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Two-variable Galilei-group expansions are derived for the two-particle nonrelativistic scattering
amplitude. These expansions contain the usual partial-wave and eikonal expansions and supplement them

by further expansions in the remaining kinematic variable. The expansions are written both for
square-integrable and for asymptotically increasing amplitudes and are shown to correspond to the
nonrelativistic limit of previously considered relativistic two-variable expansions, Dynamical singularities

(Breit-Wigner resonances, bound states, poles in the impact-parameter plane, etc.) are investigated and

related to the asymptotic behavior of the expansion coefficients (or Galilei amplitudes), The threshold
and high-energy limits of the expansions are discussed. As a mathematical by-product we give a
classification of the subgroups of E(3) and also some results on the representation theory of this group;
in particular we study the Clebsch-Gordan coefficients.

I. INTRODUCTION

Two-variable expansions of relativistic scatter-
ing and decay amplitudes have been proposed in
previous publications' ' as a tool in terms of which
to study elementary-particle interactions. The
motivation for writing such expansions is to treat
as many as possible of the general properties of
scattering amplitudes (Lorentz invariance, analy-
ticity, crossing symmetry, unitarity, etc. ) once
and for all as "kinematics" and thus to isolate the
actual "dynamics" of interest,

This is achieved by considering the scattering
amplitudes as functions over the three-dimension-
al hlperboloid p' = m' (where p is the four-mo-
mentum of one of the particles involved and m is
its mass) for spinless particles, or over the ho-
mogenous Lorentz group O(3, 1) for particles with

spin, and then expanding them in terms of irreduc-
ible representations of O(3, 1). The entire depen-
dence of the amplitudes on all kinematic parame-
ters such as energies, scattering angles, momen-
tum transfers, etc. , is displayed explicitly in known
special functions —the basis functions for the rep-
resentations or the matrix elements of finite
transformations. The dynamics of each specific

process should then be described in terms of the
corresponding expansion coefficients, which we
call "Lorentz amplitudes. "

Relativistic two-variable expansions for reac-
tions of the type 1 +2- 3+4 and 1-2+3+4 are
thus provided by the representation theory of the
Lorentz group O(3, 1). This group figures as the
group of motions of the space of independent kine-
matic parameters, and its crucial role is of course
related to the Lorentz invariance of the theory.
The actual form of the expansions is not deter-
mined uniquely by the choice of the group itself,
but depends also on the choice of a definite Lorentz
frame of reference, in which we consider the re-
action, and on the corresponding choice of basis
for the representations. Two different types of
bases have been considered. The first type are
"subgroup-type" bases, in that they correspond to
a reduction of the considered group [in this case
O(3, 1)] to a definite chain of subgroups. The basis
functions are eigenfunctions of a complete set of
commuting operators, all of which are either
Casimir operators (invariant operators) of the
group itself or of one of the subgroups in the re-
duction chain, or discrete operators (e.g. , various
types of reflections). Among the different non-
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equivalent chains of subgroups of O(3, 1), three are
of special interest in this connection. They can be
written as O(3, 1) D G a O(2), where O(2) is the
group of rotations in a plane and G is either the
three-dimensional rotation group O(3), the three-
dimensional Lorentz group O(2, 1), or the Euclid-
Iean group of a plane E(2). The important point is
that the subgroup G simultaneously figures as a
little group of the Poincare group, leaving a cer-
tain vector invariant. The standardization of this
vector corresponds to the choice of a certain
frame of reference. In the case of O(3) it is the
total energy-momentum and the center-of-mass
frame, for O(2, 1) it is the momentum transfer
p, —p, and the brick-wall frame, and for E(2) it is
a specially constructed lightlike vector K and the
"light-velocity frame of reference". ' This identi-
fication of the subgroup G provides an interpreta-
tion of the expansions in terms of subgroup-type
bases, namely, they can be identified with the
standard "little-group" expansions' of partial-
wave analysis [the group O(3)], Regge-pole theory
[group O(2, 1)], and the eikonal expansion [group
E(2)]. These little-group expansions are supple-
mented by a further integral expansion of the cor-
responding partial-wave amplitude, provided by
the inclusion of G into O(3, 1) and making the de-
pendence on all variables explicit.

The second type of bases are "nonsubgroup
bases, " in which the basis functions are again de-
fined as the common eigenfunctions of a complete
set of commuting operators, not all of which are
Casimir operators of any subgroup (some are
more general second-order operators in the en-

where 4 „(n) and 4', (P) are definite known func-
tions, n and p are certain combinations of the
Mandelstam variables

s=(P, +P,)', t=(P, —P,)', u=(P, —P,)' (2)

(p, are the particle momenta), and A(o, l) are the
Lorentz amplitudes, carrying the dynamics. The
summations imply either sums or integrals, 0
labels representations of O(3, 1), and l either la-
bels those of the subgroup G or corresponds to the
eigenvalues of the nonsubgroup-type operators,
determining a basis. If the particles have nonzero
spins then all the functions and the Lorentz am-
plitudes will also carry spin projection labels.

Let us for clarity and also for use below write
out explicitly two of the subgroup expansions for
spinless particles with arbitrary nonzero masses.
For the reduction O(3, 1)& O(3) DO(2), we have

veloping algebra of the corresponding Lie alge-
bra) ". The existence of such bases is related to
the separation of variables in the Laplace operator
on the space, where the group acts transitively, in
elliptic-type coordinates. The most interesting
feature of the expansions in terms of nonsubgroup
basis functions is that they have very simple prop-
erties with respect to the interchange of variables
and are thus very appropriate for expansions of
crossing-symmetric functions.

All of the two-variable O(3, 1) expansions of
scattering amplitudes E(s, t) can thus be written
in the form

F(s, t) = Q A(a, l)C' „(n ) 4 „(P),

E(s, t) = g (2l+1) (a+1)'dc
l 1 A, (c) . „,P, ,', ,',"(cosha)P, (cos8),

I(o +1) 1
(3)

with

s+ m, '- m, 'cosha =
2m 3 s

and 8 equal to the c.m. scattering angle [P,"(z) are Legendre functions, the I' functions provide a conve-
nient normalization].

The O(3, 1)aO(2, 1)a O(2) reduction leads to the expansion

1 &"" 2l+1 P "", I'(o' —l+1)I'(o+1+2)
cos&l

2t z, sinai J q, „ I'(o +2)

x [A'(o, l)P, ' '(-tanhn)+A (cr, l) P, ' '(tanhn)]P, (coshp), (5)
1

where

t+m -m
SlnhQ = 2,v'—

and coshP=cos8, , i.e., P is the c.m. scattering

angle in the t channel, analytically continued into
the s channel (this is the variable of Regge-pole
theory)

Expansions (3) and (5) can easily be inverted,
but we shall not go into this here.
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The fundamental objects in this two-variable ap-
proach to particle reactions are thus the Lorentz
amplitudes like A, (o) andA'(a, I). It is in terms
of these quantities that we must ensure that the
general principles of scattering theory are satis-
fied, that we can formulate dynamical hypotheses,
and finally that we can perform phenomenological
fits to experimental data.

Let us note here that the expansion (3) has been
generalized to the case of arbitrary spins4 and al-
so modified to describe three-body decays, rather
than scattering. ' For decays the O(3, 1) expansions
are replaced by O(4) ones, so that the integral
over v in (3) is replaced by a sum. Such expan-
sions have been directly used for fitting data on
the K'- 3m, q- 3~, and Pn- 3~ reactions. "

For scattering it is somewhat more difficult to
obtain information about the Lorentz amplitudes
directly from experimental data. It is first neces-
sary to find a convenient parametrization of the
amplitudes and also to find a method of replacing
the integrals in (3), (5), and other expansions by
sums. In order to do this we need more informa-
tion about the analyticity properties of the Lorentz
amplitudes, their asymptotic behavior, their sen-
sitivity with respect to resonances, and other im-
portant properties of the amplitude F(s, t). Such
information can be obtained on one hand by impos-
ing general principles of S-matrix theory on F(s, i)
and studying their reflection in the properties of
the Lorentz amplitudes. On the other hand a better
feeling for the properties of these amplitudes can
be obtained by studying various specific models.

The aim of this investigation is to consider the
nonrelativistic limit of the O(3, 1) expansions, i.e.,
expansions in terms of the representations of the
homogeneous Galilei group, which is isomorphic
to the three-dimensional Euclidean group E(3).
Presently we only study expansions in terms of
the subgroup-type bases corresponding to the
group reductions E(3)a O(3) DO(2) and E(3)D E(2)
x T &O(2)&&T, [where T is the group of transla-
tions perpendicular to the plane given by E(2)].
The first of these leads to the partial-wave expan-
sion, supplemented by an integral representation
of the partial-wave amplitude; the second leads to
the eikonal expansion, again supplemented by an
integral representation for the eikonal amplitude.

The main reason for our interest in this nonrel-
ativistic limit is that it is more accessible to a
theoretical study than the relativistic case. In-
deed, a ready-made model for which we can study
the behavior of the expansion coefficients —let us
call them Galilei amplitudes —is potential scatter-
ing. In this initial article we formulate the prob-
lem, i.e., obtain the Galilei expansions for the
scattering of spinless particles, study their rela-

tion to the relativistic expansions, investigate ex-
pansions in terms of unitary and nonunitary repre-
sentations, and consider their convergence prop-
erties and also their behavior in various physically
interesting limits. In view of future applications in
high-energy physics, the aim is to be able to for-
mulate scattering completely in terms of Galilei
(or Lorentz) amplitudes, which thus in the concep-
tual sense replace the potential.

Section II is devoted to mathematical prelimi-
naries. We classify all subgroups of E(3) into
equivalence classes and demonstrate their relation
to the subgroups of O(3, 1). Further, we construct
the basis functions of E(3), corresponding to vari
ous group reductions (for general representations).
For representations corresponding to spinless
particles we also derive the Clebsch-Qordan coef-
ficients in the E(3)&O(3) &O(2) basis. In Sec. III
we write the direct and inverse expansion formulas
for spinless particles using unitary representa-
tions or a class of nonunitary ones. We investigate
the convergence properties and the way in which

O(3, 1) expansions contract into E(3) ones, and also
compare the relativistic and nonrelativistic kine-
matics involved. In Sec. IV we study threshold be-
havior, various types of asymptotic behavior, and
the occurrence of Breit-signer-type resonances
in the E(3)D O(3) expansion and various types of
asymptotic behavior, particularly Begge poles, in
the eikonal-type E(3) expansion. In the final sec-
tion, V, we summarize the results and discuss the
future outlook.

II. MATHEMATICAL PRELIMINARIES

A. The Euclidean Group E(3) and the Lorentz Group 0(3,1)

In order to establish notation, let us review a
few important facts" about the groups E(3) and
O(3, 1).

The gxouP E(3). This is the group of distance-
preserving transformations of a three-dimensional
Euclidean space and it is a semidirect product of
the group of rotations O(3) and translations T(3).
Denoting the generators of rotations by L; and
those of translations by P„we have

[ I r, Lg] = ie;q, Ll,

[L&, Pa] = ze, a, P&,

[P„P„]=0.

The two Casimir operators of E(3) are

P and P ~ L.
All unitary continuous faithful representations of

E(3) are infinite-dimensional and are labeled by
the pair of real numbers [k,m, ], where k &0 and
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2 M p 0 +1 +2 . . In any unitary irreducible
representation we have

P =k, P L =-kmo.
.Representations of E(3) are usually considered in
the canonical basis

~
km, LM), corresponding to

the group reduction E(3) a O(3) aO(2), in which

I.' I am, LM) = L(L+1)
~

I m, LM),

L, (t ~,LM) =M ~t m, LM&,
(10)

with

L=/m, /, fm, (+I, . . . ,

M= -L, -L+1, . . . , L.

[Lt I L~] =it;~, L, ,

[ Lt I K~] = te;„,K, ,

[K;,Ka] — se;ai L-i .
The two Casimir operators of O(3, 1) are

Note that the case k =0 is exceptional in that it
corresponds to finite-dimensional discrete repre-
sentations for which the generators of translations
are represented by P& =-0. We shall not be con-
cerned with these representations in the present
article.

The grouP O(3, 1). The homogeneous Lorentz
group O(3, 1) is generated by infinitesimal rota, -
tions L; and infinitesimal boosts (pure i,orentz
transformations) K, along each coordinate axis.
The I ie algebra of O(3, 1) is given by the relations

obviously corresponds to a, transition from rela-
tivistic to nonrelativistic kinematics (see also be-
low).

C =a; I.;+5;P;. (17)

A general inner automorphism can be considered
by setting

(18)

and performing an E(3) transformation

8, Subgroups of the Euclidean Group Et 3)

We shall be interested in expansions of scatter-
ing amplitudes in terms of basis functions of the
irreducible representations of E(3). Since a dif-
ferent type of basis corresponds to each nonequiv-
alent chain of subgroups (having invariants), we
need a classification of all continuous subgroups
of E(3) into equivalence classes (the results are
summarized in Table I). We perform this classi-
fication using methods previously applied to clas-
sify subgroups

' of O(3, 1) and SU(2, 1). We shall
actually classify subalgebras of the algebra of E(3)
and then comment on the corresponding groups.
Two subalgebra, s A, and A, of the algebra A of the
Lie group G will be considered equivalent if for
every a, H A, there exists g&G and a, ~A, such
that ga, g '=a„ i.e., if there exists an inner auto-
morphism, transforming A, into A, .

Let us consider a general element of the algebra
of E(3):

6 =L'-K' and 6'=L K. (13)
&~ =&~a&&+I i ~ &ta&o =~&i

The unitary irreducible representations of the
principal series are characterized by two real
numbers fp, j,]., with p real and j,=0, —,', 1, . . . .
In any unitary representation of the principal se-
ries we have

(o.;„and p; are real; summation over identical
subscripts is understood). Under the transforma-
tion (19) the operator C transforms into C' (Ref.
14):

6 =jO —P —I, b'=-joP. (14)
C' =a; n;g Lg+(a;e; (P n(1+5;n;„)P~

=aqLt +bqPq. (20)
Contraction of O(3, 1) to E(3). It is well

known"'" that the algebra of E(3) can be obtained
from that of O(3, 1) by the process of contraction
corresponding to taking the limit c- ~ (where c is
the velocity of light). Indeed, putting

a'=a;a =a a,',
a b =a]6; =a]b

(21)

(22)

Two quantities remain invariant under the auto-
morphism C- C', namely,

K =cP

we rewrite (12) as

[Lg, I~] =if(„L, ,

[Ig, P„]=to;q, P, , (16)
A (n ) = cosa. L, + sino. P, , 0 ~ n & v . (23)

It is easy to check that by a judicious choice of the
rotations o.&, and translations P; we can transform
the most general element C into A =aL, +bP»
which in turn we can normalize into

Z

[P~ Pa]-- & ai Li

which for c-~ reduces to the E(3) relations (7).
From the physical point of view this contraction

In other words, a general one-parameter subalge-
bra determined by the operator (17) is equivalent
to an algebra generated by A(o. ) (with a =N' cos'o. ;
a;5; =N' sinn cosct, N real). Algebras correspond-
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TABLE I. Continuous subgroups of the group E(3).

No. Dimension Generators and algebra
Invariants of

algebra Characterization of group

A (e) =L
&
cosa +P

&
sine

0~0. &7t.

Lg, L2, Ls,
[L»u] =i&~IrLr

P, , P, , Ls+bps=—M
0~b &oo

[Pg, P2] = 0, [M,pg] =ip2,
[P2, M] =ips

Ps
[P; Pp]=0

2& 3~ S~

[P;„P~]= 0, [P3,I 3] = 0,
[Ls Pi] =LP2 [P2»s] =~~

L& andP&

Pg andP2

2+L 2+L 2

2+p 2

Pg, P2, and ps

P& +P2 andPs

Compact for n =0 (rotations in plane).
Noncompact for e & 0. Translations along
one axis for n =27t.

Noncompact, Abelian. Translations on

a cylinder.

Noncompact, Abelian. Translations on
a Euclidean plane.

Compact, simple: the rotation group O(3)

Noncompact, solvable: the Euclidean
group E(2)

Noncompact, Abelian: the group of translations
Tf x T, x T, of the Euclidean space .

Noncompact, decomposable: the group
E(2) && T~, where Ti are translations
perpendicular to the E(2) plane.

ing to different values of n are nonequivalent. We
thus obtain a single one-parameter family of one-
dimensional subalgebras A (o.).

The classification of two™parameter, three-pa-
rameter, etc. subalgebras is now a simple matter
and we proceed from lower to higher ones. We
shall denote a subalgebra by Z and its derived al-
gebra (algebra of commutators) by 2', and order
the algebras according to the dimension of 2 and

We can identify fA, B] with one of the algebras
(24) and add a general C, commuting with A and
B. The only such algebra that can be obtained is

dime =3, dime' =1. Such an algebra must con-
tain the subalgebra (25} and is hence ruled out.

dime =3, dime'=2. We identify 2' with (A, B},
hence A and B commute. In general, we can write

[A, B]=0, [B,C] =iaA, [A, C] =i(bA. +dB),

dime =2, dime'=0: [A, B)=0. (24)

dimg =2, dime' = 1: [A, B]=iA . (25)

Choosing A in the form (23}, we immediately
find that (25) cannot be satisfied for any B. No

other two-dimensional algebras exist.
Eight types of three-dimensional Lie algebras

exist over the field of real numbers. " All those
conta. ining a subalgebra of the type (25) may be
eliminated immediately.

dimi' = 3, dime' = 0: '

[ A. , B]= [B, C] = [C, A] = 0.
(26)

We take A in the form (23), leave B general, and
demand that A and B commute. This restricts the
form of B, which we can further simplify, using
the automorphism (19). We find that only two non-
equivalent Abelian subalgebras exist and their re-
spective bases can be given by the pairs of opera-
to» EP„P,) and CP„L,j.

where a, b, d are real. If we put fA, Bj=(P„L,),
then no C satisfying (27) exists. Choosing A. =P„
B =P„we find C =I., +bP, (b real). This cannot be
further simplified.

dime =3, dime'=3. Only two such algebras ex-
ist, namely that of O(3) and that of O(2, 1). The
algebra of O(2, 1) contains a subalgebra, of the type
(25) and is hence ruled out. The algebra of O(3) is
of course present. Writing A. =aI., +bP, and keep-
ing B and C general, we find that the O(3) commu-
tation relations can only be satisfied if P 1.] B
=12+bP3, C =13—bP, . This can be simplified by
the E(3) inner automorphism to the algebra
I,I.„L„L,ii. .

Twenty types of four-dimensional algebras over
the field of real numbers exist, "but nineteen of
them can be ruled out because they contain two-
or three-dimensional subalgebras that have alrehdy
been ruled out. The remaining one is a direct sum
of the algebra (26) and a one-parameter subalge-
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bra. We thus have

dime =4, dime'=2.

Put A. =P„B=P2, C =I3+5P3 and leave D general.
Bequiring that D commute with all other genera-
tors, we find that only one such subalgebra exists,
namely that generated by (P„P„P„I.,].

The algebra of E(3) has no five-parameter sub-
algebra. Indeed, a five-parameter subalgebra
would be obtained by leaving out one element of
the algebra. This can be chosen in the standard
form A(o. ) =coso. L, +sino. P, . The subalgebra thus
contains L„ I.„P„P„and cosPL, +sinPP, with
Pwn Ho. wever, I L„L,] =iL, and I L„P,] =iP„
hence the subalgebra also contains A(o. ). This is
a contradiction; therefore no five-parameter sub-
algebra exists.

A complete list of all continuous nontrivial sub-
groups of E(3) together with some of their proper-
ties is given in Table I. A point which we wish to
stress is that E(3) does not have an O(2, 1) sub-
group. We know that in a relativistic theory it is
the O(2, 1) subgroup of the Lorentz group that pro-
vides a group-theoretical basis for complex angu-
lar momentum theory. No such possibility exists
in nonrelativistic scattering theory.

Let us note that the only chains of subgroups of
E(3) that will provide us with subgroup-type bases
for the representations of E(3) are E(3)&O(3)
~O(2), E(3)& E(2)xT vO(2)xT, and E(3)&T,
xT, xT, ( T; are translations along the ith axis,
T are translations perpendicular to the E(2)
plane].

A few words on the connection between the sub-
groups of O(3, 1) and E(3) are in order. A general
element of the algebra of O(3, 1) is X =n; L;+P;K;.

Under a general O(3, 1) inner automorphism we
have X-X'; the invariants of the automorphism
are"

3 3
n' —P'= P (n ' —P') a,nd o. P= Q n P.

C. Basis Functions for Zero-Spin Representations
of E(3) in Subgroup-Type Bases

From now on we shall only consider unitary ir-
reducible representations of E(3), for which m&
=0 Isee (9)], so that the invariant operator P ~ I
is also zero. We shall call them zero-spin or de-
generate representations. They are the only ones
that can be realized in the space of functions E(x)

IP(x) I'«,«,«.& (29)

where x is a vector in the Euclidean three-space
on which E(3) acts transitively. We shall return
to the m, c 0 representations of E(3), relevant for
particles with spin, in a separate study.

The E(3)a O(3) DO(2) Basis
(the SPhericaL Basis)

The basis functions are eigenfunctions of P', L',
and L, I see (9) and (10)]. Introducing spherical co-

(28)

If we set n; =a; and P; =h;/c and then take the limit
c» ~, we find that the O(3, 1) invariants (28) go
over into the E(3) ones (21). Similarly, subalge-
bras of O(3, 1) contract to those of E(3). The re-
sults of this contraction procedure (P, =b;/c, P;
=K;/c, c-~) are summarized in Table H.

TABLE II. Contraction of continuous subgroups of O(3, 1) into those of E(3).

No. Dimension
Subalgebra
of O(3, 1)

Subalgebra
of E(3) Comment

L 1 cosp +K g slHp

Kg+L2

L1, Kg

L1+Kg, L2 -K
L

g +K2,K3

Lg, I 2, L3

K1, K2, L3

Kg+L2, Kg —Lg,
sinnK3+cosnL

&

L t cosn +P
~ sinn

Pg

Pg P2

P2, P3

L1, L2, L3

P2~ L3

sinn PB +cosn L 3

Independent for O(3, 1), contained in case 1 for E(3)

Type fA, B]=iA for O(3, 1). Abelian and equivalent
to case 4 for E(3)

O(3) contracts to O(3)

O(2, 1) contracts to E(2)

A subalgebra of O(3, 1) with dimg' =2 contracts to
E(2) for n & 2n and to T&x T2x T3 for n =2&.

3, K3, L1+KP, L2 -K1 L3, P(, P2, P3 A subalgebra of O(3, 1) with dim@' =2 and no
invariants contracts into E&x T~.
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ordinates

x, =r sin8cosg,

x, =r sin8 sing, (30) I
klm& = j, (kr) Y,.(8, y) = e-„,.(r, 8, y), (32)

Solving the ordinary differential equations obtained
after separation, we find the basis functions:

X3 =r COSH,

we write P2, L2, and I.3 as differential operators
in spherical coordinates and separate variables in
the equations

P Iklm) =k Iklm&,

L'Iklm& =l(i+1)Iklm&,

r., I him& = m Iklm&.

where

w
j~(kg ):

2
J'~ A)2(kr)

are spherical Bessel functions' and Y,„(8, Q) are
spherical harmonics. The basis functions satisfy
the following orthogonality and completeness rela-
tions:

(k'l'm ' Iklm& =
QO 7r 21r

r'dr sin8d8 dpj, (kr)Y, (8, P)j,*.(k'r)Y,* „(8,P)
0 0

m' 5(k -k')
(33)

and

eo OQ

k2dk j, (kr)Y, (8, Q)j,*( rk') ,Y* (O', Q') =—, . 5(f —Q').

The Z(3) ~ Z(2) xT,aO(2) xT, Basis
(the Cylindrical Basis)

The basis functions are eigenfunctions of the op-
erators P', P„and I., (and hence also of P,'+P, ').
We introduce cylindrical coordinates

P'
I ~qm& = k'

I ~qm&,

(P,'+P, ')
I gqm& = ~'I ~qm&,

,PI w qm&= q I ~qm &,

I., I~qm& = m I~qm&
xq = p cosg,

x2 = p sing ~

X3

0 (p&oo

0 «/&2',
oo. &g&oo )

(35)

(we drop the symbol k in the basis functions, label-
ing the representations, where k'=z'+q'). Solving
the obtained ordinary differential equations, we

find that the basis functions are

Ivqm& = —z„(ap)e'"e' ~, (37)

write P', P„and L,3 as differential operators in
cylindrical coordinates, and separate variables in
the equations

where 0 ~ ~ -, — &q&~, m=0, +1, +2, . . . , and
J (~p) are Bessel functions. These cylindrical
basis functions satisfy the following orthogonality
and completeness relations:

r 2'
(a' mq'Ilcqm& =

2 pdp ' dz
~ dP J (xp) J (z'p)e'~' ' ~'e'~

(2w)', J,

5(q-q')5 „5(~ —a'') (38)

dq ed~ J (~p) J (zp')e" ' ' e' = 5(& —&')5(Q —Q'). (39)
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3. The E(3)a T, x T, xT, Basis
(the Translational Basis)

The basis functions are eigenfunctions of P', I'„
P„and I',. We use rectangular coordinates x;,
and write

The quasiregular representation can be expanded
in terms of unitary ones, and the corresponding
formula in the spherical system is

E(x)= Q Q k'dk a,„(k)e„,(r, 8, y),
L=p M=-L ~p

I, ( k„k„k,&
= k,-

~
k„k„k,&

with k,'+k, '+k, ' =k'. The basis functions are

(h& = ~k„k„k,&

eik 'x
(2m)3/'

(40)

with

7f

A«(k) = — r mdr sin8 d8
7l dp dp v' p

(45)

dQ E(r, 8, Q)

x @„*,„(r, 8, y)

(I ll &=, dxe""-"' =6(l -k'),
(27/)' g

(42)

satisfying the obvious orthogonality and complete-
ness relations

(46)

[see (32)-(34)]. The matrix elements for finite
E(3) transformations in the (k, m, }=(k, 0) repre-
sentation are defined by the formulas

(2 )~
I e = x —xIk ~ (x -x') 5(~ ~I)

D. Clebsch-Gordan Coefficients for Spin-Zero
Representations of E(3)

(43) T 4NL N(X) +ltL M(g x)

I, 'v' /. //(g) /s. '//'( )
L M'

Noting that for x=(0, 0, 0) we have

(47)

T, F(x) =E(g 'x). (44)

We shall need the Clebsch-Gordan coefficients
for irreducible unitary representations with mp =0
of the group E(3) in the spherical basis. The case
of general representations and other bases will be
treated separately.

Consider the quasiregular representation" of
E(3), realized in the space of functions E(x), sat-
isfying (29):

1
+NL//( ) 5I 0 5//0 (4~)1/2 i (48)

we obtain from (47) a relation between the basis
functions and the (00) row of matrix elements:

1
+NL (//&r8t 0) (4 )i/2 D,DO~1(g) ~ (49)

We can define the E(3) Clebsch-Gordan coeffi-
cients for the case of interest by the relations

~k, r„M, &~k, 1.2M, &
= g ~

K'dK p
Np

M pkLM ~ k, k2 Mpk
kk1 2 L1N1L2 +2 1 I 2 2

(5o)

(51)

These definitions, together with the normalization of the basis functions, imply the orthogonality proper-
ties of the Clebsch-Gordan coefficients:

X %NO

(52)

k, k, ~,Z k, k, ~,'Z' * 5(Z-Z)
L M L M L M LM L M L'M' K ~ ~~ ~o~p

1 1 2 2
1 1 2 2

1 1 2 2
(53)

Acting on Eq. (50) with the general group operator T, we obtain after some manipulations

K2dK kl k2 MDK k1 k2 MDK *
ENo

I.'M'I. 'I' r. ' M'I.gl. e Vp

(54)

It follows from the Wigner-Eckart theorem that the E(3) Clebsch-Gordan coefficient may be factorized as
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k, k, x-
0 for I.i+I.2 I. odd

1

In combination with the formula

(65)

1/v 2 for ~k, -k, ~& K&k, +k,

ku, X 1
for K= ik, —k, i

or k, +k, (66)

0 otherwise

Eq. (64) determines the E(3) Clebsch-Gordan coefficients for zero-spin representations.
Let us mention that as a by-product we have evaluated the integral over three Bessel functions:

(L,OL OSLO)
wo

-2
&'dr j~ (k, r)j~ (k, x)j~(kr) = —,'v(-f)~~' 2 ~

&& Q (-1)"(L,M L, —M
~
LO)P, (cos8,)P (cos8,}, (67)

where cos8, and cos8, are given by (62) and the
formula is valid for L, +I., + L even (both sides
vanish for L, + L, + L odd).

In all the above considerations we have com-
pletely ignored any multiplicity problem that may
be present in the reduction of the direct product
of two E(3}representations. Similarly as in the
case of the group E(2),"a twofold degeneracy ex-
ists in this reduction for E(3), related to the fact
that the two equivalent representations (k, m, ) and
(-k, -m, }are both present. This degeneracy must
be removed by introducing a supplementary label.
The method used for the E(2) group" was to con-
sider the extended group including a reflection op-
erator, which is then simply reducible. Note that
in our realization (32) the basis functions do have
definite properties with respect to the reflection
operator P, namely,

P~kLM) =(-1)' ~kLM).

Since the reduced Clebsch™Qordan coefficient
which we have calculated in (64) vanishes for I.,
+L, +L odd we find from (51) that the basis vectors
in the direct product space also have definite par-
ity:

KLM
( )

i KI.M

States transforming identically under proper E(3)
transformations, but with q= -1 under reflection,
must be constructed differently. %e shall return
to this problem in a subsequent publication.

III. EXPANSIONS OF AMPLITUDES FOR THE
SCATTERING OF NONRELATIVISTIC

SPINLESS PARTICLES

Let us now consider the scattering of spinless
particles

1+2-3+4.
Similarly as in the relativistic case, ' we can con-
sider the scattering amplitude to be a function of
the momentum of one of the particles only (in a
chosen frame of reference). This function F(k),
where k is a vector in Euclidean three-space, can
now be decomposed into irreducible components
with respect to the Euclidean group E(3) [instead
of O(3, 1), as in the relativistic case]. In this
manner we obtain formulas of "generalized" or
"two-variable" nonrelativistic partial wave analy-
sis. The actual expansions, as in the relativistic
case, depend on the frame of reference, the para-
metrization of the E(3) space, and the choice of a
basis for the representations.

%e shall first discuss the nonrelativistic kine-
matics that enables us to write the scattering am-
plitude as a function of a point in momentum space,
then derive and discuss the expansions. For sim-
plicity we restrict ourselves to elastic scattering,
when the particle masses satisfy

ml m
~

rn rn4) (69)

since this is the case of interest for potential scat-
tering. Note, however, that the kinematics would
be only slightly more complicated for general
(positive) masses.

A. Scattering Amplitude as a Function
of a Point in Momentum Space

ss = (p, —p.p, )

t~ = -(p, —p, )',
~z = (pi p pg)

p, =m, /m, ,

By analogy with the relativistically invariant
Mandelstam variables s, f, and u of Eq. (2), let us
introduce the Qalilei-invariant variables
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(the subscript E stand for "Euclidean" ). The fac-
tors p. in (70) are necessary, since Galilei trans-
formations conserve differences between velocities
rather than between momenta. It may be appro-
priate at this point to stress that the E(3) group
generating our expansions consists of rotations
and translations in momentum space, i.e., it is
actually the "homogeneous Galilei group" [and
thus the nonrelativistic limit of O(3, 1)]. The vari-
ables (70) satisfy

the scattering plane with the xz plane, we have

p, =(0, 0, k),

p, =(0, 0, -k),

p, = (k sin8„0, k cos8),

p~=(-ksin8, 0, -kcos8).

(72)

The relation between the invariant variables (70)
and the c.m. ones is

s~+ p, t~+u~ =0. (71}

2. Center-of-Mass System [Fig. l(a)]

The scattering amplitude, irrespectively of the
choice of a frame of reference, can be considered
as a function of any two of these variables. Let us
now specify the frame of reference.

ss =k'(1+ p, )',

ts = -2k'(1 —cos8),

us = -k'(1 + p,
' + 2p cos8),

z.e.,
(ss)"'
1+/,

(73)

We introduce spherical coordinates in momentum
space and write each of the momenta as P;
= (k, sin8; cosP;, k, sin8; sing;, k; cos8;). Taking

p, ~~

—p, parallel to the third axis and identifying

cos8 =1+(1+g)'
28@

Thus, we can write

F(ss, ts) =F(k, cos8) =F(p, ),

(74)

(75)

{a) 2

f X

I

l

kx
I

l

where 0 &k&~ and 0 & {9 &m are the usual c.m. en-
ergy and scattering angle, which are the spherical
coordinates of the momentum p, in (72) (the azi-
muthal angle Q, =

&f& is redundant for spinless par-
ticles, i.e., the amplitude does not depend on it).

2. Brick Wall System -of Particles 2 and 4
[Fig. 1(b)]

We introduce cylindrical coordinates (35), writ-
ing each of the momenta as

pc =(Piis cos4'~~ Itic»n&f&g~ P~z) ~

Taking —p, ~~p, parallel to the z axis, taking Oxz

as the scattering plane, and putting E, =E3 Eg
=Z„we have

(b)
q

pz =

(qadi

~ 0~ K) ~ p =(qadi 0 -q)

p, = (0, 0, -q, ), p, = (0, 0, K) . (78)

-+ Z

{c}

FIG. 1. Frames of reference. (a) Center-of-mass
frame, g) brick-wall .rame of particles 2 and 4, (c)
brick-wall frame of particles 2 and 3.

ss = q ~,
'+q, '(1+ p. )',

tE = -4q

us=-qadi —K (1 9)

q. = 2(-4P',
qadi =[sz+44(1+A) 1

(78)

Thus, we can write the scattering amplitude as a
function of the cylindrical coordinates q ~], q, of the

The subscripts of q indicate whether the component
is parallel or perpendicular to the "brick wall"
(b.w. ) identified with the xy plane. The relation to
the invariants (70) is
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E(ss, t&) =E(q. , q II) =E(p,). (79)

Formulas (73) and (77) also relate the b w . v.ari-
ables to the c.m. ones, namely,

momentum p, (the azimuthal angle III is redundant): The three frames of reference considered above
are the c-~ limit of the relativistic center-of-
mass system and the t- and u-channel brick-wa11
systems, respectively.

q~=k sin28, qII = (1+p. )kcos —,'8. (8o)
B. Expansions of Square- Integrable Scattering Amplitudes

Note that forward scattering corresponds to 8 - 0,
i.e., q -0, qI, -(1+III,)k, and backward scattering
to 6l-m, i.e., q~-k, q~~-0.

pi=(PII, 0 Pi) p3=(o o, ~Vq),

P, =(o, o, -q'), P. =(PII, o, -P.),
where

(81)

pi= „[p '+pII'(1 —u)]"',
V p,

+ IP +Pii I& V)I1+/ P, QP.

The relation between the invariants, the b.w. vari-
ables P ~~

and P» and the c.m. variables is

&rick-Wall System of Particles 2 and 3
[Eig. 1(c)]

We again introduce cylindrical coordinates and
Oxz as the scattering plane (so that sinItI; = 0, i
=1, . . . , 4), but put -p, ~~p, along the third axis and

E, =E4, E, =E,. We have

The scattering amplitude is now a function E(p)
of one of the particle three-momenta. Assuming
first that it belongs to the Hilbert space of square-
integrable functions (with respect to the invariant
measure), satisfying

F p dP„dP~ dP (86)

we can expand it in terms of unitary irreducible
representations of E(3), making use of the results
of Sec. II and of the reduction of the quasiregular
representation. "

Let us consider the individual bases separately.

1. SPhexical ExPansion and the c.m. System

oo

E(k, cos8) = Q (2l+I) r'dr A, (r)j, (kr)P, (cos8),
l=p PQ

We parametrize p, in spherical coordinates, re-
member that the azimuthal angle ItI, is redundant
[see (75)J, and expand E(p) in terms of the spheri-
cal basis (32) (setting m=0). Using the orthogonal-
ity relations (33), we have

= 4k' sin'(-', 8),

zM= p (II-It1 ) +p '(1 + u)

+2p. ~ut p'+pII'(1 —t )]'"

(82)

2

(1+ Mp. )'

X( P~' +P„'(1+v I) P~[P~'-+P (1II- W)]"'j

with

A, (r) = — k'dk
7T Jp

Setting

J Q

(87)

sin8 d8 E(k, cos8) j, (kr)P, (cos8) .

(88)

=k'(1+ ted'+2p cos8) . a, (k) = r'dr A, (r)j,(kr),
kp

(89)

E(ss, ts) =E(p. , pII) =E(p,). (83)

Let us note that formulas (82) simplify greatly for
equal masses;

Thus, we again find that the amplitude is a function
of the cylindrical coordinates P, P ~~

of a vector,
namely p

we immediately obtain an interpretation of the ex-
pansion (87). It is simply the usual partial-wave
expansion, supplemented by the representation
(89) for the O(3) partial-wave amplitude.

The square-integrability condition (86) imposes
a severe restriction on the asymptotic behavior of
the total cross section. Indeed

(-ts) =p II
= 2k sin~ 8,

q(-a@) =p~ =k cos28.
(84)

~Q ap
~E(k, cos8) ~'k'dk sin8d8 = a(k)k2dk,

QQ

p II
2k Sln28 x p II /p J. 1 s

p~- (1+p, '+2p. cos8)"', sin8«1.1+

(85)

Formulas (82) simplify also in the forward direc-
tion (for arbitrary masses):

1
a(k) ~ —,.„k' (91)

(90)

so that the total cross section must vanish more
strongly than
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F(Kz i K II)
=

with

bdb
Jt

dz A, (b, z)J, (bK „)e"~',

(92)

x dK F K, K,I, bK~I e "~'.

2. Cylindhical Expansion and the B~ick-Wall
Systems

We parametrize the amplitude F(p) using cylin-
drical coordinates as in (79) and (83) and again re-
member that the azimuthal angle Q is redundant.
We can now expand in terms of the cylindrical ba-
sis (37). Using the orthogonality relations (38),
we have

C. Expansions of Non- Square- Integrable Amplitudes

The square-integrability condition (86) imposes
conditions on the high-energy behavior of the scat-
tering amplitude that are too restrictive for most
cases of physical interest. In order to relax this
restriction we must write expansions in terms of
a class of nonunitary irreducible representations.
Although nonunitary representations of noncompact
groups, in particular E(3), have received little at
tention, the tools for generalizing the expansions
(87) and (92) (as well as the translational-basis ex-
pansion) are readily available. They are provided
by the possibility of generalizing a Fourier trans-
form to a complex Laplace transform and a Fou-
rier-Bessel transform to a Meijer transform. ""

The Meijer transform of a function f(t) of a real
variable t, with 0 &t, &t &t„ for which the integral

(93) J e-' ' If(t)l«&- (P'»)
0

(98)

The variables K I~, K are to be identified either
with q II, q of (80) or with p II, p~ of (82). Setting

converges, can be written as

1 8+i ~

1/2 I.(ts)(te)"'a(s)ds (P - P')

a(K, b) =
)t dz A(b, z)e'"~', (94)

(99)

we find that (92) is simply an eikonal expansion,
supplemented by a Fourier transform of the eiko-
nal amplitude (94). The eikonal expansion is usual-
ly written for high-energy forward scattering. Ex-
pansion (92) provides a generalization to arbitrary
angles and energies. Formulas (85) show that the
variable p II corresponds to the usual variable fig-
uring in the forward eikonal expansion. "" By the
same token q „ in (80) resembles an eikonal-type
variable for backward scattering.

The square-integrability condition (86) again re-
stricts the high-energy behavior. Indeed, we have

The inverse formula is
g/2 oo

a(s) = — K„(st)(st)"'f(t)dt.
1T $0

(100)

Above K, (z) is a Macdonald cylindrical function
and

( )
-(2/2}VI J (

/ 22)/ (101)

8

f(t) = —. a(s)e" ds (P ~ P'),
2 7T2

(102)

where J, (z) is a Bessel function.
Similarly, a Laplace transform of a function

f (t) satisfying (98) can be written as

J
K II

dK
II

dK g I F(K II ~ K ~) I

0 OO

which is satisfied if, e.g. ,

and

1F(K II i K J.) 1/2 + 2
K g~oo Kg

K II fixed

dKiIF(K II K~) I

~ 2+2 ~J
1

~ OQ K
II

(95)

(96)

(97)

a(s)= f(t)e "dt.
0

(103)

The Spherical Expansion

Using (99) we can generalize (87) to the case of
amplitudes that may increase for k-~ as fast as
exponentially. We have

Let us now rewrite the two-variable expansions of
scattering amplitudes, using the Meijer and La-
place transforms.

A more complete discussion of the convergence
conditions on the Fourier and Bessel transforms
is found in the literature. ""

We shall not discuss the expansions obtained us-
ing the translational basis (41) since they amount
simply to Fourier transforms of the amplitude. -

OQ 6+i ~
F(k, cosa)= p (2l+1) r'drB (rI)g (kIr)P, ( cso8),

1=0 8~i 00

(104)

with the inversion formula
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Setting P = 0 and r = e ""r', we find that (104) and
(105) do indeed reduce to (87) and (88), with

(r) B (
-& &&/3

)
-&(&l'/2)(l+ 1)

i~)2 ) &(»I2)a+i)e (107)

2. The Cylindrical ExPansion,

The generalization of (92) and (93) to amplitudes
that may increase as fast as exponentially when

Kg or Kii ls

F(» i &» ()) =
~8+i /+5 o

bdb dz B(b, z)IO(b» )~)e' ~',

where

1
oQ

B(b& z) = — 2» i
d»

~,

' d» i F(» i &» ~~)
77 Jp Pp

(108)

xIC, (b» „)e-"". (109)

Setting P =y =0 we recover the expansion in terms
of unitary representations, with

A(b, z) = —i[B(ib, iz) B( ib, iz)-]. - (110)

3. The Translational Expansion

For completeness let us also give the general
expansion of a scattering amplitude (that may in-
crease exponentially as a function of any component
of the relevant momentum) in terms of the transla-
tional basis. This amounts to a three-dimensional
Laplace transform

8+i ~
F(k) = B(x)e" ' "dx,

8-i~

with

B(x) = . ; F(k)e "'"dk.
((L

Q

(112)

Thus, we have derived expansions of a very gen-
eral class of scattering amplitudes, in which all
the dependence on the kinematic parameters is
contained in known special functions, provided by
the representation theory o& E(3). The dynamics
are in the expansion coefficients and the expan-

1 -2B,(r)=, . ' k'dk ~ sin8d8F(k, cos8)», (kr)P, (cos8),
7l 2gp 4 p

(105)

where

7T
1/2

g, (kr) = I„„,(kr),
(106)

», (kr) = K„„,(kr) .

sions themselves reflect the Galileian invariance
of the theory. Let us now demonstrate the con-
nection between the nonrelativistic expansions of
this paper and the previously considered expan-
sions of relativistic amplitudes [based on the
O(3, 1) group].

D. Contraction of Relativistic Expansions
to Nonrelativistic Ones

1, The SPherical System

The relativistic momentum is parametrized as

P = c'(cosha, sinha sin8 cos@, sinha sin8 sing,
sinha cos8)

= ( Ez CpR) (113)

Let us now demonstrate that the E(3)-subgroup-
type expansions obtained above are indeed the non-
relativistic limits of O(3, 1)-subgroup-type expan-
sions (obtained when properly taking the velocity of
light c-~). First of all, let us note that there are
seven nonequivalent chains of subgroups of O(3, 1)
(counting only subgroups that have invariants). "
If we use tile pl'escrlptlo11 K& =cp&& c»& [see (15)]&
we can contract the O(3, 1)-subgroup chains to
E(3) ones. Doing this it is easy to check that the
O(3, 1)DO(3) Z O(2) chain contracts to E(3) DO(3)
a O(2), i.e., the relativistic spherical system ex-
pansion (3) should go over into the nonrelativistic
one (87). Three different relativistic expansions
contract into the nonrelativistic cylindrical system
expansion (92), namely the hyperbolic expansion
(5), corresponding to O(3, 1)aO(2, 1)aO(2); the
relativistic cylindrical expansion, ' corresponding
to the reduction O(3, 1)aO(2) xO(1, 1); and finally
the horospheric expansion"" corresponding to the
reduction O(3, 1)a E(2)DO(2). The translational-
basis expansion (111)is also obtained by contrac-
tion from three different O(3, 1) expansions, cor-
responding to the reductions O(3, 1)DO(2, 1)
~ O(1, 1), O(3, 1)~O(2, 1)Z E(1), and O(3, 1)aE(2)
~ E(1)x E(1).

We shall investigate the general connection be-
tween the various O(3, 1) and E(3) basis functions
and matrix elements in a separate article. Here
let us look only at the spinless case [j, =0 in (14)]
and the spherical and hyperbolic expansions (3)
and (5). We shall consider unitary representations
only, setting o = -1+ip (p real) in (3) and (5) and
l = ——', +iq (q real) in (5). Comparing Eqs. (14) and
(9) for the Casimir operators of O(3, 1) and E(3),
we see that (14) goes into (9) if we set j,= m, and
p=cr (c-~) (we also set K=cp, as usual).

Let us now establish the connection between the
basis functions. For previous investigations along
similar series see Refs. 11, 27, and 28.
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(we take the mass m=1). The nonrelativistic limit
is obtained by setting a = k/c (c-~); indeed we
have

Ip/2I =c sinha-ck/c =k
p =cr, a=k/c, pa =kr,

c-~, 0 &k&~.
(114)

Thus, the O(3, 1) basis functions must go into the
E(3) ones, if we set

E„=c'cosha- c'(1+k'/2c') =c'+-,'k'.
We now write the energy-dependent part of the ba-
sis function in (3) as

r(ip —l) (sinha)"' '""' r(ip —l) 2'(21/)"21'(i+1), (cosha+tsinha)"' 'P ' (115)

In the limit (114) we can replace (cosha +i sinha) ' "'P with e'""' (for c-~) and we obtain an integral rep-
resentation for a Bessel function. Finally,

I'(iP) 1 ~ f 2
1/2 P 1/2 + 1 p (cosh-a) - i — j, (kr) .

m

Since the angular part of the basis function
P, (cos8) [or more generally Y, (8, Q)] does not
change under contraction, we find that the O(3, 1)
z O(3) aO(2) expansion (3) does indeed go over into
the E(3)aO(3)~O(2) one (87).

Z. The IJyPexboli c System

The relativistic momentum is parametrized as

(120)

p=cr, n =«,/c, P=«~, /c,

Q' =5c, c
(121)

Thus, the O(3, 1)~O(2, 1)&O(2) ba, sis functions
should go into the E(3)DE(2)DO(2) ones if we set

p = c2(coshn coshp, coshc2 sinhp cosp,

cosha sinhP sing, sinha),

and we can write the nonrelativistic one as

(E, p) = (E, «2 cosf, K 2 sing, «),
with

(117)

(118)

Indeed, the hyperbolic-system basis functions
for unitary representations of O(3, 1) are

I'(—', +i(p+q)) I"(—,'+i(p —q))
21/I'(I +ip)

1 P 1/2+ j2 (TtanhQ )P 1/2+ /2(cosh p ) '
cosh+

E =-, («2'+«, ')

(we set m=1). The limit is obtained by setting c2

=«~/c and p=«2/c, and then taking c-~.
The Casimir operator of the O(2, 1) subgroup is

Similarly as in (115) we find that

P „,+ 1,(cosh p) -= Z, (b K 2) .
C

qg=K b

L2'-K, '-K2'=l(l+1), I=-—,'+iq. (119)

Setting l+ —,
' =iq =icb, we find that for c-~ (119)

goes into the Casimir operator for E(2)

Writing the u-dependent part of (122) in terms of
a combination of two hypergeometric functions and
taking the limit c-~ term by term, we find

(Ii )1/2 (2 + (P+ q)) (2+ (P q)) P-iP (+ta~+) ex [ + i(r 2 52)1/2 ]2111'(1+i p) cosh' '"+' (123)

Thus the hyperbolic expansion (5) does indeed go over into the cylindrical one (92).
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E. Comparison Between Relativistic
and Nonrelativistic Expansions

As is to be expected, the variety of expansions
provided by the group E(3) for nonrelativistic scat-
tering amplitudes is much less than provided by
O(3, 1) for the relativistic case. We have noticed
that the seven subgroup-type expansions of O(3, 1)
contract to three E(3) ones. Of particular physical
significance is the fact that both the O(3, 1)DO(2, 1)
a O(2) expansion, in which the O(2, 1) subgroup
provides a Regge-pole expansion, and the O(3, 1)
a E(2)DO(2) expansion, in which the E(2) sub-
group provides a relativistic eikonal expansion,
contract to the nonrelativistic eikonal expansion
corresponding to E(3)a E(2) x T ~ ~ O(2) x T ~.
Thus complex angular momentum theory seems to
have a fundamental group-theoretical foundation in
the relativistic case, but not in the nonrelativistic
case,"where similar group-theoretical arguments
lead to the eikonal expansion. It is paradoxical
that complex angular momentum was first intro-
duced for potential scattering, ""but it should be
remembered that its most fruitful applications and
further developments lie completely within the rel-
ativistic field of elementary-particle interactions.

IV. GENERAL PROPERTIES OF SCATTERING
AMPLITUDES, INCORPORATED IN THE TWO-

VARIABLE EXPANSIONS

For "reasonable" potentials the partial-wave
amplitude behaves as

a, (k) ~ ic,k", (127)

where c, is a real constant. " We have"

Ww
4(kr) = 2(.i~(I )

(kr)'
2

I"(I + 2)x 1+Z~, (, )
(-,'kr)'"

Substituting (128) into (124) we find that we obtain
the correct threshold behavior (127) if the Galilei
amplitudes B,(r) satisfy the constraints

(128)

g, (e'™'kr) = e' "g, (kr) (130)

would imply a too-simplistic symmetry property,

a, (-k) = e"' 'a, (k) .

2n =0, 2, . . . , l —1 (or l) . (129)

This will be satisfied if, e.g. , B,(r)r """-0for
Rer ~ P, and B,(r) has no singularities in

the half-plane Rer ~ P.
Let us note here that formula (124) cannot repre-

sent the partial-wave amplitude in the entire com-
plex k plane, since the property

A. The Spherical Expansion

Threshold Behavior

We write the partial-wave amplitude as

a, (k(= f r CrB(r)t, (Br), , (124)

with

Let us now consider the obtained two-variable
expansions of interest, i.e., the spherical expan-
sion (104) and the cylindrical expansion (108), and

investigate their behavior in various physically in-
teresting cases. We again consider the two cases
separately.

g, (kr) ~ [ e""+(-1)"'e "].
1

ar 2k' (131)

Let us be inspired by Regge-pole theory and as-
sume that B,(r) is an analytic function in the com-
plex r plane with a finite number of simple poles
in a strip 0& P'& Rer & P. We can then shift the in-
tegration path in (124) to the left and write a, (k) as
a sum over the pole contributions plus a "back-
ground" integral over the unitary representations:

2. AsymPtotic Behavio~

Let us investigate the expansion (124) for k-~.
So far the Galilei amplitude B,(r) is an unknown

function and we can make various assumptions
about it. We have

B,(r) =,. k'dk a, (k)~, (kr),ri Jo
(125) a, (k) =2mi Qr„'g, (kr„)P, (r„)

where the spherical Bessel functions g, (kr) and

z, (kr ) are given by (106).
Let us now consider the limit k- 0. We have

(126)

This immediately shows that for k- 0 all partial-
wave amplitudes a, (k) with /v 0 vanish correctly
and only the s wave (l =0) survives (as it should).

+f co

+ r 'dr B,(r)&, (kr),
j oo

(132)

a, (k) ~ wi r,P, (r,) —e""0,
k

where r„ is the position of the nth pole and P, (r„)
is the residue of B,(r) at r„It follow. s from (131)
that the pole r, furthest to the right will dominate
for k-~ and we find
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i.e., the partial-wave amplitude increases asymp-
totically as k- ~ (we have 0& Rer, & P).

Alternatively, the high-energy behavior of a) (k)
may be generated by the specific form of B,(r).
Indeed, if we make the simple ansatz

(a+CO)(8+ iN)

2k k+k,
(-a+no) (8+ i N)—

+ (-1)'
0

~8+i ~
g (k) —— dy I

e&~+~p)" y( I))+~ & ))+ "0&"]2k & 8+iN

B, (r) =Ar-'-' (133) (138)

(A and B are constants), we find" that a, (k) has a
simple power behavior

Similarly we define

p 8-iM
(139)

m'l

A I(B+2) k (134)
The ansatz

8+iN & 8+ i o

a, (k)= J .+ f +J dra, (rr)(, (kr).
8-i~ ~8-iM 8+iN

(135)

We take M and N large but finite, disregard the
integral over the finite region (since it cannot give
rise to dynamical singularities), and replace the
integrands in the other two integrals by the corre-
sponding asymptotics. For definiteness, let us
consider

8+i ~
a,"(k) = r'ChB, (r)g, (kr).

8+ iN
(138)

We replace g, ( rk) according to (131) and make an
ansatz for the Galilei amplitude:

3. Breit-5'igner Resonances and Other
Dynamical Singulari Nes

I et us assume that the formula (124) can be ex-
tended to at least part of the complex k plane and
consider mechanisms producing singularities in
the k plane. Clearly a singularity of a, (k) will cor-
respond to the diverging of the integral represen-
tation (124). This can occur for one of two rea-
sons. The first is that a singularity, e.g. , a sec-
ond-order pole of the integrand, can lie on the in-
tegration path for ~x~ finite and may cause a diver-
gence. The second is that the asymptotic behavior
of the integrand for Imr- a~, Rer =P fixed, may
be such that the integral diverges. It should be
noted that g, (kr) is an entire function of r Hence, .
the only part of the integrand that can have a sin-
gularity for ~r

~

finite is the Galilei amplitude
B,(x). Since this does not depend on the energy k,
it cannot give rise to physically meaningful singu-
larities.

Now let us consider the integrand for r =P+io,
o-+~. We split the integral (124) into three parts,
setting B. The Cy1indrieal Expansion

Let us now investigate the eikonal-type expansion
(108).

We have

2. I.ohio-Energy Behavior

I,(~))b) ~ 1+(2~)lb)'
K

)(
&~O

e ~ ~ 1+Khz.
K~Z~0

(141)

Thus, nothing of particular interest happens to the
expansion (108) in the low-energy limit. Anyhow,
the expansion is suitable for treating scattering at
high energies.

Z. AsymPtotic Behavior

B,(r) ~ —e'0" (Imk, & 0)a r

-Imr~~ r
Rer =8

will lead to a term similar to (138).
Thus a quite simple ansatz on the behavior of

B,(r) for Imx-+~ leads to the appearance of sim-
ple poles in the partial-wave amplitude a, (k).
Clearly the conditions on the imaginary part of k,
allow for bound states, resonances, and antibound
states. "

Several comments are in order here. The first
is that the exponent k, in (137) and (140) deter-
mines the position of the pole in the energy plane,
but not its residue. The second is that the expo-
nential behavior in our ansatz does not have to be
the leading asymptotic term for Imr-+~, and that
more singular terms may be present. Examples of
such behavior will be presented in a forthcoming
paper. ' The mechanism for generating dynamic
singularities, proposed above, is completely anal-
ogous to that generating Begge poles" in the rela-
tivistic O(3, 1)DO(2, 1)a O(2) expansions (5).

B,(r) —e'o" Imk, & 0yr
Imr
Rer =8

We have

(137) For ~~~- we have

~ao 27TK )(b J
(142)
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Let us consider the consequences of various as-
sumptions concerning the Galilei amplitude B(b, z).
First, assume that B(b, z) is an analytic function
of b in the strip 0 & P' & Heb & P with a simple pole

at 5 =b p. We can then shift the b-integration path
in (108) to the left and find that for /((, —~ the pole
term will dominate, so that

bp K
ll y+~

F(z„z(,) ~ i(2wb, )"' „, Bes[B(b„z)]e '".
K )

K &= const

Similarly, if B(b, z) is an analytic function of z for Bez & y with a simple pole at 0& z, & y,
8+ iao

F(w w ii)
~ 2wi e'&'o ( bdb Hes[B(b, zo)]io(b/((i) ~

K ~ 8 ioo
K

Il
—const

(143)

(144)

Thus, the simplest analyticity assumptions again lead to exponentially increasing amplitudes. If the resi-
due of B(b, z) at the pole in one variable is an analytic function of the other variable, with a pole some-
where in the analyticity strip, we obtain

ebb bSKOK g
F(/(i /( ii) 2w(2wbo)'" i/, Hes[B(b, z)]

K ~-+ oo
bp ~ Z Zp

(145)

wp(~, )/(, (' ("~)

( ~, b)=— (146)

where n(/(, ) and P(/(~) are arbitrary functions (the
Begge trajectory and residue) In or.der to obtain
this behavior, let us define the eikonal partial
amplitude as

The variables /(, and K(~ are given by (78) for the
"backward" brick-wall system and by (82} for the
"forward" one.

More realistic asymptotic behavior is the Regge
asymptotic s:

We have

a"(b, z,)-=Jf

~[K ~-f(b) ][y+ iS]

f(b) —/(,

dz B(b, z)e"~*

(150)

Thus the term (149) in the Galilei amplitude con-
tributes a simple pole (150) to a(b, /(, ) and the po-
sition of this pole is determined by the function
f(b). In turn, according to (143), this pole would
give rise to the asymptotic behavior

(/ y+icO

a(b, /(~) =
Jl dz B(b, z)e' ~'.

y ~ioo
(147) F(~ /( ) ~ e

1 -1

( )1/2
K

ll
+M K

= const

(151)

Now if we set"

p(, )22~«i)
a(b, /(, ) =i . , ',b, („)„[I (c((~,)+I)]',

sl,n7TCV (K g)5

(148)

we obtain precisely the expression (146).

where b = f '(/(~) is the inverse function to /(

=f (b)
The contribution to a(b, z ) from the other end of

the integration path can be considered similarly.
We can also rewrite (108}in a different form,

setting

8. Dynamic Singular ties
a(z /(b) =

I bdb B(b )zI (bb/()((.
8 ioo

(152)

It is again very easy to point out a mechanism
leading to dynamic singularities in the variables
/(, or /((~ Consider for instance the integral (147).
Singularities of B(b, z} for

l
z

l
finite could at most

generate nonphysical fixed singularities of a(b, /(~).
Let us however consider the asymptotic behavior
of the Qalilei amplitudes. Let us make the ansatz

Using the asymptotic formula (142) we define

p 8+ i ~

a//(z, /( b)=,/, v b db B(b, z)(e' b'+ie' (' ) .
&B+$N

(153}

Clearly the ansatz

B(b, z) ~ e ' "', Imf(b)&0.
Imz~~
Rez= y

(149) B(b, z) ~ e~(')', Imf (z) &0
Im b~~
Re&=8

(154)
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leads to dynamical poles in a(z, K „), since

1
&K(~ Kti)=

(2mg ~]~

e C. ~
]] +f(8) l (8+ &&)

f(Z)+K „

tv{.) -K ~]3{8+~~)
+& . (155)

K
((

— Z

All considerations that we have performed for
the nonunitary expansions can be performed just
as well for the unitary ones (8 = y =0) but we shall
not go into that here.

V. CONCLUSIONS

The main content of this article is the presenta-
tion of two-variable expansions of nonrelativistic
scattering amplitudes in terms of basis functions
of representations of the group E(3). We have
presented all three expansions, corresponding to
subgroup reductions of E(3), and consider two of
them to be of particular physical interest. These
are the spherical expansions corresponding to the
E(3)DO(3) a O(2) reduction, that is related to the
usual partial-wave expansion, and the cylindrical
expansions corresponding to the E(3) D E(2) x T
zO(2) xT reduction, related to the usual eikonal
expansion. We present expansions in terms of uni-
tary representations for square-integrable ampli-
tudes [see (87), (88) and (92), (93)] and also in
terms of nonunitary representations for asymptot-
ically growing amplitudes [see (104—(109)]. In the
present paper we concentrate mainly on formal as-
pects of the theory, in particular various mathe-
matical properties of the expansions, the Clebsch-
Gordan coefficients of E(3), etc. We do, however,
consider some physical properties, in particular
the appearance of dynamical singularities of the
amplitudes —like Breit-Wigner resonances, bound
states, etc. We also discuss the threshold behav-
ior and the mechanisms for generating high-energy
behavior of various types —exponentially growing
or decreasing, power-bounded, Regge asymptotics,
etc.

We are fully aware of the fact that the usual dy-
namic theory of nonrelativistic scattering, based
on the use of a Schrodinger equation (or some oth-
er equation, e.g. , the Lippmann-Schwinger one)
with a definite potential, is simpler and more
straightforward than a scattering theory based on
Qalilei amplitudes. However, the concept of a, po-
tential does not generalize in a simple manner to
the relativistic case, whereas Qalilei amplitudes
not only do this, but are actually obtained as c-~
limits of I orentz amplitudes.

Besides providing insight into the case of rela-
tivistic scattering of elementary particles, the
Galilei expansions presented in this article have
their own intrinsic mathematical and physical in-

terest. From the mathematical point of view they
constitute a further development of the represen-
tation theory of E(3) in various bases, in particu-
lar harmonic analysis on this group (or rather on
the corresponding homogeneous manifold) both for
square-integrable and for considerably more gen-
eral functions (use is made of nonunitary infinite-
dimensional representations). From the physical
point of view the Qalilei expansions can be used to
help separate variables in the Schrodinger equation
and to provide representations of amplitudes in the
case when the Schrodinger equation is not solvable.
What is more, it is well known that very few solv-
able potentials exist in quantum mechanics (even
for the S wave, still more so for all waves) and
also that it is very difficult to construct potentials,
providing scattering amplitudes with definite re-
quired properties. " In a subsequent article" we
demonstrate simple Qalilei amplitudes that gener-
ate partial-wave amplitudes a, (k) having singular-
ities of required types at required positions (e.g. ,
Breit-Wigner resonances), correct threshold be-
havior, reasonable asymptotic behavior, etc.

Finally, let us mention that one could attempt to
derive equations directly for the Qalilei ampli-
tudes, e.g. , A, (r) in (87) and (88). Such an ap-
proach would be similar to the variable-phase
method'4 that provides equations for the partial-
wave amplitudes a, (k). These equations are non-
linear, but are still very useful in many applica-
tions. We have so far made no progress in this
direction.

An important feature is that, contrary to the rel-
ativistic case, the E(3) group does not provide a
framework for complex angular momentum theory,
since E(3) does not have an O(2, 1) subgroup. In
particular, the nonrelativistic limit of the Regge
expansion is the eikonal expansion, rather than
the Sommerfeld-Watson transform of the partial-
wave expansion. The absence of a group-theoretic
motivation for Regge-pole theory in nonrelativistic
scattering, while demonstrated clearly in our ap-
proach, actually has deeper roots. Indeed for rel-
ativistic scattering the Begge-pole expansion can
be obtained by performing crossed-channel partial-
wave analysis, ' in which O(2, 1) makes its appear-
ance since "negative mass squared" states [with t
=(p, —P,)'& 0] are present in the direct product of
two positive mass squared single-particle states
transforming according to irreducible unitary rep-
resentations of the Poincare group (one in the ini-
tial state, one in the final one and hence corre-
sponding to negative energy). A similar direct
product of representations of the Qalilei group will
contain zero-mass representations, corresponding
to an E(2) little group, but not to an O(2, 1) group. "

An application of the E(3) expansions to potential
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scattering will be published separately. " There we
consider further properties of the Galilei ampli-
tudes B,(r) and B(b, z); in particular we study their
behavior for various specific potentials. We also
present formulas for the Galilei amplitude in the
first Born approximation for arbitrary potentials.
Interestingly, for the spherical expansions these
involve the Clebsch-Gordan coefficients for E(3).

We also plan to give a more comprehensive
treatment of the representation theory of the
group E(3) in different bases and particularly to
give a complete treatment of the Clebsch-Gordan
problem. In this connection we would like to men-
tion that the E(3) Clebsch-Gordan coefficients have
been obtained as a limit of the O(4) coefficients"
and have also been considered using different
techniques. "

Finally let us mention that our main aim is to

gain a better understanding of the connection be-
tween the Galilei amplitudes and the potential and
of further general properties of these amplitudes.
We will then return to the relativistic case of
O(3, l) expansions, where no potential exists, but
where scattering can be directly treated and data
directly analyzed in terms of the corresponding
Lorentz amplitudes. In this connection it will also
be of some interest to consider the non-subgroup-
type E(3) expansions, which were not discussed at
all in this article. '
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The formalism for singular cores previously introduced is investigated numerically for a simple model.
Calculations of three-particle binding energies and the analog of N-d scattering for this model demon-
strate the practicality of the earlier theoretical development.

I ~ INTRODUCTION

The first paper of this series discussed a new
generalization of the three-particle formalism to
include two-body interactions characterized by a
hard core or by a boundary condition on the wave
function (BCM).' Specific questions such as
uniqueness and three-body unitarity were inves-
tigated in some detail at that time. The present
article is concerned with a numerical investiga-
tion of the formalism for a simple model. Cal-
culations of three-particle binding energies and
the analog of N-d elastic scattering within the
context of this model demonstrate the practicality
of the earlier theoretical development for the
treatment of singular cores.

The principal motivation for this development
is the versatility afforded by being able to utilize
this additional class of interactions in the three-
body problem. For example, calculations to date
in the three-nucleon system with realistic inter-
actions have been almost exclusively restricted
to soft-core models, the single exception being
the long and difficult variational calculation on
the Hamada-Johnston hard core by Delves, gt g).'
The results of these computations have generated
some doubt as to the ability of such models to fit
the experimental data. For example, it appears
that any soft-core model which fits the two-nucle-
on phase shifts reasonably well will underbind the

triton by about 2 MeV. A significant discrepancy
also appears to exist in the case of the 'He charge
form factor' (for a more complete discussion
see SCI). More recently, the present author has
generalized the boundary-condition approach
to provide a complete phenomenology of three-
particle final states. ' The model discussed be-
low may also be regarded as a first approxima-
tion to this general scheme, and hence has a sig-
nificance quite apart from singular cores per se.

We begin in Sbc. II with a description of our
model and the relevant integral equation to be
solved. We also take this opportunity to present
simplified equations for the general case consid-
ered in SCI; these formulas are germane to ap-
plications of the formalism with realistic inter-
actions. In Sec. III we introduce a numerical
technique which is particularly advantageous for
solving integral equations of a certain class; the
method is illustrated by means of an exactly sol-
uble example. Numerical results for our model
are presented in Sec. IV, which concludes with a
discussion of these results and implications for
future calculations w'ith our formalism.

II. A SIMPLE MODEL

We shall consider a model in which three iden-
tical spinless particles of mass Minteract via
the BCM alone (no potentials external to the core)
and only in relative s waves. If c denotes the core


