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A method is given for quantizing the electron-positron field in the external field of a superheavy nucleus.

In essence we redefine the vacuum to be the state in which all negative-energy solutions of the Dirac
equation, including bound states, are occupied. Among other desirable features, this provides a natural

description of the instability of the state conventionally labeled as the vacuum and a continuity in the

physical description of the system as a function of the nuclear charge.

In the Coulomb field of a superheavy nucleus,
the most deeply bound electron orbit (lS, t, ) of the
Dirac equation reaches an energy of -mc' for
nuclear charge number Z, -169 and with further
increase of charge becomes unstable against sin-
gle-positron emission. A. fortiori, the normally
considered vacuum state in the presence of such
Bn external field is unstable against the emission
of two positrons. These phenomena have been
predicted in the literature from several distinct
viewpoints. ' ~ Furthermore, starting from the
well-known treatment of Kroll and Wichmann

(KW), ' all authors agree that the above conclusions
will not be qualitatively modified by the effect of
vacuum polarization. However, the formulation
of a consistent quantum electrodynamics for
Z& Z, has so fax not been given, and as long as
this has not been done there must remain some
lingering doubts concerning the above conclusions.
It is the purpose of the present note to suggest the
essential elements of such a theory. Not only will
this yield a cogent view of the aforementioned in-
stabilities which have so far been the center of
discussion, but it will also turn out that the pre-
vious arguments concerning vacuum polarization
require modification and are strictly correct only
when formulated in terms of the new picture.

We wish to quantize the conventional quadratic
Dirae Hamiltonian (h = c = 1)

ization. We start with the situation where V(r) is
the Coulomb field of the extrapolated charge dis-
tribution of the nucleus

V(r) = ZV(r)

and 137& Z& Z, . Then the spectrum of X consists
of the usual two continua E &m and E& -m, an in-
finite number of bound states with 0&E&m, and
a few bound states for —m&E&0. Let us imagine
that in the interval considered only the pair of 1S
states belong in the latter category. '

It is now embarrassingly evident that as soon as
the field is strong enough to yield bound eigen-
states of X of negative energy, one gains energy
by filling these states, and thus, in the example
considered, the eigenstate of II in which the two
1S orbits are occupied has a lower energy than the
conventional vacuum. Consequently, in our view,
it represents the most natural choice as a ref-
erence state for excitations. To develop this
standpoint, let u~' (r) be the one-particle eigen-
states of R with positive energy E„ndalet v(„" (r)
be those for negative energy (-)E~ including bound
states, v~ ~ (r). We shall simply extend the usual
picture in which unoccupied negative-energy states
represent positrons. We thus define the vacuum
so that an unoccupied bound state of negative en-
ergy represents a bound positron of positive en-
ergy. Formally we expand

H = (t(„(r) [(T. p+ Pm + V(r)] „8(t(a(r) d'r () ())-p)))"))))") (pq)g()&)))))&) (), )

and the new vacuum is defined by the conditions

where, however, V(r) may be a superstrong (ba-
sically Coulomb) potential and may also, as stip-
ulated, contain contributions from vacuum polar-

Up to a discarded additive constant, II takes the
form

B —~ g(&)~g(~ ) g +~ y(~)~y(~) gv X u
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and the vacuum expectation value of the charge-
density operator can be written

(7)

It is important to notice that in (7) all positive-
energy solutions contribute with one sign and all
negative-energy solutions with the other. This is
a sufficient condition for the formal applicability
of the calculational procedure of IQV. Applied to
a "reasonable" nuclear charge distribution of even
such large Z as presently considered, one obtains
vacuum polarization corrections which are rela-
tively minor emendations' to the given charge
density. This is self-consistent in the sense that
we may thus view ZU(r) in the conventional sense
as the potential measured in a gedanken electron-
scattering experiment. From the point of view
of the old picture, however, we are dealing with a
nucleus of charge Z+2 to which tmo 1S electrons
are strongly bound.

What other advantages accrue to the new choice
of vacuums First, it gives continuity of descrip-
tion as Z increases through the value Z, beyond
which the old choice and language are inapplicable.
Moreover, as additional negative-energy bound
states of X occur, we may again modify the def-
inition of the vacuum. ' Second, the old vacuum
state for 137& Z& Z, appears as an excited state
of the system, i.e., two positrons are bound to
the potential ZU(r) with positive total energy. As
Popov has shown, ' the negative-energy bound elec-
tron moves in an effective potential which is non-
monotonic. It is easy to see that the bound posi-
tron feels this same potential, whose attractive
part becomes shallower as Z increases, thus de-
creasing the binding energy of thepositron. Thus
in the present picture, the phenomena of insta-
bility of the vacuum and one-electron states for
Z= Z, are reinterpreted by the statements that the
positron bound-state wave function becomes un-
bound for this value of the charge and there can be
either two or one such bound positrons. Third,
the entire machinery of the Feynman-Dyson-
Schwinger version of field theory can be applied
for Z& Z, with the new definition of the vacuum.

Even though for Z& Z, the new choice of vacuum
becomes mandatory, for Z& Z, one can if one
wishes maintain the old description. In terms of
the latter, however, previous discussions of the
vacuum polarization based on the KW result are
incomplete. Let us consider the old vacuum state.

%e try to describe it by using a charge distribu-
tion extrapolated from observable values of Z. We
would then naturally say that we are talking about
a nucleus of charge Z+2. With this description,
in which the "Fermi level" is put at energy -m,
the old and new expressions for the vacuum polar-
ization can be related by a simple rearrangement
of terms T. hus, when the definition (7) is applied
to the old vacuum, the result can be rewritten in
the form

p,„(Z+2, r) = p„„(Z+2,r) +2I el+ Iv ) (r) I',

(8)

where the first term on the right-hand side has
the same formal structure as Eq. (7) except that
Z has been replaced by (Z+2). This means that
the finite part of the first term alone will yield
the EW result. ' There is, however, an additional
aspect to the argument. Since the total vacuum
charge must vanish, the first term on the right-
hand side of (8), besides effecting this minor
structural redistribution of the given nuclear
charge, must also renormalize that charge from
Z+2 back to Z. Thus, roughly speaking, the old
vacuum now appears as a nucleus of charge Z to
which two positrons are bound [the second term
of (8)]. But this is precisely our new view of the
old vacuum. It is perhaps fair to say that although
the effect of vacuum polarization in the domain
137& Z& Z, is not decisive quantitatively, it is
essential qualitatively from the point of view of
the old definition of the vacuum. If we could invent
a system with otherwise similar properties in
which the lowest bound level had a degeneracy
comparable with the inducing nuclear charge
number, the quantitative effects of vacuum polar-
ization would also be decisive.

We have implied above that quantization with the
new vacuum is de ~igeu~ for Z& Z, . This is not
strictly correct since we can in principle use any
complete set of states. Thus we can expand any
eigenstate for Z& Z, in terms of those for Z& Z„
and the latter can be constructed using the old
vacuum. Such a description underlies the treat-
ment of the instability of the one-electron state in
the neighborhood of Z= Z, given recently by Muller
et al.' and can also be used to extend their results.
This method turns out to be mathematically con-
venient for a restricted class of problems as long
as Z- Z, is not too great.

Note added in Proof. In addition to the references
cited in the text J. Rafelski has called to our notice
more recent references. Thus the results of Ref.
4 have been elaborated by B.MOller, S. Rafelski,
and W. Greiner [Z. Phys. 257, 183 (1972)j. These
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authors have, moreover, obtained independently
results in essential agreement with those given
here: cf. J. Rafelski, B. Mufller, and W. Greiner
[Nucl. Phys. (to be published)] .

The authors are deeply indebted to Professor W.
Greiner for his hospitality at the Institute for

Theoretical Physics of the University of Frankfurt,
where their interest in this problem was aroused.
One of the authors (L.F.) acknowledges the Alex-
ander Von Humboldt Stiftung for the support which
made his stay in Frankfurt possible. We are
grateful to %. Greiner, J. Rafelski, G. E. Brown,
and L. Wilets for stimulating and helpful remarks.

*Work supported in part by the U. S. Atomic Energy
Commission.

W. Pieper and W. Greiner, Z. Phys. 218, 327 (1969).
V. S. Popov, Yad. Fiz. 12, 429 (1970) fSov. J. Nucl.
Phys. 12, 235 (1971)].

3V. S. Popov, Zh. Eksp. Teor. Fiz. 59, 965 (1970) [Sov.
Phys. —JETP 32, 526 (1972)].

4B. Muller, H. Peitz, J. Rafelski, and W. Greiner, Phys.
Rev. Lett. 28, 1235 (1972).

5E. H. Wichmann and N. M. Kroll, Phys. Rev. 101, 843
(1956).

6From the calculations of Ref. 1, it appears that also
the 2P&&2 states have negative energies for Z = Z&. This

requires no modification in principle of the arguments
which follow, but only one of detail.

~This is substantiated by the numerical calculations of
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The interaction gDfy„)pl" for an SU(N)-singlet gluon and an N-component fermion is studied in a
space-time of dimension d = 4 —a, slightly less than four. Wilson s prescription for coupling-constant
renormalization is applied so that the theory is scale-invariant at short distances with anomalous

dimensions. General properties of the model at high energies are discussed by using Callan-Symanzik

equations. Anomalous dimensions of various operators including the symmetric and traceless tensors are
calculated to order c and are generally large except for the energy-momentum tensor. A large
correction to order e is also found for the parton-model prediction of the "e+-e annihilation" total
cross section. These results are qualitatively difFerent from those in ii,$' scalar field theory in which

these corrections are found to be very small. We also discuss briefly how a normal scaling Ward
identity may become anomalous in the limit e-+0.

I. INTRODUCTION

Wilson' has emphasized the relevance of the
Gell-Mann-Low renormalization-group method'
for strong interactions. Its importance lies in the
fact that short-distance behavior of operator pro-
ducts is controlled by the properties of the under-
lying field theory near the fixed point which is a
zero of the Qell-Mann-Low function even when
the physical coupling constant is distinct from
the eigenvalue. ' Based on the general properties

of the renormalization-group equations Wilson'
has proposed that strong interactions are scale-
invariant at short distances with anomalous dimen-
sions. These anomalous dimensions will, for ex-
ample, manifest themselves in deep-inelastic elec-
tron and neutrino scattering. However, the SLAC-
MIT experiment on deep-inelastic electron scat-
tering~' suggests that if anomalous dimensions
exist at all they are small.

Unfortunately none of the field theories in four
dimensions is known to possess a nontrivial eigen-


