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The formalism for singular cores previously introduced is investigated numerically for a simple model.
Calculations of three-particle binding energies and the analog of N-d scattering for this model demon-
strate the practicality of the earlier theoretical development.

I ~ INTRODUCTION

The first paper of this series discussed a new
generalization of the three-particle formalism to
include two-body interactions characterized by a
hard core or by a boundary condition on the wave
function (BCM).' Specific questions such as
uniqueness and three-body unitarity were inves-
tigated in some detail at that time. The present
article is concerned with a numerical investiga-
tion of the formalism for a simple model. Cal-
culations of three-particle binding energies and
the analog of N-d elastic scattering within the
context of this model demonstrate the practicality
of the earlier theoretical development for the
treatment of singular cores.

The principal motivation for this development
is the versatility afforded by being able to utilize
this additional class of interactions in the three-
body problem. For example, calculations to date
in the three-nucleon system with realistic inter-
actions have been almost exclusively restricted
to soft-core models, the single exception being
the long and difficult variational calculation on
the Hamada-Johnston hard core by Delves, gt g).'
The results of these computations have generated
some doubt as to the ability of such models to fit
the experimental data. For example, it appears
that any soft-core model which fits the two-nucle-
on phase shifts reasonably well will underbind the

triton by about 2 MeV. A significant discrepancy
also appears to exist in the case of the 'He charge
form factor' (for a more complete discussion
see SCI). More recently, the present author has
generalized the boundary-condition approach
to provide a complete phenomenology of three-
particle final states. ' The model discussed be-
low may also be regarded as a first approxima-
tion to this general scheme, and hence has a sig-
nificance quite apart from singular cores per se.

We begin in Sbc. II with a description of our
model and the relevant integral equation to be
solved. We also take this opportunity to present
simplified equations for the general case consid-
ered in SCI; these formulas are germane to ap-
plications of the formalism with realistic inter-
actions. In Sec. III we introduce a numerical
technique which is particularly advantageous for
solving integral equations of a certain class; the
method is illustrated by means of an exactly sol-
uble example. Numerical results for our model
are presented in Sec. IV, which concludes with a
discussion of these results and implications for
future calculations w'ith our formalism.

II. A SIMPLE MODEL

We shall consider a model in which three iden-
tical spinless particles of mass Minteract via
the BCM alone (no potentials external to the core)
and only in relative s waves. If c denotes the core
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radius, the two-particle wave function then has
the form

P, (r) =0, r& a
(1)

~ ling

The on-shell t matrix [[o(k) is determined by re-
quiring that

lim ~ = (f, ——1),[I]~'(a+ e) 1

, o [t]„(a+a) a

where f, is a constant. Thus

No(k)t,(k) = '(„),
N, (k) =f,j,(ak) —cosak,

mM
D,(k) = —(f,' —iak)e'" .

If Iis taken to be the average nucleon mass and

f„aare adjusted to produce the deuteron binding
energy and the triplet scattering length, one ob-
tains the numerical values a= 1.095 F, f, = —0.253.

The three-particle integral equation for this
model was discussed in SCI in considerable de-
tail. For our present purposes we shall special-
ize still further to the case of total angular mo-
mentum I- =0, and to the form of the equation
which pertains to elastic scattering from an ini-
tial two-particle bound state. We are thus led to
the equation '

, N(q', q)X(q') = c[N(q', (d) + dqq' ' X(q),D,([()

where all quantities depend parametrically on W,

the total energy in the three-particle c.m. system,
and

4f, exp(- f,)
pM'a

& = (MW- —,'q')'",
uP = —, [MW+ (fo/a)'] .

Here A(&u) is the amplitude for elastic scattering
of the third particle from an initial two-particle
bound state (the analog of N dscattering)-, and
N(q', q) can be represented in the form

N(q', pi=a, q', q; 2 a)[D,(~) —a, (~,i]
v'3

+N(q', q)+ I
' y N(y, q). (6)

~s.&2 &o(y)

As in SCI, we have introduced a negative-energy
parameter' W, and have taken Ko = K(WO), while 8,
is the s-wave momentum-space representation of

the unit step function 8(-',v5 a-y):

~.(q', q;&)=, b.(&(q'- q))-j.(&(q'+q))] .

The function N is analogous to the kernels which
arise in the usual three-body formalism in the
case of separable interactions:

N (q', q)

1

Q N (K)[ cosbq' —ibQj, (bq') J e'"o

p
dz q' —Q —iet2 2

z, = min[1, (y' ——,'a')/ay],

x, = (a'/4 —ayz+y')'",

y, = (9a'/16+ —,'ay@ +y'/4)'",

I (y, q, z) = aqj, (y,q)
(9a+ 6yz)

&6XO

(9)

+ f, —1+, (1 ix,~) —j,(y,q).a(a —2ys)
4xo'

The upper limit of the y integration is the real
number b & &a; the point here is simply that if
we took b -~, the integral term would contribute
all of N(which would vanish). However, the nu-
merica, l evaluation of the integral in that limit
would be quite difficult. This problem is avoided
by employing the explicit form for N given above.

Although one can explicitly verify that the ker-
nel of E(l. (4) is s(luare-integrable (and hence
compact), rapid variations of sign and a relatively
slow decrease in magnitude for large q, q' com-
plicate numerical solution. In particular, a
straightforward application of Gaussian quadra-
ture is not adequate for this purpose. It is there-
fore necessary to employ somewhat more sophis-
ticated techniques, one example of which is dis-
cussed in Sec. III.

In order to perform calculations in the three-
nucleon system with "realistic" N-N interactions,
such as the Feshba. ch-Lomon model, ' one must
take into account the presence of potentials ex-

P = [MW- (1-—.'~')q2]'",
1

Q = z&—q+0,
Z =(MW- —,

' Q')'".
We observe that although Q is complex, N is real
for 8"below the break-up threshold.

The integral term in E(l. (6) is defined in terms
of the function

O ixo

N(y, q) = —M J dg I (y, q,z),
8 XO
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ternal to the core region. Explicit formulas for
this purpose were presented in SCI. However,
more recent work indicates that these expressions
can be considerably simplified. In terms of the
operator notation defined in that article, Eqs.
(106) and (108) can be replaced by the single e(lua-
tion

F=Q+KF,

0 =(1-8)i(H-1)[1+G~U(IQ —1)j
—gt G, (W~)p U(IQ —1) .

Here K is the same kernel defined by Ec(. (109) of
scr.'

(10)

III. INTERIOR-EXTERIOR METHOD OF SOLUTION

As an illustration of the numerical problems
encountered in the solution of E(I. (4), let us
consider the following integral equation:

w
E(q', q) = —,e,(q', m/2b;b)F(w/2b, q). (12)

Setting q'=s/2b and invoking Eq. (7), we obtain
x= -f/2.

In order to solve this problem numerically by
Gaussian quadrature, one would in general intro-
duce a mapping, q =f (x), of q onto the finite do-
main -1&x& i. The integral would then be written
as

' dx —P'K(q', P)J'(P, q)
df

1 dx

K(q', q) = O, (q', q;b)
q sln25q

2

2b

This is a simple eigenvalue problem for the un-
known A, . Due to the trivial analytic properties of
the kernel, one can deduce that F(q', q), for fixed

q, is an entire function of q', growing exponential-
ly like exp(-ibq') as Imq' -+~. The integral can
then be evaluated analytically by the method of
residues, ' and Eq. (11) becomes

K„=H, P'K(f(a, ), P. )
df (14)

A difficulty arises in this procedure for kernels
such as the above due to a slow rate convergence
at large P. To see this it is sufficient to consider
the diagonal element A, , . For definiteness let us
assume that the mapping is given by

(1+x)
P=Q, 1-x '

2A
dP

(1 )2
dx

The large P values are thus attained for points
x= a,. approaching +1 (say the largest of these
corresponds toj =N). It is clear that dP/dx is
effectively proportional to P' in that limit, so that
K»~p'K(p, p) for large N Howe.ver, K(p, p) only
falls off like P ', and hence K» increases like
p(a„). As a consequence, the finite matrix array
K„. involves increasingly large elements in the
lower right-hand corner, and fails to converge as
one increases the number of Gaussian points.
This phenomenon is not restricted to matrix ma-
nipulations; an attempt to calculate TrE by such
an approach also fails, although TrK= —b/2 is
perfectly well defined. Similar problems (al-
though less severe) arise with kernels which de-
crease like P 4, but involve factors like sinbP
which oscillate rapidly in sign. Alternate choices
of the mapping do not alter these observations,
and hence one is forced to employ somewhat dif-
ferent numerical techniques.

A solution to this problem is suggested by the
nature of the difficulty itself. The quantities TrÃ,
TrK' exist for such kernels, despite the slow fall-
off of

~
K ~, because of the sign oscillations char-

acteristic of entire functions. In turn, the latter
typically arise from finite cutoffs in the coordi-
nate representation. Thus, if y is the coordi-
nate conjugate to q', K(y, q) vanishes in the above
example for y& b. This suggests expanding the
unknown function in an appropriate complete set
for this domain. Thus, setting

&(q', q) =g A„(q)4„(q'),

=g &; —O'K(q', P)I'(P,q), (12)
dx -X —g-

where p is to be interpreted as p =f (x). The N
Gaussian points az, and weights B~, are chosen
so as to integrate a polynomial of degree 2N in x
exactly. The problem then is reduced to a finite-
dimensional eigenvalue equation (dim =N), with a
matrix kernel

dqg' „q q
0

we deduce that

A„(q) =x 'PK„A (q),
m

(1V)

dqq'A. (q) dq'q" A.(q')K(q, q').
0 "0

By truncating the expansion we again arrive at a
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finite matrix equation; the trick is to pick a set
g„which (1) is suited to the kernel in such a way
that the expansion is rapidly convergent, and (2)
enables one to evaluate the E„moments without
too much difficulty.

A convenient complete set for this purpose may
be obtained from the eigenfunctions of the two-
particle Lippmann-Schwinger equation in the case
of a unit square-well potential e(b —y). Symbol-
ically, we have Goo(- p, ')Q„=A.„'Q„, where —p,

'
is a fixed negative-energy parameter. From the
explicit analytic solution for this problem, ' one
easily obtains

cosbq+ bpj, (bq)
p2

ex&
i

N(q q)
q q D ( ) I

(21)

we have

of the number of terms N in the expansion (the
exact result is X = -0.90). It is clear that the
procedure works quite well for such kernels.

In applying this technique to Eq. (4), however,
one must keep in mind that the Q„are only com-
plete on the subspace corresponding to y& b. In
fact, taking b to be the same quantity introduced
with respect to that equation, and defining

, i Kin~ i
N(q', q) -N (q')q)

~n =It' +Pn )

r„= "[I +b(u'+p„')j '",2P.
(y„~ K'"'=0,

(y„ i
K '=T„&p„i K '. (22)

dqq'p„(q)&(q) =7„&(p„),

T„=(-1)"2v(p„'+ p')'"r„,
(19)

providing that b& b0.
In particular, our kernel K(q', q) above satisfies

this condition in the q' variable, and hence

Knm=~n &&& m & K Pn~&
0

where the P„are the zeros of the numerator. Thus

Q„(p )~ 5„. This set has the following very use-
ful property: If E(q) is any even, entire function
of q such that i

qe"0'I'(q)
i

is bounded in the up-
per half-plane, then

Nevertheless, we may extend our expansion pro-
cedure to equations of this type in the following
manner. Writing Eq. (4) in operator notation as
X=Q+KX, we note that X=Z'Xo, where

X0=0+K ' Z'X0,

Zg (1 Kext )
-1 (23)

x, =a++
i y„)(x„i,

where the (X„ i
must satisfy

&x„i =(y„ i
K 'z n+gK„„(x„i,

(24)

No difficulty arises in constructing Z' numerically
via Gaussian quadrature; K'"' (q, q) decreases
exPonentially for large q, providing b& &a. More-
over, we may expand X0 in the form

r3T
= ——," e,(P„,w/2b; b) y. (v/2b), K„=(p„ i

K 'Z'
i P„) .

(25)

TABLE I. Convergence of model eigenvalue calcula-
tion.

3
4
5

10
15
20

-0.898 658
-0.899411
-0.899 693
-0.899 961
-0.899 989
-0.899 996

the last line following in similar fashion to Eq.
(12)." If we again consider the diagonal elements
in this array, we now find that K ~P„'. We
have therefore gained a convergence factor of P '
in comparison with direct Gaussian quadrature.
The results of numerical calculations of X for
5 =1.8, p, =1.0 are given in Table I as a function

The solution to Eq. (4) can thus be obtained by
solving first for the exterior operator Z' by stan-
dard methods, constructing the Kn matrix ele-
ments, and solving the resultant finite matrix
equation for the (X„~ . As was noted previously,
K'"' bears a close resemblance to the kernels
which have become familiar in the three-body
problem under the assumption of separable inter-
actions; the application of Gaussian techniques to
this problem is well documented. " The numerical
results of Sec. IV demonstrate that the expansion
for the interior solution converges quite rapidly
(to better than 1/0 for N=6).

In concluding this section, we note that the pri-
mary drawback to our procedure is the time re-
quired to calculate the K„moments, although the
n moment is trivial as a result of Eq. (20). One
can achieve far greater speed and accuracy in
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this task by fully exploiting the analytic proper-
ties of the functions involved. For example, con-
sider the following integral:

TABLE II. Convergence of binding energy calculation.

jV (F-~)

(26)

where /(q) has the properties stated prior to Eq.
(17), and

" dxg(x)
X +Q'

5
6
7

8
9

10

0.0931
0.0934
0.0932
0.0934
0.0933
0.0933

Here g(x) may be a bounded integrable function or
a 5 function, Again employing the calculus of res-
idues, it is straightforward to obtain

+n'2 "dxg(x)
, (x- p)e-'"Z(ix).

x +P.
(28)

In contrast to direct numerical integration of Eq.
(26), which must cope with the infinite sign vari
ations of F and Q„, the integral in Eq. (28) is ex-
ponentially damped, and far more amenable to
numerical treatment.

IV. NUMERICAL RESULTS

In applying the numerical techniques of Sec. III
to Eq. (4), two distinct types of calculations were
performed. In the first case, the determinant

I
I-A

I was computed for the ZxiV array
(6„-K„„)defined by Eq. (25). As in potential
formulations of the three-body problem, this de-
terminant approaches unity as W- -~, decreasing
with increasing 8" if the interaction is primarily
attractive. If the interaction is sufficiently attrac-
tive, three-particle bound states manifest them-
selves as zeros of the determinant, corresponding
to values W =-E~ for which the homogeneous ver-
sion of Eq. (4) has a nontrivial solution. In terms
of the parameter fo characterizing our model, the
interaction is attractive if f, &1, achieving a two-
particle bound state if f0&0.

The second type of calculation determined X(u&),
the amplitude for elastic scattering from an initial
two-body bound state. For this purpose parameters
(a,f,) characteristic of the n-p triplet state were
employed. Inasmuch as this model has no direct
physical application, our primary purpose was to
explore the qualitative consequences of the formal-
ism, and to gain experience in handling a some-
what more singular integral equation. It thus suf-
ficed to restrict our computation to energies TV&0

below the break-up threshold; the numerical dif-
ficulties involved for 8 &0 apply only to the N
portion of our kernel and are well understood. "

TABLE III. Binding energies for triplet parameters.

g, (Mev) z~ (Mev)

2 Q 3
-18.4
-98.7

-197.0
-395.0
—789.0

18.41
18.41
18.41
18.41
18.42
18.75

As was shown in SCI, the requirement that each
two-particle subsystem satisfy Eq. (2) does not
uniquely determine the three-particle wave func-
tion. The presence of singular cores thus intro-
duces an essential ambiguity into the description
of n-body systems if n&2. In order to arrive at a
unique result, it is necessary to impose an auxil-
iary boundary condition, the form of which is es-
sentially determined by three-particle unitarity.
A particularly simple constraint of this type was
introduced in SCI, and is manifested in the pres-
ence of the Wo-dependent term in Eq. (6). If one
makes a Faddeev-type channel decomposition of
the three-particle wave function, "4 =+8$8, this
constraint can be visualized in terms of a boundary
condition on the Pa of the same type as Eq. (2), at
energy W= lVO In the particular case of a hard
core (f,- ~), this corresponds to the requirement
that each of the g8's vanish independently within
the core at W= W„as well as their sum (which
vanishes for all W)." Although this not unreason-
able prescription guarantees unitarity and leads
to a unique three-particle wave function for each
8'„ the freedom to choose 5; arbitrarily implies
that the model defined in Sec. II in fact generates
a one-parameter family of three-body solutions.
However, the numerical results to be described
display a remarkable insensitivity to this param-
eter, with the consequence that the two-body
boundary-condition parameters imply virtually
unambiguous properties for the three-body system.

Three-particle binding energies based on the
n-p triplet parameters are tabulated in Table II as
a function of the number of terms N in the P„ex-
pansion; 8', was held fixed at a value of -0.10 F '.
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-0.10
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FIG. 1. Three-particle binding energy E~ as a func-
tion of the logarithmic derivative parameter fo, for
fixed 8"0 = 10 MeV and the triplet-core radius.

3
4l cot5 = NIP

2 I+( (29)

It is clear that convergence is quite rapid, with as
few as six terms producing better than 1% accura-
cy. This was in fact the case for all of the numer-
ical results reported. Variation of the binding en-
ergy as a function of W, for the same f„aparam-
eters is shown in Table III for N=10. As stated
above, there is virtually no sensitivity to this pa-
rameter unless extremely large values are em-
ployed. The simple model under consideration
thus implies an essentially unambiguous value of
18.41 MeV binding for the three-body system.
This is on the order of 4-10 MeV more than simple
potential models fitted to the same two-body data
give for this problem. " In fact, E~ is extremely
sensitive to variations in f„a,' a similar calcula-
tion with the N-N singlet parameters produces a
value of only 1.13 MeV binding.

As a check on the qualitative behavior of E~ with
the boundary-condition parameters, fo was varied
and a held fixed at 1.095 F; the results are plotted
as Fig. 1. Aside from the large sensitivity to f,
already noted, which may be interpreted as sen-
sitivity to the value of the two-particle binding en-
ergy produced, there is no qualitative difference
with similar curves produced by potential models. '4

In particular, the three-body system binds for a
range of f, parameters too weakly attractive to
bind the two-body systems.

Calculations of elastic scattering from the two-
body bound state are plotted in Fig. 2 in terms of

-0.10 I

0.0 0.02
-2

K in F

FIG. 2. Plot of f(:cot6 against K for triplet parameters
and Sp = —10 MeV. The calculation is belovr the break-up
threshold (z~ =0.07 F 2).

I

0.01

to conform with the usual notation we have replaced
~ by k. The curve shown corresponds to W', =-10
MeV, but variations of the curve for the values of
S", listed in Table III would not be visible on the
scale of the figure. Again, taking into account the
unusually large binding energy produced (18.4
MeV), these results do not differ in a qualitative
sense from previous computations by the present
author for potential models.

Thus, although "realistic" singular-core models
have yet to be confronted with experiment, pros-
pects for such calculations within the formalism
previously introduced seem quite encouraging.
The numerical stability of the results obtained
demonstrates the practicality of the basic ap-
proach, and the qualitative similarities with re-
sults produced by potential models provide an im-
portant sense of continuity. The quantitative dif-
ferences exhibited, such as the rather large bind-
ing energy produced by the triplet parameters,
offer some hope that such calculations may provide
a definitive test of the various phenomenological
treatments of the short-range N-N interaction.
As a bonus, the unwanted degree of freedom af-
forded by the introduction of the 8'0 parameter
does not seem to have any practical consequences,
thus permitting an unambiguous test of a particular
singular-core model.
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A singularity on the light cone is conjectured which accounts for the Schwinger term required for the
consistency of the Lee—Dashen-Gell-Mann sum rule with that of Cabibbo and Radicati. This singularity
requires 8, to scale, rather than (as conventionally assumed) v 8', ; because of positivity constraints, such
behavior forbids in principle the usual scaling law for 8', and v W, .

I. INTRODUCTION

The scaling behavior of deep-inelastic electron
scattering successfully predicted by Bjorken' has
led to the study of current commutators at almost
lightlike distances. ' A simple form for the light-
cone expansion of the commutator of two electro-
magnetic currents was abstracted from the ob-
served scaling behavior of the structure functions.
It was subsequently observed that the SLAC-MIT
experiments seem to indicate that the operators
appearing in the light-cone expansion have can-
onical dimensions, and that the expansion could
have a structure which is compatible with that
given by free-field theory. These observations
led Gell-Mann and Fritzsch to the assumption
that the light-cone expansion of commutators in-
volving SU(3) xSU(3) currents can be abstracted
from the free-quark model, making the connec-

tion between the light-cone and parton approaches
very clear. '

Some years ago, BucceQa, Qatto, Okubo, and
Veneziano" showed that in order for the Jacobi
identity between three space-current components
to be satisfied, a q-number Schwinger term (ST),
antisymmetric with respect to interchange of
unitary indices, must be present in the equal-
time commutator (ETC) of two space components
of currents. The quark model, however, suggests
the commutation relation

[g' (x), g,' (0)j„,= i&,,f.„Z,'(x)o'(x).

+terms symmetric in a, 6 .

Therefore, we do not expect the Jacobi identity
to be satisfied in the free-quark model.

Motivated by these remarks, we study here the


