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derivations to follow, if one understands time-ordered
products to really be covariant T* products these
terms can be ignored.

S. Weinberg, Phys. Rev. Lett. 29, 388 (1972); H. Georgi
and S. L. Glashow, Phys. Rev. D 6, 2977 (1972).

To establish the relation of this terminology to that
of Weinberg, Georgi, and Glashow we note that a
controlled but not computable mass difference would
be a nonvanishing quantity whose value in the zero-
loop approximation is fixed by Goldstone-boson cou-
pling constants in a Lagrangian containing all renor-
malizable terms consistent with the symmetry prin-
ciples adopted; a computable mass difference is one
whose value in the zero-loop approximation vanishes.
For example see T. Hagiwara and B. W. Lee, Phys.
Rev. 0 7, 459 (1973), for an example of the controlled

but noncalculable case. For a discussion of the second
type of mass formula see S. Weinberg, Phys. Rev.
Lett. 29, 388 (1972).

i If we had assumed that )A) and j 13) were fermion states
having opposite intrinsic parity we would have obtained

(&li" (0) I &) = (p') gV "g', (q') + q'h' (q')

+ q, o"' s'„s(q')] y')us(P).

Taking the divergence of this expression yields (m~
+ mug~~(0) = 0; hence, the conclusions for the vector
and axial-vector current are simply interchanged.

~2Actually, we could assume a more complicated struc-
ture for the f 's (i.e. , a general matrix f~a); however,
for the purposes of this brief argument this would add
nothing to the point we wish to make.
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We argue that the locations of poles in complex helicity are determined completely by the Regge
poles in complex angular momentum. They lie at "sense" values of the helicity, m = a, ,e.,- —l,a,. —2,
..., relative to the angular momentum singularities at j = a, Thus, through the determination of
helicity singularities, singularities in angular momentum determine asymptotic limits in addition to the
conventional multi-Regge limits.

I. INTRODUCTION

Increased theoretical and experimental interest
in multiparticle scattering amplitudes has recently
sparked interest in the complex-helicity plane. '
This is because, in multiparticle amplitudes, sin-
gularities in complex helicity play a role very
similar to singularities in complex angular mo-
mentum —both control specific, distinct asymptot-
ic limits. Despite their similar manifestations,
however, there are fundamental differences be-
tween complex angular momentum and c,omplex he-
licity. Whereas angular momentum is a Poincare-

invariant quantity and singularities in complex an-
gular momentum are manifestations of dynamical
objects like bound states and resonances, helicity
is not a Poincare invariant, and thus singularities
in complex helicity are not expected to be manifes-
tations of independent dynamical objects. Indeed,
it is usually assumed that the helicity singularities
are completely determined by the angular momen-
tum singularities —a Regge pole in angular mo-
mentum at j =n, yielding singularities at "sense"
values of the helicity,
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where P is a positive integer or zero. Here we

give arguments for this rule.
In order to illustrate the importance of the rule

(1.1), let us briefly mention two of its interesting
consequences. It has recently been shown that the
vanishing of the Pomeranchon-particle-Reggeon
vertex for a Pomeranchon with unit intercept' im-
plies the vanishing of the Pomeranchon-particle-
particle elastic vertex. ' The Pomeranchon-parti-
cle-Reggeon vertex contains a term [see Eqs.
(1.15) to (1.17) below]

~
Otg

z (1.2)

where P is the elastic coupling and in Fig. 1 n(t, )
=o.J,, n(t, )=o.~, q=s»/s, s, (=1/~). This is the
only term =I/o. „, so the vanishing of (1.2) implies
the vanishing of J3. Since the decoupling is proven
only for q=(m' —t,)=-o.„, an additional term in
the vertex of the form

~aR+1 p

would cancel (1.2) and cause the proof of the van-
ishing of the elastic coupling to fail —thereby
saving the simpld picture of the Pomeranchon as
a Regge pole with exactly unit intercept. However,
such a term corresponds to a "nonsense" helicity
singularity at rn =c.s+ I and is excluded by (1.1).

As a second example, we note that (1.1) implies
the uniformity of the interchange of Regge and
scaling limits for inclusive cross sections. The
inclusive cross section for 1+2- 2'+X (see Fig.
2) is

d'0 1E, - —Disc„2A, (s, t, M'),
S

where s =(p, +p, )', t=(p, +p,')', andM is the mass
of X. In the Regge limit (s- ~, M', and t fixed),
Begge behavior of the exclusive processes gives

as s/M'-~. Thus we have

Disc 2A, -(M')"' (s/M')' ' y(t) (1.5)

satisfies (1.3) and (1.4) but not (1.5). The limit in
(1.5) is a combined Regge (M'- ~)-helicity (s/M'-~) limit. Thus the power of (s/M')' is given by
the leading singularity in complex helicity, where-
as the power of s' in the Regge limit (1.3) is given
by the leading singularity in complex angular mo-
mentum. The rule (1.1) says these are equal and
thus (1.5) holds [the example (1.6) would require a
nonsense helicity pole at m =a(t) +1].

In the remainder of this section we establish our
terminology and notation and review the basic ele-
ments of complex-helicity analysis by discussing
the five-particle amplitude since it is the simplest
example of the use of complex helicity. In Sec. II
we discuss in detail the arguments for (1.1). Con-
sider a double partial-wave analysis in the t, and

t, channels as shown in Fig. 1:

A, = Q Q Q (2j, +l)(2 j, +1)d',&(cos8, )
ttt=0 9 y-% )2=m

x d'„'0(cos8, )(cosm&u)a(j„j2, m;t„t,),
(1.7)

where parity invariance has been used to remove
sinm(d terms. We expect that the behavior for
large cos8„cos&„and cos(d can be obtained by
performing Sommerfeld-Watson transforms in j„
j„and m, respectively. Since

which gives the behavior usually assumed for in-
clusive cross sections near the phase-space
boundary. Although this uniformity and the conse-
quent equality of powers of s in (1.3) and (1.5) may
seem trivial, it is not. For example, the function

M2 a(o)+s
Disc~2A, = (s/M')'"~' "

Di s~c2A-8s "'f~(M, t), (1.3)

whereas in the scaling limit (M'-~, s/M', and t
fixed) we have

Disc„2A, - (M')" '~f~ (s/M', t) .

Uniformity' of these limits would require

f (s/M', t) -(s/M' )'""'r(t)

(1.4)

t
l

8 0 h 0 ~ 4 ~

FIG. 1. Kinematics for the five-particle amplitude.

~s,(s) ~
FIG. 2. Kinematics for the six-particle amplitude.
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or

s,-; s„/s„s„ f„ t, fixed,

s2 ~ ~; s~2/s2, s~, t~, t2 fixed,

(1.9a)

(1.9b)

Double-Aegge limit.

si~ 82 ~q 'ti si~/sis2~ fz~ tm fixed (1.10)

Singularities i0 the complex helicity m determine
the behavior for

Complex-deli ci ty limit.

s» ; s„s„t» t, fixed.

Singularities in both angular momentum and helici-
ty determine the mixed limits:

Begge -heli city limits.

81~ s~g/s~ ~ smq tg) tm fixed,

sgp s )2/82 ~ 'ol sg, fq, fg fixed ~

(1.12a)

(1.12b)

s~ cc cosa' ~

s, ~cos8, ,

s~m ~ (m —t) f2) cos8) cos82

- 2(t, t~)
"2sin8, sin8, cosv,

these correspond to large s„ s„ and s„, respec-
tively. Thus singularities ia complex angular mo-
menta j, and j, determine the behavior for

Single -Aegge limits.

three I' functions. The remaining dependence, as
well as kinematic factors from converting to in-
variants using (1.8), have been absorbed into the
partial-wave amplitude a(j„j„m; t„ t, ) E. quation
(1.14) has the advantage of exhibiting the depen-
dence of the amplitude on the invariants in terms
of which its analyticity properties are most simply
stated.

The integration contour in (1.14) is such that the
partial-wave sum is recovered by closing it to the
right —see Fig. 3. Thus the singularities in I'(-m)
lie to the right of the m contour and the singulari-
ties in I'(-j, + m) lie to the right of the j; contour.
The latter correspond to sense values of the helic-
ity, m= j, -P (P non-negative integer). ' The singu-
larities due to the I'(-j; + m) lie to the left of the
m contour, however, and thus will give contribu-
tions to the behavior as s„/s, s, -~. As the m
contour is swept to the left the poles in I'(-j; +m)
will pinch the j; contour against any dynamical sin-
gularities in j; in the partial-wave amplitude (e.g. ,
Regge poles) and produce singularities inm. Thus
a singularity at j; = o. , (f, ) = n, will lead to helicity
singularities at

m=n; -P (p non-negative integer).

Hence, if we assume the partial-wave amplitude
has no singularities in m, the complex-helicity
singularities are determined completely by the
"dynamical" complex angular momentum singular-
ities (e.g. , those in the partial-wave amplitude).

Let us now discuss what arguments can be made

Double-Begge -hali ci ty limit.

s„s„s„/s,s, -~; t„ t, fixed. (See Ref. 7.)

(1.13)

In order to relate the behavior in these limits to
singularities in complex angular momentum and
helicity, we perform a multiple Sommerfeld-Wat-
son transform of (1.V). The essential features of
this transform'm are exhibited by the following rep-
resentation for A, '.

Dynamical sing Ul or ities

X
X

X X X

m m+1 m+2

poles of I'(-j,+m)

3

~
dm dj, dj, l (-m)

27lS

xr(-j, + m)r (-j, + m)

x (-s,)" "(-s,) '2 "
x (-s„)"a(j„j„m;f„t2) .

(1.14)

The nontrivial dependence on j„j„andm of the
group r eyresentation functions is exhibited by the

poles of I'(-j, +m)

X X X X

j.+2 j,+1

poles of I'(-m)

FIG. 3. Integration contour for Eq. (1.14). (a) Com-
plex j~ plane when j& integration is performed first.
(b) Complex m plane when m integration is performed
first.
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x(-s, ) ~ (-s,) 2 (-s„)
xg(m; t„ t,). (1.15)

In general, the behavior (-s, ) & (-s,)"2 repre-
sents a simultaneous discontinuity in s, and s, in
the double-Begge region of phase space. Such
physical-region simultaneous discontinuities in
overlapping variables are prohibited by the Stein-
mann relation. Therefore, assuming the nz con-
tour can be closed to the left, ' we see that singu-
larities in rn are allowed only for m differing from
either n, or n, by an integer. ' We then obtain

&,- (- s,.)"(- s.)"' "'l', (n; t„ t.)
+ (-s„)"(-s,)" -"2V,(q; t„ t,),

where q=s»/s, s, . The helicity integral (1.15) nat-
urally provides Laurent expansions for V; about
ig oo ~

v, (q; t„ t, ) = Q q-" y, '(t„ t, ) . (1.17)

The "kinematic" singularities in helicity in the
1(-o.; +m) provide the terms with non-negative k,
i.e. , sense values of the helicity rn=n, -P. Non-
sense terms for negative k would correspond to
dynamical singularities in helicity, i.e., singuLar-
ities in the residue P(m; t, , t, ) of the Partial wave-
amplitude.

The nonsense terms in (1.17) clearly cannot give
any contributions to the residues of the poles for
n, or n, integral, since they correspond to non-
sense helicities (nonpolynomial residues). Thus
they would be terms which contribute to none of
the resonances but which do contribute to the
Begge trajectories. Such a situation is quite at
odds with our usual notions of the trajectory inter-
polating the resonances but not a priori inconceiv-
able.

We close this section with a technical remark in
order to eliminate a possible source of confusion.
In general one expects fixed-pole dynamical singu-
larities as well as moving poles and cuts. ' These
are located at j; —m = n, where n is a negative in-
teger. They lie to the eight of the rn contour, how-
ever, and thus do not produce the nonsense terms

[Alternatively, if the j; integrals are done
first, one sees that fixed poles do not produce sin-
gularities in m since they cannot pinch the contour
against the other dynamical singularities on the
left of the j; contour ox the singularities in

for this assumption. Suppose we consider the dou-
ble-Hegge limit of (1.14). Then singularities at
j; =n; lead to

1 dml'( —m)l"(-n + m)N n-+m)
2mi 1 2

I'(—j;+m).] The nonsense terms would be pro-
duced by singularities at n; —m = n to the left of
the m contour.

II. ARGUMENTS AGAINST "NONSENSE"
HELICITY SINGULARITIES

In this section we give four rather different ar-
guments against nonsense helicity singularities,
each proceeding from different technical assump-
tions. The first two arguments (Secs. IIA and
IIB) rely on the existence of the Sommerfeld-
Watson transform or, equivalently, the uniformity
of interchange of Hegge and helicity limits. Most
readers will find this assumption convincing.
However, in Sec. IIC we present a more funda-
mental argument which proceeds directly from
analyticity by use of the Steinmann relation and
does not require this assumption. Since the Stein-
mann relation only applies to the physical region,
this argument needs to be supplemented by the as-
sertion of Sec. IID that other singularities do not
contribute to the Begge or helicity limits.

»sc, &, = Z s," r& (s», s» t„ t,).
4=0

(2.1)

The sum over powers of s, is equivalent to a par-
tial-wave expansion in the angular momentum of

FIG. 4. Discontinuity of A. &,

A. Argument from Regge Behavior

The Sommerfeld-Watson representation (1.14)
suggests that the asymptotic limits s,-~, s, -~,
g- ~ are simply determined by the singularities
in j„j„andm in the partial-wave amplitude, and
give the same resuLt when taken in any order. In-
deed, the complex angular momentum and helicity
language really only makes sense if this is the
case. If the limits can be uniformly interchanged
in this way, consistency with Begge behavior can
be used to exclude nonsense helicity singularities
in certain cases.

Consider the discontinuity of A, in s, in the phys-
ical region for the 2- 3 process. The discontinu-
ity is then given by a sum over intermediate states
as shown in Fig. 4:
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the intermediate states. In the Begge limit, s»-~ and s»/s, fixed, we can use Begge behavior
of the individual exclusive processes to obtain

be reviewed in Sec. IIC below. We also discuss
below the possibility of continuing this result to
z3=0 to obtain the absence of nonsense helicity
singularities for A, 5.

sl2ls2 fixed

The behavior

(2 2)

y„-Sl2"2 "P, (2.2)

arises because s, corresponds to helicity k of the
intermediate state [see Eq. (2.12)]. Comparing
with (1.14) we see that (2.2) apparently corre-
sponds to only sense values of helicity m=o. 2

—p.
Unfortunately we cannot conclude that nonsense
terms are absent since s»/s, -~ is not inside the
physical region for the 2- 3 process and it is pos-
sible that (2.2) diverges when continued to that
point. [In this case Eq. (2.2) should be rearranged
into an expansion about a point in the physical re-
gion where the series converges. ] Such diver-
gences of partial-wave expansions are common
phenomena.

The simple Hegge argument can be used in the
corresponding case of Disc„A, shown in Fig. 2,"
however, since then s»/s„s»/s3-~ is inside the
physical region. The kinematics for this case will

B. Argument from Unitarity

Disc. A, -S nl ~S
2 S31 3 3

(tlat t2$ t31 2P 39 P3) ' (2.4)

We have exhibited the contributions of possible
nonsense helicity singularities at n2 —n2 and o.3
—n, (n, and n, are negative).

The general limit (2.4) can be related to the for-
ward limit, where t, =o, t, =t3 s23 0 s2 s3 w'

= m3' by the Schwarz inequality, where the inner
product is taken as a sum over intermediate
states. " This is illustrated graphically in Fig. 5

and gives

If the interchange of limits is uniform, we can
also argue against nonsense helicity singularities
directly from unitarity. Again we must consider
A, so we can work inside the physical region. The
discontinuity of A, in s, (see Fig. 2) in the Begge-
helicity limit analogous to (1.12), s„s»/s„s»/s,-~ with the other invariants fixed, is

n2 52 S n3 83 2 2(n2-n2) 2(n3-n3)
l TP 2 3 ( S nv(0) 2 Tg yl2ll2 S ny(0) 31 TP +3)13

1 y ~ Sl Sl v
Y

Sl Sl Sl s, (2 5)

where n„ i.s the leading trajectory with vacuum
quantum numbers. Thus when a, lies above a„(0),
the next singularity below n„(0), the existence of
nonsense helicity singularities in the general limit
requires corresponding singularities at n2 = n2 and

n3 =n3 in the forward limit. However, for negative
t, (or t, ) the forward amplitude is forbidden by uni-
tarity to grow by a power larger than s»' (or s»')
(see Ref. 12). Thus V "2"3 vanishes for all n(t, )
=- n„(0) and t„ t, & 0 when n, —n, & 1 or n, —n, ».
[The condition A.(t„t„ t, ) ~0 must also be satisfied
in order to assure that one is in the physical re-
gion —see Sec. IIC below. ] For most trajectories

and negative integers n there will be some region
of negative t» t» where V"2"3 must vanish. Since
V"2 "3 is expected to be an analytic function of t,
and t„ it will then vanish for all t, and t, . How-
ever, for trajectories like the pion with n(0) & 0
we cannot exclude n = -1 terms by this argument.

C. Argument from Steinmann Relations

We have noted above that uniformity of inter-
change of limits and Begge behavior (or unitarity)
exclude nonsense helicity singularities in certain
cases. However, the existence of Sommerfeld-

t2-

I2

FIG, 5. Schwarz inequality as applied in Sec. II A.
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(2.6)Disc, A, -s»"'~o(sli tu t2)

The second order can also be obtained from Regge
behavior of the individual intermediate states if
s»/s, -~ is inside the physical region merely by
changing the relative orientation of the blobs in
Fig. 4 [the corresponding case for A, is studied in
detail below —see Eq. (2.12) and Ref. 18]. Taking
this limit on (2.1) and using (2.3) we obtain (2.6)
again.

(ii) Nonuniformity of interchange of Begge-helic-
ity limit for one Reggeon with Regge limit for an-
other Reggeon. The example (1.6) is an instance
of such a nonuniformity. An analogous example
forA5 1s

1
fx2 S (x y cx2

sls2/s» I/st (2 7)

First taking the Regge-helicity limit (1.12b) then

s, -~ (1.9a) yields s» 's, "' "2". The reverse or-
der of limits yields s»"2s, 1 '(s»/s, s, ). This
type of behavior cannot be excluded using the
Regge arguments of Sec. IIA since as s,-~, the
number of intermediate states increases and the
sum could diverge to produce such behavior. "

In order to exclude this type of behavior and pro-
vide another type of argument against nonsense
helicity singularities, we extend the Steinmann-
relation argument' of Sec. I. In Sec. I we recalled
that the Steinmann relation requires m =12, —k (k
is any integer). Now we show that, in fact, k must
be non-negative in certain cases. The argument in

many respects is similar to the Regge argument of
Sec. IIA but it is valid for s, large.

Again we consider the six-particle amplitude of
Fig. 2 in the single Regge-helicity limit:

X I 2 3(fit t21 t3P S2$ S3$ S23) ~ (2 4)

If we take the further limit s„s„s23-~ with s»/
s2 s3 fized we expect to obtain the same behavior as
in the triple-Regge-helicity limit which is analo-

Watson representations like (1.14) is not rigorously
established, ' so we would like to try to do without
the uniformity assumption. There are several
types of nonuniformities to be concerned about:

(i) Nonuniformity of intercha, nge of Regge and
helicity limits for the same Reggeon. When the
Regge argument of Sec. IIA can be applied, this is
excluded. For example, suppose s»/s, - ~ is in-
side the physical region for A, . Consider the two
orders of limits s, —~ [Regge limit (1.9b)] then
s»/s, - ~ and s»- ~ [helicity limit (1.11)] then s,- ~ which both lead to the Regge-helicity limit
(1.12b). In the first order Eq. (2.2) gives

gous to (1.13):
2~3 s 2s 3s 21+ 1 223(f t t )2 3 23 l, ~ 2t 3 (2 8)

where we have also picked out a single term s»"'.
The triple-Regge-helicity limit can also be
reached by taking the helicity limit q;,. —~ on the
triple-Regge form

Disc A6 sg

~23(fit f2& t3t ~121 123) l31) 1 (2.9)

ds2 ~ — ds2 P s2

(2.11)

as long as the integrals converge. A cut of finite
length thus naturally produces such inverse pow-
ers. We shall now argue that these singularities
would be in the physical region in (2.4). Such sin-
gularities are forbidden by the Steinmann relation
since the discontinuity in s, cannot have simulta-
neous discontinuities in the overlapping variables
s2 s3 and s» . Thus nonsense terms are exc luded
in (2.9) and probably are then also absent in (2.4)."

We now wish to show directly that the physical
region for (2.4) covers essentially all real s„s„
and s». To do this we parametrize the momenta
as follows. Let frame 2 be such that the interme-
diate state of mass v' sy is at rest and p, and q2

=p, +p,' are along the z axis. This differs from the
t, -channel center-of-mass frame by a boost along
the z axis. Similarly frame 3 has v' s, at rest and

p,' and q3=p3+p3' along the z axis. Since 4 s, is at
rest in both frames, they must differ by a rotation
A, (y3)R,(e,)R,(y2). In the physical regions for the
reactions p, +p, - -p,'+p, , and -p, —p,'- p,'+p, we
have t» t, &0 and y» I9» q, are physical angles of
rotation. We then find in the limit s„s»/s„s»/s,

where 14~ =s;1/s; s1. Thus the form (2.9) corre-
sponds to a nonsense term

fly

7l23

(2.10)

in the expansion analogous to (1.17). The particu-
lar ratios of invariants occurring in (2.8) or (2.10)
may appear peculiar to the reader unfamiliar with
these limits, but we will see below that they have
a very natural meaning. '4

The behavior (2.8) which allows the nonsense
term (2.4) to survive in the triple-Begge-helicity
limit implies nonpolynomial dependence in

Disc yA 6 in s„s„ands» since n; are negative
Such behavior generally would be expected to arise
from singularities in Disc, ,A, . For example,
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2 tIcos8 l +—
1 s j

1

s, -(s„/s, )[t, + t, —t, —2(t, t,)"'cosy, ],
s~ (s z3/sz)[tp +ti —

, t2 —2(tati) eosys],

s„-—"~[t, +t, +t, —2(t,t, )"'cosy,
1 1

—2(t, t,)"'cosy,

+2(t, t,)"'cos(y, —y, )1.

(2.12)

t, +t, —t, —2(t, t,)"'cosy, = 0.
This can be solved for physical y„ if

(t, + t, —t, )' [2(t,t,)"']',

(2.13)

or

A.(t„ t2, t3) = t,' + t2 + t~ —2t, t2

-2t t, -2t, t,

&0 (2.14)

Similarly, the other brackets in (2.12) can vanish
if &(t„ t„ t, ) & 0." Thus nonsense helicity singular-
ities are forbidden for t, such that X(t„ t„ t, ) &0.
Assuming t/'"&"2"3 is an analytic function of the t„
they are also forbidden for all t; by analytic con-
tinuation, since A, ~0 is a finite region in the t;.""

From (2.12) we see that a contribution to the
discontinuity in s, of spin J must be a polynomial
in s„s„and s» of total order at most J. Such
contributions then naturally give the terms in (2.8)
or (2.10) for positive n; Ho. wever, although any
given contribution contributes only polynomials in
s2 s3 and s», as s, inc rease s more and more
terms enter and the series could start to diverge
to produce terms with negative n;. Thus, whereas
the series must be convergent inside the physical
region, it could be the representation of a function
with a singularity outside the physical region. This
is a typical phenomenon with partial-wave expan-
sions.

However, the physical region actually encom-
passes essentially all real s„s„and s„. This is
because the coefficients of the large variables s»/
s, and s»/s, in (2.12) have linear zeros inside the
physical region, and thus slight variations in them
around zero can give essentially any value of s„
s3 or s23 Consider, for example,

in (1.16) is interpreted as representing a simulta-
neous discontinuity in s, and s» for large s„s„g.
Nonsense helicity singularities would modify this
toA, -(-s»)"' "(-s,) ' ""(-s,)", where n&0.
Since Disc, ,A, ~ (-s, )", the discontinuity in s, ap-
parently has a singularity in s, . However, since n
is a (negative) integer, this need not represent a
singularity for large s, inside the physical region,
and thus is not necessarily in contradiction with
the Steinmann relations. Complex singularities at
finite values of the invariant must also be taken in-
to account. Inverse powers are usually asymptotic
representations of singularities of finite extent lo-
cated at finite values of the invariant [see Eq.
(2.11)].

One might indeed expect that such singularities
exist in A, or A, and thus nonsense helicity singu-
larities are required. For example, the usual
box singularity (Fig. 6) is present for small s, and

s, . However, because s»»s, and s„ the nature of
this singularity is rather different than in the ease
of the four-particle amplitude. Indeed it is present
in the physical region —but only if approached from
(Ims, )(Ims, ) & 0. Since a Regge-type term like
(-s,)"~ 2'" represents a singularity whether ap-
proached from Ims, &0 or Ims, &0, it cannot rep-
resent singularities of this type. Furthermore for
this diagram there are also complex anomalous
thresholds which are closely tied to the above be-
havior of the double-spectral singularity, and
these also cannot be represented by Begge poles.
In general we expect Regge poles to represent only
normal threshold singularities. Begge cuts may
represent the higher-order Landau diagrams.
These points will be discussed further by one of
us

In this connection we would like to make a re-
mark on the relationship between nonsense helicity
singularities in the six-particle amplitude and the
five-particle amplitude. If particles aie Regge-
ized, A, can be obtained by taking the residue of
A 6 at Q 3

= 0 so the absence of nonsense helicity
singularities in A, shown in Sec. IIC eliminates
one source of them inA, . However, there is an-

S1

D. Singularities Other Than Normal Thresholds

Throughout this paper we have made the plausible
physical assumption that singularities in the as-
ymptotic behaviors of amplitudes are asymptotic
representations of the true singularity structure of
the amplitude. Thus the term A, -(-s'»)"'(-s, ) '

12

FIG. 6. Box diagram for A, .
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other source. The argument of Sec. IIC should
really be made for finite values of the invariants.
Thus there we wish to assume that s„s»/s„and
.s»/s, are very large but finite. Then there are
corrections to (2.12) of order O(1), O(s, ), O(s»/
s,'), etc. Since s»/s, is much larger than these,
(2.12) essentially still holds. However, we can on-
ly exclude singularities from a finite region of
O(s»/s, ) or O(s»/s, ). Thus singularities like s,'
= C(t„ t„ t,)s»/s, cannot generally be excluded for
C 10." These correspond to a behavior of the tri-
ple-Hegge vertex in (2.9) like

(2.15)

If C(t„ t„ t, ) were to vanish for n, =0 this would
lead to a nonsense helicity singularity in A, . How-
ever, singularities like (2.15) wouM be asymptotic
representations of singularities at sys2
=C(t„ t„ t,)s». These are not normal threshold-
type singularities and we do not expect them to oc-
cur in Regge or helicity expansions as we have
discussed above.

III. CONCLUSION

We have given arguments for the dependent na-
ture of singularities in complex helicity, i.e., they
are related to angular momentum singularities by

m=n, —P, (P non-negative integer) .

However, although helicity singularities do not
correspond to new dynamical objects, they do de-
termine distinct asymptotic limits. Thus through
their determination of helicity singularities, sin-
gularities in angular momentum determine asymp-
totic limits in addition to the conventional multi-
Regge limit.
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We add to the usual o. model a (3*,3) + (3, 3~) term which is bilinear in the scalar-meson fields and

study the behavior of the tree-approximation solutions as the explicit symmetry breaking is turned off.
We find that both c = —~and c 0 occur for the same mass spectrum, 0-8 mixing, and E~/I"„.
Solutions with different c values approach the symmetry limit differently, but in this limit one can
smoothly reach either a Goldstone pseudoscalar octet, or a symmetric vacuum, or neither for both
values of c. No clear indication is found that solutions are near a critical value of the mass parameter.

I. INTRODUCTION

The assumption that expansions in symmetry-
breaking parameters exist provides a basis for
study of approximate symmetries of the strong-
interaction Hamiltonian. For systems whose un-
derlying symmetry is chiral SU(3) xSU(3), ' the
question of the nature of the symmetry limit and
the existence of expansions in powers of symme-
try-breaking parameters about such a limit is
complicated by the Goldstone phenomenon' where
the solutions of the symmetric theory do not ex-
hibit the full symmetry of the Hamiltonian. Dash-
en' and Dashen and %einstein' developed chiral-

symmetry-breaking expansions and systematically
exploited the technique in deriving a number of
correlations among symmetry-breaking effects.
Li and Pagels' subsequently showed that Gold-
stone-boson intermediate states can give rise to
singularities in the symmetry limit, thus invali-
dating many attempts to extrapolate "soft pion"
theorems to the pion mass shell. In a study of La-
grangian models solved in the tree-graph approxi-
mation, Carruthers and Haymaker' noticed a dif-
ferent phenomenon which has the same negative
implication for expansions about a Goldstone sym-
metry solution. They found that vacuum expecta-
tion values in the v model' are multivalued func-


