y((d'+(d ),
(26)

y= 755(f '/4)T) =0.11, (30)

which should be compared with the semiphenome-
nological value' of 0.07. These results are quite
reasonable but indicate that the forces for the p
channel are not quite strong enough to produce the
physical p meson. They suggest that p is primar-
ily made up of n'(d. The additional forces required
for a more satisfactory description of the p meson
come, perhaps, from the mm channel. However, it
is beyond our present ability to incorporate this
manifestly relativistic feature.

The effect of taking nonzero pion mass may be
estimated from the conventional static theory with
a cutoff. With a fixed cutoff of about Sm„we find
that increasing the pion mass from zero to m „ in-
creases me by about 10/o.
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III. THE N/D EQUATION FOR nn. ~ mm

The 7tm interaction is given by the Weinberg Hamiltonian2

(bug) ~
(Sunup) m, 2rp2, 2 2 a2t()x() uy

- '
2(1+a rtr ) 2(1+a2rp ) ™pu ~gn(1+a2rp2) (31)

The contribution of the last term to ww scattering is suppressed by the mutual cancellation' (the cancella-
tion being exact in the zero-momentum-transfer limit) of the two terms in the bracket, while that of the
second term is small because of the small pion mass. The leading part of the interaction, therefore, is
the first term, and that is the only term we will consider for nm- nz7t scattering.

Similar to our earlier discussions, we consider the process of two p-wave pions and 2(r'+p'+n') pions
in the s-wave state going to two p-wave pions and 2(r+p+n) pions in the s-wave state. We start with the
unitarity relation

I I ~lfmT('qlr 'q2r Plr r P2(r + 2' +n) r 'qlr q2r Plr r P2(r+(ran) )

P 2)(( ~l ~ It II ~tl ~II
2 ZI T ('qlr 'q2r Plr r P ( 2' a+)+r)nr 'ql r 'q2 r Pl r r P2(R+ p+N) )

R1P, N

lt Il ~ II ~IIT(ql r q2 r Pl r ' r P2 (R+ p+N) r qlr q2r Plr ' r P2 (r +)r an) )

d ql'd q2" d'p," ~ ~ d' P(2,R,P)N(2 )((5 (q,"+q,' +p,"+ +P2(R, P,N)-K)
(2qrr )(2qrr )(2Prr ).. . (2V)2(2R+2P+2N+2)

(32)

where

K = ql + q2 + +Pl
= ql + q2 + QPr~ .

The I= 1 Born term for the 7 matrix is
1=1
B (qlr q2r Plr ' ' ' r P2(r'+2'+n')r qir q2r Plr ' ' r P2(r+2+n)) 2 '(ql —q2) (ql —q2)~(r P» r P n)

where

(33)

g(rr pr nr. r p n) (a2)a+a'+2+2'+n+n' (r +p+n+rr +pr +nr +2)( [( ) '( ) '( P) '( P ) '( ) '( ) ] (34)
y t~l tptpltgt

In order to simplify the problem we make the following factorization approximation:

J(r', p', n', 'r, p, n) = j(r', p', n')j (r, p, n),

j(r, p, n) =[J(r, p, n; r, p, n)]'". (35)

This mutilates only the factor (r + +Pn+r' +' Pn+' 2+)! in (34) while leaving other terms unaffected. It is
reasonable for x', p', n' near r, p, n, and plays the same simplifying role as the factorization of the poten-
tial, for example, in the Lippmann-Schwinger equation. We define

T(ql, ql, Pl, , P,'(, . .. ), q„q„P„,P,(„,.) ) =j (r ', P', n') T(ql, q.'; q„q. ; &)j ( r, P, n),

which, with the use of the identity

(36)

(2)r)a5a(q" + q" +p" + +p" „-I)= dax R'" 2'aa2'+Pi'+ '"+22(R+P+N)—
2 1 2 (R+P+N)

leads to

1 6 1 d
lmT(qlr q2r ql qar'&) =2

( n)r )r in &*(qir q2r ql' q2'r&)

2 -u
X 7"(q

rr
q

. q q
.If) daX & (al +a2 rK)arm

1& 2 9 1P 27
2 1 —[2f(x)a]2 '

where

(38)
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"'X

2q, (2.)
and we have used'

(39)

R, P, N=O

,&~,p, ~& (2R)!(2P)!(2X)!(2R+2P+2N+2)! ~,„( }
(2n+2}!

n! n!

= P (2f}'"(2n+2)!
n=0

Q g dQ

1 —(2fu)' ' (40)

In order to give meaning to the summation in (40), we redefine

~ d3~» &4"'& -& f2.0~0
f( )= '

u
2 (2 )3

0

which, for m, =0, simplifies to

(41)

(42)

Our final approximation is to take

2a
f(x) = lim (43)

which also guarantees that the s-wave mesons do not take away any angular momentum. This approxima-
tion is not expected to distort the analysis seriously, since the s-wave multipions bring about the most
serious changes for large momenta, and therefore, by the uncertainty principle, small x values constitute
the most important region. Furthermore the approximation does not change the asymptotic behavior in
the Euclidean space.

The unitarity condition (38) in the center-of-mass frame reduces to

d3»d3»
ImT(q,', q,'; q„q„K' r (2 ",",2 ",",2 „T*(q,', q,'; q,", q,";K,)

x T(ql', q2 ql q2 Ko)8(q,"+42')

o (t+tu'"t, )' —(a'u/2v')' '

We project out the I=1 P-wave amplitude, which with the definition

(ql q2 ql q2 Ko} Il I1R( )

gives

ImR(s) =p(K, ) ~R(s) ~',

where s =E02 and

1 "„;,r "d u'e "(t+tu"'t, )

0

(44)

(45)

0
(47)

where leads us to write

5 = —(-'u)'" .
7r

' (48)

The Born approximation for R(s) is &8a', which
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8a' "
p(KO)

SENT p g —S
(49)

The D(s) function is analytically continued from
t, &(a/2'~'v) to f, =0, which with the proper choice
of the branch leads to

chiral interaction. It should be noted that though
we have worked with the N/D method, the Bethe-
Salpeter equation also leads to the same final
equations and conclusions.

IV. CONCLUSIONS

D(s) = 1 —ip(K, )v'8a 'g(s)

~1 +0 P2 +0 p (50)

Asymptotically, the phase-space functions p;(K, )
go as 1/K„so that our integral in (50) is finite.
The D(s) can be evaluated in a straightforward
manner. However, it has no zeros in the region
of interest. In particular, even though D(s) de-
creases as s increases, it does so very slowly.
For example, at s =0, it has a value of 0.90 and
changes to 0.84 at s =(5.5m, )'. Within our frame-
work, therefore, the p meson has little chance of
coming out as an exhaustive resonance of the ~~
interaction.

It is true that we have made serious approxima-
tions of factorizability (35) and ignoring x depen-
dence in (42). Nevertheless we feel that our re-
sult, that the ~~ interaction by itself contributes
little to the existence of the p meson, is qualita-
tively correct within the framework of Weinberg's

with

1 "
~ „m'

p, (K,) =
(

„(du)u'e ",(e o —2cosK, 5),

(51)
2 -u ~ -Kp6

p, (K,)=, , (du)u e, e

%e have examined the problem of generation of
the p meson from mes and 7t~ systems within the
framework of the nonpolynomial Lagrangian. The
reciprocal bootstrap of p and B mesons in static
wv scattering provides a very promising explana-
tion of the p- and B-meson parameters. Since the
theory does not need a cutoff, we are able to pre-
dict, in addition to the usual relation between the
7t'pcs coupling and the mB+ coupling, the value of
the mph coupling constant and the approximate
masses of p and B mesons, which are in qualita-
tive agreement with the empirical values. Some
additional forces are needed for a more satisfac-
tory description, perhaps from the coupling of the
we to the m'm channel.

It should, however, be emphasized that this
analysis is carried out under the assumption that
the B meson is a 2 particle, and would be invalid
otherwise. Of course, if some other particle has
these quantum numbers, and couples strongly to
the mv state, the analysis would go through with
this particle replacing the B meson.

The relativistic calculation of wm scattering re-
quires some serious approximations, but the
forces are too weak, even qualitatively, to yield
the p meson. A coupled-channel calculation of 7tm

and me systems is beyond us for the present and
we leave it for the future.
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