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X,= sf"' —"

1
(8 f82/8 f2) (838 f/83f) + 1/8 f

4These limits have been discussed and studied in the
dual resonance model by C. E. DeTar and J. H. leis,
Phys. Rev. D 4, 3141 (1971).

~Since the behavior of the amplitude is less specified,
it is generally more difficult to rigorously exclude
"nonsense" helicity singularities in limits like (2.4)
with few variables asymptotic when they do not also
occur in the Regge limits. These would be peculiar
helicity singularities whose location differed from
that of a given angular momentum singularity by an
integer, but do not occur in the part of the amplitude
with the angular momentum singularity.

6The criterion A, » 0 for an helicity limit being inside

the physical region has been emphasized by Abarbanel
and Schwimmer (Ref. 1). For a nice presentation of
kinematics in standard notation, see M. N. Misheloff,
Phys. Rev. 184, 1732 (1969).
Note that A, (tf, t&, t&)» 0, only if all t; have the same
sim. Then, given, say, t2 andt3, A, ~ 0 for

l~tg -~ts I
= it(I —l~&2+~tsl .

' From Eq. (2.12) one sees that the triple-Regge limit
(s2, s3, s23 ~) is obtained for fixed y& and y3, whereas,
the Regge-helicity limit {s2,s3, s23 fixed) is obtained
for p2 and p3 varying with sf~/sf and s3f/sf. Thus,
depending on the relative orientation of the states on

. either side of v sf, either one or the other limit is ob-
tained inside the physical region.

f9A. Patrascioiu, MIT report (unpublished).
C cannot be a constant since the coefficient of s fg/sf
in (2.13) can be made arbitrarily large for A, » 0 by
scaling all the t& to large values.
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We add to the usual o. model a (3*,3) + (3, 3~) term which is bilinear in the scalar-meson fields and

study the behavior of the tree-approximation solutions as the explicit symmetry breaking is turned off.
We find that both c = —~and c 0 occur for the same mass spectrum, 0-8 mixing, and E~/I"„.
Solutions with different c values approach the symmetry limit differently, but in this limit one can
smoothly reach either a Goldstone pseudoscalar octet, or a symmetric vacuum, or neither for both
values of c. No clear indication is found that solutions are near a critical value of the mass parameter.

I. INTRODUCTION

The assumption that expansions in symmetry-
breaking parameters exist provides a basis for
study of approximate symmetries of the strong-
interaction Hamiltonian. For systems whose un-
derlying symmetry is chiral SU(3) xSU(3), ' the
question of the nature of the symmetry limit and
the existence of expansions in powers of symme-
try-breaking parameters about such a limit is
complicated by the Goldstone phenomenon' where
the solutions of the symmetric theory do not ex-
hibit the full symmetry of the Hamiltonian. Dash-
en' and Dashen and %einstein' developed chiral-

symmetry-breaking expansions and systematically
exploited the technique in deriving a number of
correlations among symmetry-breaking effects.
Li and Pagels' subsequently showed that Gold-
stone-boson intermediate states can give rise to
singularities in the symmetry limit, thus invali-
dating many attempts to extrapolate "soft pion"
theorems to the pion mass shell. In a study of La-
grangian models solved in the tree-graph approxi-
mation, Carruthers and Haymaker' noticed a dif-
ferent phenomenon which has the same negative
implication for expansions about a Goldstone sym-
metry solution. They found that vacuum expecta-
tion values in the v model' are multivalued func-
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tions of the Lagrangian symmetry-breaking pa-
rameters and that the power-series expansion of
their solution had a radius of convergence much
smaller than the value of the SU(3) &&SU(3)-break-
ing parameter needed to produce correct pseudo-
scalar masses.

Subsequent work on Lagrangian models has clar-
ified the nature of the singularities. "'" Car-
ruthers and Haymaker" have suggested pursuing
the idea that the n-point functions are analytic
functions of the breaking parameters in order to
extract model-independent results. The effects of
single-loop diagrams on the tree-approximation
parameters have also been studied and found to be
small. " In this connection, single-loop diagrams
in the SU(2) xSU(2) c model have been shown to be
analytic in the symmetry limit, ' indicating that
only higher-order loop corrections contribute to
the nonanalytic Li-Pagels' behavior near the Gold-
stone limit. The singularities of the tree approxi-
mation itself may still be a problem, of course.

In this work, we extend the study of one- and
two-point functions as multivalued functions of the
chiral-symmetry-breaking parameters. We stay
within the tree approximation and push the 0 model
further to include breaking terms in the Lagran-
gian which are bilinear in the basis fields [though
still transforming as P =+, I= Y=O members of a
(3, 3*)+(3*,3) representation"'"I. Since the mod-
el with bilinear breaking terms is renormalizable, "
loop corrections could be calculated in principle.
However, the tree-approximation solutions them-
selves are varied and complex enough to discour-
age any idea of systematically evaluating loop ef-
fects. We look closely at the numerous tree-ap-
proximation solutions of this more complicated
model to see what features, if any, are common
to all solutions of both models.

In the following section, we review and extend
the work on the v model with linear (3*, 3) +(3, 3*)
breaking. In Sec. III we introduce the bilinear
term and analyze the w'ay the solutions to this
model approach the SU(3) xSU(3)-symmetry limit.
In Sec. IV, we summarize and discuss the impli-
cations of our results. The Appendix covers the
procedure for obtaining solutions and includes nec-
essary definitions and formulas.

where u; and v; are, respectively, scalar and
pseudoscalar fields which belong to a (3*,3)
+(3, 3*) representation of SU(3) xSU(3). The in-
variants I„ I,', and I, are defined in the Appendix.
Predictions of this model' and of its generaliza-
tions" have been extensively studied. In addition,
the analytic structure of the solutions as functions
of 5 and c has been examined, and those symmetry
limits have been determined which can be reached
smoothly from solutions fitted to physical parame-
ters, such as pseudoscalar masses and one of the
I= F=0 members of the scalar nonet. " The indi-
cations are'" that the linear model can connect
smoothly only to the "normal" symmetry limit,
8 =0, (u, ) =0, (u, ) =0, and all masses nonzero
degenerate, ox to the Goldstone pseudoscalar octet
symmetry limit (u, ) x 0, b = 0, (u, ) =0, pseudo-
scalar octet masses=0, m„0, and the scalar
nonet masses degenerate. We review this situation
now and comment on the observation" that one so-
lution is near a "critical point" in the parameter n.

The most reliable experimental meson informa-
tion is, of course, the pseudoscalar masses. The
pseudoscalar mass-squared matrix m', , =8'2/
Bv;Bv, , after diagonalization in the 0-8 sector,
provides four equations (see Appendix) for the four
quantities

(0/u, /0)
~2 (0Ju, )0&

'

x, =2m 4+'oX (p1+2b'),

x, =4M6P~„

~p ( u o)physical '

In particular, m„', m~', andm„'+m„p' enable
one to express the latter three parameters, x„x„
and x„ in terms of b~. The quantity m „'—m „'
then gives essentially" a quadratic equation for b.
We label the solutions to this equation b(physical)
-=b~. A set of values of x„x„and x, are then
found for each bp, but the value of Ap =(u, )p„„„„,
for the physical masses cannot be determined sep-
arately from the coefficients of the invariants
without additional input, such as I'„ to set the
scale of the vacuum-breaking effects. " The nec-
essary conditions for stability, 82/8u 0

= 0 and BZ/
~zL8 = 0~ are

H. LINEAR SYMMETRY BREAKING

In this section we shall review the tree-approxi-
mation solutions to the linear o model with linear
(3, 3*)+(3*,3) breaking. ' The Lagrangian density
is

—=x, +x,(l —b')+-', x,(1 +Gb' —2b'),

5ac = M2b[x, —x, (1 +b)+2x, (1 —b +b')j,

(3)

2 = —p(8 puiB pul +8 ~viB pvi) —AI~ —A ( I~)
—PI,' —yI~+ba(u, +cus),

respectively. Equations (3) and (4) yield values for
Ba/Ap and c for each bp value. For the scalar
mass matrix 8'g/Bu;Bu& =M';&, the values of M» '

+N
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TABLE I. Solutions to linear-breaking model. Input masses are m~ =-0.019, mE ——0.246,
m„=3.01, and m„i =0.917. All masses are in GeV.

tan e~ m, '+m, 7 ' tan os

-0.218

—0.352

-1,30

0.902 0.725

0.906 0.888 0,052

0.228

1.70
1.40
1.70
1.40

1.140
1.050
1.225
1.095

0.630
0.550
0.456
0.440

0.955
0.682
1.290
1.146

These are input values. Both c& values go with each M, +M~ i value.

=sV/su. . .' and M, ' =e'Z/su. . .,' are predicted
for each b~ solution. The isoscalar- and scalar-
nonet masses squared, M, ' and M, ', are deter-
mined, and the value of one or of a combination of
the two assumed in order to separate a and n'.
The latter information is necessary to study the
behavior of the solutions as functions of b and/or
c. For each of several reasonable values of M, '
+M, ', the two solutions of the model which cor-
respond to the pseudoscalar mass values (in units
of GeV' always unless specified otherwise) m, '
=0.019, rn~' =0.246, m „'=0.301, and rn „~'=0.917
are shown in Table I. The solutions differ in some
details, but the features that c= —Z2 (near the
SU(2) X SU(2)-invariant Hamiltonian) and that b~ is
small and negative (small vacuum breaking rela-
tive to chiral breaking) are common to both. We
are primarily interested in following the solutions
as functions of b in the region around b(physical)
—= 5~ down to 5 = 0, and we shall keep c = c phys&pa& for
this study. ' We ask whether or not the physical
solution connects smoothly to a symmetric limit
as 5- 0, and, if so, what the character of the
symmetric solution is. A reasonable criterion of
"smoothness" was presented by Carruthers and
Haymaker, ' who require that all masses squared
remain positive (a no-ghost or stability criterion)

and that no singularities of X(b), b(5), or masses
are encountered in the path 5-0. We note that the
mass positivity requirement usually implies that
no singularities occur, since singularities are
generally accompanied by a zero of M, or M, . '

The actual procedure we use is dictated by cal-
culational convenience. We study A., 5, and mass-
es squared as functions of b =b(5)=—(u, ) /l2 (u, )
(with x„o., o. 'A~', x„x„and c fixed) in the
neighborhood of b~ =b(5~). The results, however,
are plotted as A =(u, ) vs b, since the behavior is
more clearly shown in this way. In Figs. 1 and 2

we show the dependence of the vacuum expectation
values A.

-=(u, ) on the Hamiltonian symmetry-
breaking parameter, 5, for the solutions b~
= -0.218 and b~ = -0.352, respectively. 'The sca-
lar-mass values used are such that M, '+M, ~'

= 1.7 GeV', a convenient input combinetion for
computational purposes. Both solutions have the
same character, that is, they connect smoothly to

(u, ) v 0, (u, ) = 0 Goldstone pseudoscalar-octet-
symmetry limits as 5- 0. The one b~= -0.218
yields M, = 630 MeV and M, =1140 MeV; the 6~
=-0.352 yields M, =456 MeV andM, =1204 MeV.
However, both solutions also exhibit singularities
at negative 5 values for which

~
b ~.,;.«i~;~, & b(physi-

cal), thus prohibiting a power-series expansion
about 5 =0 from reaching b(physical). The singu-
larity occurs when M„=0.' These solutions have
identical features to the solution studied by Car-
ruthers and Haymaker' for the model with a. =0.

.S

,6

4 s

l8

I.O

bp * -.352

Sp»- .I87

-.05 .2

FIG. 1. Linear-breaking case b&
———0.218, M, + M, ~

= 1.7 GeV2 for A, vs 6 region including physical point,
symmetry point, and singularity nearest symmetry point.
A, is dimensionless and 0 is actually ha/A& in units of
GeV2 so 5& =10m 2

.4

-.05 .2
FIG. 2. Case b& = —0.352, M~ + M, , = 1.7 GeV .
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We have chosen to examine the details of both so-
lutions because the only argument against the bp
=-0.352 solution at this stage is its somewhat
low- K -mass prediction of 725 Me V and, with the
input combination M,'+M, ' =1.7 GeV', the low
value of M, . It is, however, not clear whether or
not one should try to compare to better than 100-
200 MeV with the illusive scalar-mass spectrum.
An additional reason for treating this solution is
the sensitivity of the bp values to the choice of av-
erage kaon mass, as pointed out by Chan and Hay-
maker. "

Let us now choose several different M,'+M, '
values to study the sensitivity of the conclusions
about the nature of the symmetry limit to the val-
ues of the scalar masses. The value M, '+M, '
=2.0 GeV' yields the same essential features as
shown in Figs. 1 and 2, and no conclusions are
altered. However, the choice M, '+M, ' =1.4
GeV' leads to new behavior for the bp = -0.218 so-
lution for which M, = 552 MeV and M, .= 1046 MeV,
but the same behavior as before for the solution
b p

= 0 352& for which M, = 440 MeV and M, i = 1095
MeV. The curves are shown in Figs. 3 and 4 for
b p

= -0.218 and b p
= -0.352, respectively. The for-

mer solution (b~ = -0.218, Fig. 3) has changed
character, now connecting to a normal ((u, ) =0,
(u, ) =0 as 5- 0) solution with degenerate pseudo-
scalar and scalar nonets. A continuation from 5
=0 to 5 = 5p is blocked by a singularity, at which
M, =0,' at 5=0.007. The details of this region are

shown in the inset in Fig. 3. The effect exhibited
is essentially that pointed out by Olshansky. '
There is a slight difference here, since we re-
evaluate all of the coefficients for the new values
M, and M, rather than view the effect as being
dependent on o. alone. This phenomenon has been
likened to a "critical point" in the solution to the
theory. " The suggestion was made that model-
independent results might be obtained by hypothe-
sizing that one is near a critical point in the me-
son mass parameter n and then applying Wilson's
renormalization-group techniques. "

However, we wish to point out that the other so-
lution (see Fig. 4) for which b~=-0. 352 and c
= -1.32, does not exhibit this critical-point effect,
and retains the Goldstone-limit character shown
in Figs. 2 and 4, for M, '+ M, ' values in the
range 1.2 &M, '+M, '(2.0 GeV', with no accom-
panying transition from Goldstone to normal sym-
metry limit. The transition will occur for this so-
lution, just as for the solution bp = -0.218, c
= -1.30, but it occurs for a very low value of the
scalar mass combination M, '+M, '. Only the bp
=-0.218 solution, therefore, provides support for
the notion that the meson system is close to a
transition from a Goldstone solution to a normal
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FIG. 3. Case bp = —0.218, M~ +M~ = 1.4 GeV . FIG. 4. Case bp = -0.352, M, '+ M,. = 1.4 GeV .
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solution, the latter separated by singularities
from the physical values of masses and couplings.
We shall return to this point in the next section,
where we discuss the effects which arise when bi-
linear chiral-symmetry-breaking terms are added
to the Lagrangian, Eq. (1).

III. BILINEAR (3, 3*)+(3*,3)-BREAKING EFFECTS

A Lagrangian with exactly the same SU(3) &&SU(3)

structure as the original o model, Eq. (1), is ob-

tained by adding a term 5d(U, +cU,), bilinear in

the fields u; and v„which is parallel in SU(3)

space to the bilinear breaking term of Eq. (1). The

scalar quantities U, and U, are members of the

(3, 3*)+(3",3) component in the reduction of the

product of the basic multiplet with itself. Explicit-

ly we have
8

U, =4('-, )"'(u,' —v,') —2(~)'" Z (u —v ),
(5)

U~=-4(~)'~ (uoua-vova)+4 g da;;(u; -vg ).

The mass formulas, extremum equations, and di-
vergence equations are all modified in the presence
of the new terms. We relegate to the Appendix the
details of the equations and their solutions. The
essential point is that we have one new parameter,
d, and must therefore provide one more piece of
information. We choose to work with the mass of
the scalar, I=1 particle ~„, which may be tenta-
tively identified with the I=1, J =(0'?) effect
which has been observed at about 980 MeV. The
standard cr model predicts this mass to be about
900 MeV, somewhat lower than one would like.
While our main purpose is not to "fix up" the sca-
lar mass spectrum, it is of interest to determine
the behavior of the tree-approximation solutions
when the m~ mass is lifted to a possibly more real-
istic value and to compare the behavior with the
results of the linear-breaking case. Qualitatively,
the most striking difference between the solutions
of the modified model and those of the original one
is the added complexity of the former. We find
that there are eight solutions for each set of mass
m ', m~', rn„', m„', andM„~'. The quantity b&

(b =(u, ) /v 2 (u, )), the ratio of SU(3) octet to sin-
glet vacuum breaking, satisfies a quartic equation.
For each of the four b~ values which solves the
quartic equation that determines the b~'s, there
are now two corresponding values of c~, the ratio
of SU(3) octet to singlet breaking in the Lagran-
gian.

Before entering into the detailed results of our
solutions to the model with the bilinear breaking

terms added, we note several new possibilities
that this expanded model allows which are evident
from the general tree-approximation equations
themselves. First of all, as is clear from the bi-
linear terms in the axial-vector divergence equa-
tions

s „g'„=5(',-)"' ta+ 4(';)"'d (u, )]v;

+ 4(g ) 5d(u Ov( + vou~

8

+ Q d;;, u; v, )+octet breaking,
), A=1

wh~re u, =(u, )+u„u, =(u, )+u„one can discuss
broken-chiral-symmetry relations from the point
of view of Dashen's power-counting arguments'
even within the tree approximation. Even in o

models, as mentioned by Carruthers and Hay-
maker, ' this is the essential question in regard to
the validity of low-energy theorems. More tech-
nical points are (i) that the (u, ) =0, co 0 solution,
impossible in the linear-breaking case, is allowed
in the bilinear-breaking version; and (ii) that 5dU,
contributes to splitting the m' and g' masses and,
in contrast with the linear-breaking case, the I,'
is no longer essential to keeping ~ and q' nonde-
generate in the SU(3) limit, c =0."

To begin the discussion of the solutions of the
model with the added term, we choose the input
value M„„'= 0.8229 GeV' (equal to the "preferred"
one' predicted by the model when only linear-
breaking terms are present; see Sec. II). In Table
II we list all of the eight solutions found for the
mass inputs m, '=0.019, m~'=0. 246, m„=0.301,
m„.'=0.917, andM„„'=0. 8229. Of the eight solu-
tions, one is identical to the solution of the linear-
breaking model with the same mass spectrum,
having b~ = -0.218, c = -1.30, and d = 0. Another
solution is close to the other linear-model solution
which hadM~ '=0.816, b~=-0.354, and c=-1.32.
As we let M „„'decrease to this latter value, 0.816
GeV~, we recapture this other linear-breaking so-
lution, with d =0, as one of the eight solutions to
the modified model.

The remaining six solutions, however, are com-
pletely different from either of the solutions dis-
cussed in Sec. II. The cases with b = -20.65 are
clearly outside of currently popular ideas about
chiral-symmetry breaking, as it is impossible to
make them even roughly compatible with estimates
of b and c from I'„/E,f, (0) or from a quark-model
description of baryon mass splittings. In addition,
if we let the value of M,„' increase, we find that
the real branches b = -0.3945 and -20.65 meet and
split off again into complex conjugate branches as
M,„'= 0.90 GeV' is reached. For these reasons,
we choose not to consider further the last four so-
lutions of Table II. The behavior just described
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TABLE II. Solutions to bilinear-breaking model. The mass value M~ =0.906 is assumed,
identical to one Predicted for the bp =-0.218 solution of linear case (M~ 2 =0.823). All
masses are in GeV.

-0.218

+ 0,120

-0.390

-20.55

Cp

-0.308
-1.30
-0.010

1~ 17
-0.60

1+32
—1.48

4.28

0.888

0.766

0.715

0.550

tan 8~

0.052

0.184

0.244

0.947

M +M

1.70
1.20
1.70
1.20
1.70
1.20
1.70
1.20

1.140
0.993
1.050
0.810
1.23
1.02
1.30
1.09

0.630
0.456
0.736
0.715
0.413
0.391
0.120
0.123

tan 6,,

0.955
0.508

-6.07
—6.67

1.204
0.982
0.054
0.063

' These are input values. Both cp values go with each I, +M, i value.

gives some added justification for discarding the
bp = -0.352 case of the linear model, since it dis-
appears as a viable candidate if one tries to "lift"
the scalar spectrum by adding a bilinear breaking
term. At the same time, of course, new candi-
dates for "physical" solutions are introduced, and
it is these that we wish to discuss in the remainder
of this section.

The most striking feature of Table II is that for
each of the bp values, bp=-0. 218 and bp=0 120,
one has both of the currently competing pictures
of chiral-symmetry breaking as possible solutions.
Namely, for each b~ either c= —V 2 (Ref. 14) [near
SU(2) xSU(2)] or c small" [near SU(3) Lagrangian
symmetry]. This effect becomes even more pro
nounced as M,„' is allowed to rise. Thus the re-
striction to c=-v 2 of the usual o model, a result
characteristic of strict pole dominance of all non-

vanishing divergences, "disappears when devia-
tions from operator partial conservation of axial-
vector current (PCAC) are allowed by the intro-
duction of bilinear-breaking terms.

Qur primary interest is in the behavior of solu-
tions as symmetry breaking is turned off. We see
in Fig. 5, where A. (A. =(u, ) /(u, )»„„,») is plotted
against 5 =5/5»ygige that the b =-0.219 and c
= -0.3 solution chooses the Goldstone pseudoscalar
octet in the symmetry limit, 5- 0. Note that one
can subsequently reach the normal limit by cir-
cling two branch points. This behavior is found
for all of the values 1.2 GeV' «M, +M/ «1.7
QeV'. There is no singularity of A. between 5 =1
and 5 =0. Moreover, there are no real 5 singular-
ities in the whole range -1

~

5
~
- 1, and & may be

expandable about 5 =0 in this entire region, which
includes the physical solution. Clearly, from F+.

).5-

l.0-

0

l.O

FIG. 5. Bilinear-breaking cases M~ = 0.823 GeV, b& = —0.218, c= —0.308, M~ +M~ = 1.7 QeV2, (solid line) and

M~ +M~ = 1.2 GeV (dashed line). A, = A/'gp and 6= 6/gp are dimensionless.
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5, a linear fit to A. in this region is a good approx-
imation.

When we examine the pseudoscalar masses,
however, we find that they cannot be described by
a linear expansion in 5 from 6 =0 to 5 = 1 (physical
5 =1 with our normalization). This is shown in
Fig. 6, where the pion mass is plotted against 5.
The pion mass squared rises from zero at 5 = 0,
reaches a local maximum before 5 = 1, and then
falls sharply through the physical value m „'= 0.019
GeV'. In addition, as the value of M, '+M, ' is
lowered from 1.7 GeV', the position of the local
minimum, which occurs at small negative 5 values
whenM, '+M, ' is above 1.7 GeV', moves toward
more positive 5 values and occurs at about 6 = 0.5
when M, '+M, ' =1.2 GeV'. This behavior is
shown in Fig. 7, and the negative mass-squared
values that occur between the physical point at 5
=1 and the symmetry limit at 5 =0 clearly violate
the criterion that the symmetry limit be reached
via physically admissable values of the observable
quantities. Thus the b = -0.218 and c =0.3 solution
is unable to connect naturally to an SU(3) xSU(3}
symmetry for small scalar mass values. This ef-
fect persists as M, ' is raised to 0.95.

The behavior of the solution having b~ =0.12 (see
Ref. 24) and c =-1.17 is shown in Fig. 8. With

M, '+M, ' =-1.7 QeV', the Qoldstone pseudoscalar
octet is reached smoothly as 5- 0. A branch point
in A.(5}occurs at 5 = -0.42, so a power-series ex-
pansion about 5 = 0 cannot represent the physical
solution. As M, '+M, .' is lowered to 1.2 GeV~,

the symmetry limit changes from Goldstone to
normal, and the latter case is shown by the dashed
line in Fig. 8. This critical behavior is nearly the
same as that found in the case b = -0.218, c
= -1.30, but with the interesting difference that the
branch points that occur at small positive 5 in the
latter case are absent. In summary, the descrip-
tion b~ =+0.12, c~ = -1.17 connects smoothly to the

limit 5 =0, b =0, A. c 0 (Goldstone pseudoscalar oc-
tet) when M, '+M, ' = l.7 GeV', while it connects
smoothly to the limit 5 = 0, t = 0, A. =0 (normal lim-
it) whenM, '+M, '=l.2 GeV'.

The b~ =+0.12 and c =-0.09 solution (not shown
in a figure) is completely isolated from the sym-
metry limit for all values of M, '+M, ' which we
have tried (1.2 to 2.0 GeV'). Negative pion masses
appear at about 5=0.9 as 5 is reduced from 5=1,
the physical point. We have not investigated the
details of the approach to the symmetry limit for
this case.

A summary of the interesting solutions is pre-
sented in Table III for the value M„' =0.822 GeV'.
At this value of M,„' the b =-0.218, c=-1.30, d
=0 linear-model solution is reproduced, as ex-
pected, while the remaining solutions are peculiar
to the bilinear-breaking model.

Details of Solutions for Choice kI =0.950 GeV

As mentioned earlier, the solutions b~ = -0.395
and b~ = -20.6 become physically uninteresting
(meet and become complex) as M„„ is allowed to
rise. Taking the round figure M, ' =0.950 GEV'
(M„„=0.974 GeV), we examine the real solutions
which evolve from the b~ =-0.218 and b~ =+0.12
cases discussed above. These roots move closer
together, remaining real, to values -0.142 and
+0.013, respectively, asM„' is lifted to 0.950
GeV'. For each b(ph ysi cia), the two c roots again
come in a "small" [near SU(3) Hamiltonian] and a
"large"" [c=—v 2, near SU(2) xSU(2) Hamilto-
nian] size. A summary of the solutions is pre-
sented in Table IV for the scalar mass inputs M, '

7 QeV3 and M ~ + M, ~ = 2.0 GeV~,

note that both the b~= -0.142 and b~=0.013 solu-
tions produce acceptable values for the scalar
nonet masses. The mixing between e and e' is,
however, considerably different in these two cases.

The transition from normal to Goldstone limit
again occurs for the case b = -0.142, c = -1.29,

.02- .04-

.01-

0, 0

.OI-
=-.003 at min7r -,02-

0 .5
FIG. 6. .m„~ vs 6 for solid-line solution

(1Vl~ +M 1 lo7 GeV

).0

of Fig. 5

A
8

.5 I.O

FIG. 7. m„vs 6 for dashed-line solution of Fig. 5.
(M ~ + M ~~ = 1.2 GeV~).
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FIG. 8. A, vs 6 for the bilinear-breaking cases M„=0.823 GeV, bp =. 0.12, c= —1.17. M~ +M, 2= 1.7 GeV2 (solid
line) and 1II~ + M, = 1.2 GeV (dashed line). There is no singularity in dashed path.

but at higher scalar mass values than before. This
is shown in Fig. 9, where the solid line (M, '
+M, ' =2.0 GeV') is the Goldstone limit and the
dashed line (M, '+M, '--l. 7 GeV') is the normal
limit. The basic character of this solution, which
is the one that tends in the limit d = 0 (no bilinear
breaking) to the linear-breaking-model case
studied in detail by several authors~s, s remains
unchanged as M „'is increased.

For the alternative c value (-0.178), the behav-
ior of the solution near 5=0 is shown in Fig. 10.
The Qoldstone nature of the limit is unchanged by
varying M, '+M, ' over a wide range, but the lim-

it is screened from the physical point by a region
of instability (pion mass squared negative) for allI, +M, values less than about 2.6 QeV . The
pion mass squared is plotted vs 5 for the cases
M, '+ M, .' =1. t QeV' and M, '+ M, .' = 2.0 QeV' in
Fig. 11.

Next, we see in Fig. 12 that the b~ =0.013, c
= -1.25 case connects smoothly to the Qoldstone
limit for both values of M, '+M, ' tried. The
transition to a normal limit occurs when I,'
+M, ' is lowered to 0.8 QeV'. The small-c case,
c = -0.001, has highly erratic behavior, and the
pion mass squared becomes negative for 5=0.99,

TABLE III. Summary of symmetry limits of the interesting solutions to the bilinear-
breaking model with M~ ~ =0.823 GeV2. Smooth limit means that no instabilities and/or
singularities are encountered as d 0. Goldstone limit is (up) & 0, b =0 as 6-0; normal
limit means (up) =0, (up) =0 as d 0. (up)&~„u,@=X(d&) expansion exists if there are no
)I.(6) singularities in ( 0 (

—[ 0& ( .

M = 0.823 GeV
.bp Cp

M 2+M
(GeV')

Smooth
limit'?

Character
of limit (go) expansion'?

-0.218

+ 0.120

-1,30

—0.30

—1.17

-0.0S

1.70
1.20

1.70
1.20

1.70
1.20

1.70
1.20

yes
no

yes
no

yes
yes

no
no

Goldstone
normal

Goldstone
Goldstone

Goldstone
normal

no
no

maybe
maybe

no
maybe

no
no

~ Input
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TABLE IV. Real solutions to bilinear-breaking model with M =0.950 GeV .

M 2 = 0.950 GeV2
tt pf

bp cp tano~
M +M ~

~

(GeV2)
M~

(Gev)

0.013

—0.178
—1.29

-0.001
1 Q 2

0.845

—0.015

0.186

1„70
2.00

1.70
2.00

1,130
1.192

1.040
1.173

0.650
0.760

0.783
0.792

5.44
9.64

' Input

very near the physical point. We have not followed
this highly unusual case in detail, since there is
clearly no possibility that one can talk about a
smooth symmetry limit for any reasonable choice
of input parameters.

A recapitulation of the solutions is presented in
Table V. Comparing with Table III, we see that
the nature of each solution is essentially unchanged
by the increase in M,„' from 0.822 QeV' to 0.95
QeV'. The only effect is that scalar-mass-depen-
dent changes in the character of the 5- 0 limit oc-
cur at different values of M, '+M, ' as M„„' is in-
creased. For example, the first solution in Table
III, where M, „'=0.822 GeV', changes from a
"normal" limit, but one that can only be reached
by circling two branch points, to a smooth "Gold-
stone" limit at about M, '+M, '=1.5 QeV', while,
referring to Table V, this solution makes the
change at M, '+M, '=1.9 QeV' when M„' =0.95
QeV .

IV. DISCUSSION

In this section we shall summarize the essential
features of the solutions to the linear- and bilin-
ear-breaking cr models, elaborating on several

I.O-

PHYSICAL

features which are possible only in bilinear break-
ing, and comment on the model dependence of the
approach to symmetry limits.

(i) Linear-breaking model. There are two solu-
tions to this model, one of which has been dis-
cussed by Carruthers and Haymaker' for the spe-
cial case in which the mass term u +v is
dropped (n =0). (Following an observation by
Olshansky, ' Carruthers and Haymaker subsequently
discussed the influence of the mass term, but in
the conte' of a model with no octet breaking. ")
We looked at both solutions in detail in Sec. II, In
agreement with the analysis of Befs. 8 and 10, both
solutions failed to have a smooth Goldstone limit
when the originally assumed value of M, '+M, '
=1.7 GeV' was decreased to a value small enough
that the "critical" value of n was exceeded. How-
ever, the solution with o» = -0.218 (see Ref. 25) be-
came unstable when M, and M, were in the neigh-
borhood of 0.500 GeV and 1.0 GeV, respectively,
while the b~ = -0.352 case lost the Goldstone limit
at much lower values of the scalar masses.
Whether or not the model is near a critical" value
of the mass parameter depends upon the solution
one chooses. The fact that the b~ =-0.218 solution,
which alternates between the Goldstone pseudosca-
lar octet limit and the "pseudonormal" ' limit as
M,. and M, are varied around 0.500 QeV and 1.0
QeV, respectively, gives a more plausible picture
of e and e' masses, and mixing might be sugges-
tive. However, the solution into which it develops

5-
POINT
b =-.l47P

3.0

2.5-

2.0-

L5-

l.O

I S S a e

t.O

FIG. 9. Bilinear-breaking cases M~ = 0.95 GeV,
N

b&
=- —0.142, c = —1.29, M~2+ M~ 2 = 1.7 GeV2 (dashed

line) and M, +M~. = 2.0 GeV2 (solid line). The s-shaped
curve for the former case involves two branch points.

5-

l.o

FIG. 10. Bilinear-breaking cases M 2 = 0.95 GeV2,

Qp = —0.142, c= —0.j.78 M~2+. M& 2 1 7 GeV2 (dashed2 N

line) and M~ +M~P = 2.0 GeV (solid line).
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FIG. 11. Plot of m„ in GeV vs 8 for solutions of
Fig. 10. Dashed line is M~ +3f~ = 1.7 GeV case and
solid line is M~ +M, , = 2.0 GeV case.

as the bilinear term is introduced is only one of
several reasonable candidates in this more com-
plicated model.

(ii) Bilineax-breaking mode/. There are eight
solutions possible in this model, though four are
complex and of no interest in the case M,„=0.980
GeV, as discussed in the latter part of Sec. III, In
fact, the solution b~ = -0.352 to the linear model,
which had been discounted in previous work, '
evolves into one of the complex solutions as M„„
is raised from the (predicted) value M„„=0.904
GeV of the linear model to (assumed) values above
0.940 GeV in the bilinear model. This is perhaps
another justification for preferring the b~ = -0.218
solution' as a guide to general results in the lin-
ear-breaking studies. - However, the number of vi-
able solutions certainly increases when the extra
term is added to Z. The most interesting new
twist is the appearance of two values of e for each
value of b~; a "small" c (c=-0.2, supporting the
Brandt and Preparata" point of view) and a "large"

FIG. 12. Plot of A, vs 6 for j/1„=0.95 GeV, b&
= y0.0].3, c= —1.25 ~ +~ =1.7 GeV (dashed) and
M~ +M~ ~ = 2.0 GeV (solid). m ~ dependence on 6 for
latter case is shown at bottom.

c (c = —u 2, supporting the Gell-Mann-Oakes-
Renner and Glashow-Weinberg point of view). All
masses, the mixing angles, and F~/F, are the
same for these two widely differing values of c.
Depending upon the assumed values for M„„and
M, +I, ', both solutions, one or the other, or
neither may connect smoothly to a. Goldstone SU(3)
xSU(3) limit. The value of c found from the tree
approximation does not depend upon the way in
which the symmetry limit is achieved, and one can
have both, either, or neither of the Brandt-Prep-
arata and Gell-Mann-Oakes-Benner pictures of
SU(3) xSU(3) Hamiltonian breaking compatible with
the pseudoscalar octet as Goldstone particles asi- 0.

In principle, bilinear breaking affords two inter-
esting possibilities which are not present in the
linear-breaking model. Solutions are actually
found among those studied which closely corre-

TABLE V. Summary of symmetry limits of solutions to bilinear model with M =0.950
GeV

M ~ =0.950 GeV~
N

bp ep

1' +M
{GeV~)

Smooth
limit?

Character
of limit (u () ) expmls ion?

0.013

-1.29

-0.178

-1.25

-0.001

1.70
2.00

1.70
2.00

1.70
2.00

1.70
2.00

yes

no
no

yes
yes

no
no

normal
Goldstone

GoMstone
Goldstone

Goldstone
Goldstone

no
no

maybe
maybe

no
no

no
no

~ Inputs.
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then we can express the pseudoscalar masses

x[(';)"'(O~u,'[0) +d„, (0(u,'~0)].

In the usual a model, uo=5uo an«s=5u„where
b is the explicit SU(3) xSU(3)-breaking parameter.
In the Goldstone limit where (u, ) and Jl; - constant
and (u, )-0, tehnyyt't- cnost atn&& .bThis is the
only way in which the Qoldstone limit can be
achieved in the model with linear breaking. %ith
breaking which is bilinear in the basis fields u;
and v;, we can write

u,' = b(au, +dU, ),
u,' = 5(au, +d Ir', ) .

Since

U, =4(,'-)'y g,'+ ~ ~ ~

it is possible to have

(0 ~uo ~0) =5[a (u, )+4(3)"'d(u, )'+ ~ ~ ~ ]

(10)

(O(a,'io) -b'

spond to these tteo cases. We can have (1) b =0,
c = —v 2 and we find a case b~ =0.01, c~ = -1.25
whenM, „=0.975 QeV. Note that m', ~ „-5as 5- 0 in this solution. This is almost a literal re-
production of the picture in the original Gell-
Mann-Oakes-Renner paper. " %e can also have
(2}m', „„-b'as b- 0, and this is the case for
the solution b =-0.2, c = -0.2 [approximate SU(3)
symmetry of the Lagrangian]. Let us briefly dis-
cuss the origin of these effects. (a) In the cr model
which has breaking linear in the fields, the extre-
mum equation BZ/Bu, =0 requires the condition A'

=0~ c=0 (or b =A. '/V2 A. =0~ c=0). However, if
a/d=4At, (~)'y' (see Ref. 27) this requirement is
lifted in the model with breaking which is bilinear
in the basis fields. (b) If we write

30 =3C symmetric (tto +tt e &) s

a
(0 Ittol0) I ts=o= 4(&)&md43 )

Referring to Eq. (4.2), this means m -b' as 5-0.
This quadratic behavior is observed to occur in
the Brandt-Preparata solution b = -0.2, c = -0.2, as
we have mentioned. It is interesting that, of all
the solutions studied, this is one of several which
are free of singularities on the real line

~
b

~

~ 1

(see Table III). However, though a straight line
X = X, +(dA/db)5 describes the vacuum dependence
on 5 very well, the pseudoscalar masses require
at least cubic terms in 5 for a description of their
behavior in the interval

~
5~ ~1. Implications of

this curious behavior may be worth pursuing.
In summary, we refer to Table VI, where we

see that it is as likely as not that the tree-approx-
imation solutions simply cannot be connected
smoothly to a meaningful SU(3) &&(3) limit. In those
cases where the limit can be obtained smoothly,
the radius of convergence of a power-series ex-
pansion of "one-point" functions, and consequently
masses, couplings, etc. , is generally too small to
provide a description of the physical parameters.
In one of the possible exceptions to this observa-
tion, the masses, though probably analytic in 5,
require at least cubic terms in 5 to reproduce their
behavior. Thus, our study does not lend support to
the hope that a model with a smooth SU(3}&SU(3)
limit can be unambiguously identified, and then
provide a useful expansion point for successfully
describing low-energy hadron phenomena.

On the positive side, it is certainly true that if
any smooth limit exists in these models it is either
"normal" or "pseudoscalar octet of Goldstones. "
A I(-Goldstone role is not possible, "for example.
It is also worth pointing out that of the three lead-
ing candidates for reasonable, physical. solutions
to the bilinear-breaking model, one with reason-
able scalar mass spectra shows the "critical"
switch between Goldstone and "pseudonormal" or
normal limits as the relative size of the mass pa-
rameter, a, is varied over a "physically reason-
able" range such that M, = 0e5 GeV, M, =1 GeV.

Regarding the question of whether or not the ad-
dition to the usual a model of terms which are bi-

TABLE Vl, Condensation of Tables IIE and V for "most reasonable" solutions with M, +M, r =1.2, 1.7,
and 2.0 GeV .

M~ +M~i
(GeV')

b = —0.218
c = —0.300

M ~ =0.822 GeV2
~N

b =- -0.218
c = —1.30

b =-0.120
c = —1.17

M 2 =0.950 GeV
b = —0.143 b = —0.143
c = —0.178 c = —1.29

b =-0.01
c = —1.25

1.20
1.70
2.00

no
Goldstone
Goldstone

no
Goldstone
Goldstone

normal
Goldstone
Goldstone

no
no
no

no

Goldstone

no rmal
Goldstone
Goldstone
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linear in the fields and transform as (3*, 3)+(3, 3*)
members is "harmless" (by which we mean that
flexibility is provided without affecting general re-
sults) we find that substantial changes occur in the

. nature of the new solutions compared to the nature
of the linear-model solutions. Several of these so-
lutions may provide as reasonable descriptions of
(poorly known) masses and mixings as the "pre-
ferred" b~ = -0.218 linear-breaking-model solu-
tion. ' In view of the poorly determined K» param-
eters" and of w-N o terms, "it is not clear where
one may turn to find additional evidence which may
discriminate among the possibilities. Consequent-
ly, we feel that inferences about possible chiral-
symmetry limits and about possible "critical
point" effects which are drawn from the usual cr

model (linear breaking) may not be supported by
variants of the model and should be viewed with
caution.

APPENDIX

The locations of the extrema of the classical po-
tential determine the vacuum expectation values
of the fields u, and u, in the lowest order, and
are given by the equations

5a+85d(,'-)"' j + ~)b

from

=j).[2n +4n 'j).'(1+2b')+4v 6 pX(1-b')

+ +yj). (1+6b' —2b')] (A5)

and

5ac —45d(-', )"' j)(c +)j 2 b) —8(';)"'5dcj)b

= M2b j[)2 n+4n 'j).'(I +2b') —4v 6 Pj)(1+5)

+ 16yj).2(1 - b +b')] (A6)

from

+ 6 v 6 u pv; v; + 12 WB vpv; u;

+6MGup' —18' 6 v,u„
Id = 2(diin dna) +if ijn nn) + idi jn f nn) f ijn fnn) )

(A2)

The Lagrangian we work with in Sec. III reads

8 = —~p(B ))uie ))uj +8
)) vie )) v)) —nI2 n (I2) —p I p

—yI, + 5[a(u, +cu, ) +d(Up+cU, )] . (Al)

The results of the linear model in all subsequent
formulas are recovered by setting d =0. Written
in terms of the basis fields, the invariants and bi-
linear (3*,3)+(3, 3*) members are

I, = u, ' +v ("mass" term),

Ip = 4di )))(uj uj un —3v) vj un) —6 MBiipuj ui

where

~ =(Oiu, io)

(Oiu, i 0)
Ma(Oju, /O&

In order to fix parameters, the expressions for
masses are necessary, and we have

m, ' =x, +(x, —x,) —2(bx, —x,) +';x,(l +b)',

mr' =x, +(x, —x,)+(bx, —x,)+'-, x,(1 b+7b'—),
m „'+m „'=2x, —(x, -xd)+2(bx, —x, )

+px, (2 -2b +5b'),
(A7)

and

x (ui uj un u) + v,. vj vt) v, + 4u,. uj vj) v, —2u, vj u„v, ), m „.' —m „'= ( [ 3(x, —x,) + 2 (x,b —x,) —';x,b (2 —b )]'

+8[(x,b —x, ) + '-, x,b (2 b)]']."'—

U 4(p,'-)'"(up' —vp') —2(p)'" Q (u, ' —vj'),
(AS)

Up = —4(p ) (up u p
—vpvt)) +4 Q dpj j(uj vj ) .

The divergences of the axial-vector currents are
given by

s „A'„=5(';)"'[a+4('-, )"'d (u, )]v;
S

+4('-, )"'dd(M V; +U,u, + E di~ ug U )
(A4)

+ octet breaking,

u p
= ( )+uupp ~

for the pseudoscalars, and

M„„'=x, -(x, -x,)+2(bx, -x,)+2x,(1+b)',

M„=x, —(x, —x4) —(x,b —x, )+2x,(1 —b +b'),

M, '+M, '=2x, +4n'j'(I +2b')+(x, -x,)

—2(x,b —x, ) + 2xp(2 —2b + 5b'), (AB)

M, ~
' —M, ' = ([Bn'j)2(I —2b')+x, (3+2b)+2x, (2-b)b]'

+8[(-x,b+x, ) +2x,(2 -b)+Bn'j).'b]'}"'
for scalars. Here we have defined the quantities
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x, = 2o. +4n '2A.'(1+25~),

x, =4M6P~,

xs = Byh. ,

x, = 4(',-)'"5d,

5dc
5

(A9)

—a '&, x4- x~5,
A2X2- X2~, x5 —x,5,

(A12)

x„x„x„x„andx, (where x,/x, =c/v"2) and re-
turn to the extremum equations and mass formulas
with the substitutions

The inputs m, ', m~', m„', m„', andM„„' deter-
mine b, x„bx, —x„x,—x„and x, . M „' is then
predicted. Specifying M, '+ M, ~' then fixes n and
A.'n'. Our procedure is to express x3 bx2 x5 xQ

—x4, and x, in terms of m „', m~', m „'+ rn „',
M,„', and b and then to substitute into the m „'
—m „' equation. This yields a quartic equation for
b. For each b solution, values of x3 bx3 x5p x2
—x4, and x, are computed and the value of M„'
found. The values of M, ' and M, ' can be com-
puted separately at this point. The extremum
equations (A5) and (A6) are used to evaluate c,
which satisfies a quadratic equation. Thus tuo c
values are found for each of the four b values. The
individual values of x„x„and x, are determined
by the expression

where A. =—X/A~ and 5-=5/5~. That is, since the
scales of A. and 5 are not fixed, we can only study
the dependence of the dimensionless quantity ~ on
the dimensionless parameter 5. We find a cubic
equation for X as a function of b, and 5 is deter-
mined from knowledge of A. . Expressing X directly
as a function of 5 is too complicated, so we choose
to find values of X and 5 by varying b over a range
which includes b~ and b =0. Working in this way
we are able to map out X(5) and b(5) in the region
including 5 =0 and 5 =1, The physical root is de-
fined as the one for which A, =1 and 5=1 at b =b~.
Our primary interest is the behavior of this root
in the region around 5 =0 which includes 5 =1.

Mixing angles. We define the q-g' and e -e'
mixing angles, 8~ and 8&, as follows:

M2(2-f ) M25M„'
4(1+b)(2~2 -c) 4(1+5)c (A10)

q' =cos8~vo+sin8~vs,

sln8pvo + cos 8&vs
(A13)

5a 1 (2 —b) mx' b I,'
A.p 2i 2 M2 —c c (A11)

and the now known values of c, b, bx, —x„and x,
-x, . The value of 5a/A~ can be determined from

cos 8s uo + sln8$ us ~

E' = -sin8~ u, +cos 8~u, .
(A14)

for each b, c combination. Equations (A10) and
(A11) follow by combining the extremum equations
and mass formulas. The dimensionless quantity
x,/x, measures the ratio of bilinear to linear
br caking.

To study A.(6), b(5), and masses (5) we fix x„

The mixing angle is given in terms of the masses
as

mos
2

tan8 2 2 2 2 2 4 1/2m„—m„-[(m„—m„) +4m„]
(A15)

*Work supported in part by the U. S. Atomic Energy
C ommis sion.
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In renormalizable unified gauge theories of the weak and electromagnetic interactions, for a given gauge

group we ask the following question; Which representations of the scalar Higgs particles can reproduce a
vector-meson mass spectrum in which one vector meson, the photon, remains massless and all other vector
mesons acquire mass? Given the Higgs representation, we then examine what restrictions are placed on the
charge operator of the theory. The examples of SU(3) and SU(3) )& U(1) are worked out in detail. The
possible Higgs representations for all the unexceptional classical Lie groups are given, For each such group,
there are some low-dimensional representations for which no solution exists.

I. INTRODUCTION AND SUMMARY

The development of renormalizable gauge
theories which attempt to unify the weak and elec-
tromagnetic interactions' has opened a Pandora' s
box of possible models. Once a gauge group is
chosen, the model builder must decide on a rep-
resentation of scalar Higgs particles, whose no@-

zero vacuum expectation values (VEV) spontane-
ously break the gauge symmetry, and assign
known and probably unknown fermions to group

multiplets in such a way that he satisfies the con-
straints imposed by the experimental cross sec-
tions, masses, moments, decay rates, etc.

In this paper, we present simple criteria for
determining, given the underlying group, which
representations of the Higgs particles can re-
produce a vector-meson mass spectrum in which
one vector meson, the photon, remains massless
and all other vector mesons acquire mass. Kibble
has discussed the choice of Higgs particles in the
context of the strong interactions, thus requiring


