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9We define the oscillator variable operators:

&1
———S23= 2«1q2+ 7r17r &,

j2=——S31= 4(q1 + ~1 —q2 —'r2 ),1 2 2 2 2

1Q= 4(q1'- 1' —q2'+ +2'»

&2= S2Q
= 2(&17r2-qiq2),

k3 —= S3p= 2(q1z1+ x~q2),

Sgp= 4(q1 +q2 + X1 + 7r2 )2 2

s„=—,'(-q, ~, + q, ~,),

S52 = 2(q17r) + q2z1),

S53 = ~(q1 + q2
—Yr1 - 7r2 ) .. =1 2 2 2 2

P A M Dirac, J Math Phys 4, 901 (1963)
11The oscillator part of the eigenfunctions is |Ii~"& (q,p)

= g&» (q)y, (q,p), where

4Q(q, p& = e~p ——(q1 + q2 ) + i ~ (q1 -q2')2 2

—2E—q1q2

and the functions Q~"& satisfy the differential equation

M
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We apply the formalism of our previous paper to the symmetry breaking of a field theory of currents with

an underlying SU(2) X SU(2) structure. We find that the form of the symmetry breaking is in one-to-one

correspondence with the nonlinear realization of the pseudoscalar fields; in particular, the requirement of
vanishing of exotic commutators uniquely leads to the nonlinear realization of the o. model. The existence of
canonical momentum for the pseudoscalar fields is established, and several examples are given; one of them

is the momentum of the cr model. The problem of extending this model to SU(3) X SU(3) is also discussed.

INTRODUCTION

The idea that weak- and electromagnetic-inter-
action currents govern strong-interaction dynam-
ics has received considerable impetus from the
success of the SU(3)-symmetry scheme' and cur
rent algebras. ' Carried to the extreme, this idea
would imply that azl strong-interaction effects can
be understood in terms of the properties of those
currents. There is, as yet, no compelling evi-

dence for or against this possibility; it is, how-
ever, interesting to investigate whether it is
theoretically possible to implement it, in partic-
ular, whether one can construct a field theory,
in which the basic fields are currents. This prob-
lem becomes more attractive because those fields
(or at least some of them) have directly measur-
able matrix elements, and therefore are closer to
observation than conventional fields. One hopes,
for instance, that some of the difficulties of con-
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ventional field theory might be absent in a field
theory of currents.

A very elegant theory of this type has been pre-
sented by Sugawara. ' In his model, one postulates
a set of commutation relations among the currents,
which are a generalization of the current algebras
proposed by Gell-Mann' to a unitary group SU(n)
or SU(n) SU(n). A notable feature of this algebra
is the absence of q-number Schwinger terms and
the commutativity of the space components of the
currents with each other. Then it turns out that,
unless delicate cancellations occur, the require-
ment of relativistic invariance puts severe re-
strictions on the possible form of the energy-mo-
mentum tensor 9'„„in terms of the current vari-
ables: it must be either bilinear or an infinite
polynomial in the currents, and i~ must be syrn-
metric zvith resPect to the underlying SU(n) or
SU(n) S SU(n) group 'T.he resulting form of e'„„
in the case of an underlying SU(n) xSU(n) algebra
generated by vector currents V'„(x)and axial-
vector currents A'„(x)is'

e'„,=- ——([V,'(x), V '„(x)}+ [A.„'(x),A', (x)}

e„,=e'„,+ v„„y(s,p), (2)

where B'„is given by (1). We further assume that
the S's and P's commute among themselves and
with the space components of currents, while their
commutators with the time components of currents
are functions of 8's and I"s alone. This latter
assumption, along with the PCAC-PCVC (par-
tial conservation of axial-vector and vector cur-
rents) condition that identifies the S 's and P 's
as Heisenberg (interpolating) fields for scalar
and pseudoscalar particles, leads directly to the
notion of nonlinear realizations' for such fields.
By extensive use of Jacobi identities, we establish

—5„„[V' (x) V ' (x) + A' (x)A' (»] ), (1)

where curly brackets denote anticommutators.
This form is seen to be consistent with relativ-
istic invariance and leads to conserved vector and
axial-vector currents.

Since many of the currents involved in (1) are
not conserved in nature, it is desirable to modify
the model in order to allow for this nonconserva-
tion. This modification is not unique; in the pres-
ent paper we will follow the prescription developed
by us in the general ease.4' In our model, the set
of dynamical variables is enlarged to include the
divergences of the nonconserved vector and axial-
vector currents, denoted by S' (x) and P'(x), re-
spectively. Furthermore, we assume that the
symmetry-breaking term in 6„,is a world scalar
and a function of S'(x) and P'(x) only. Thus our
energy-momentum tensor has the form

a set of functional differential equations relating
the form of the symmetry breaking to the non-
linear realization for S's and I"s. In the case of
SU(2)(with conserved I,) and SU(3) [with conserved
SU(2)], which we examined in detail, we found
that the equations determine the breaking term
uniquely, once the form of the nonlinear realiza-
tion is given, and vice versa. A detailed account
of the model can be found in I.

In the present paper, we apply our model to the
physically more interesting case of SU(2) @SU(2),
with the vector SU(2) subgroup (isospin) conserved.
We find again that the constraint equations uniquely
determine the breaking once the nonlinear realiza-
tion is given and vice versa. Our main result is
that the vanishing of exotic commutators (i.e.,
commutators carrying isospin larger than unity)
fixes the form of the breaking term and leads
uniquely to the nonlinear realization of SU(Z)

SU(Z) characteristic of the c model. ' The plan
of the paper is as follows: In Sec. I, we apply the
model to the case of SU(2) g SU(2), establish the
differential equations involved, and solve these
differential equations for the case of vanishing
exotic commutators. In Sec. II, the problem of
the existence of a canonical momentum to the P's,
consistent with the equations of motion, is exam-
ined. In Sec. III, the formalism is applied to the
case of SU(2)CSSU(2), with only the third compo-
nent of isospin conserved, and of SU(3)SSU(3)
with isospin conserved. The difficulties in solving
the problem for those cases are pointed out.

[v'„(x),v'„(y)]

= [A„(x),A', (y)]

= '~.[~~4 V.(»+.&,.fv„(x)+g„.V".(x)]}

xg(x —y)

+ cp'(5„,8", +6„s"„)5(x—y ) . (3)

We assume that the vector SU(2) subgroup is con-
served, i.e.,

&„Vq(x)=0,
8 A'(x) ~P'

Furthermore,

I. THE BREAKING OF CHIRAL SU(2)@SU(2)

In this section, we apply the formalism of Ref. 4

to the case of chiral SU(2)I31 SU(2} with conserved
isospin. We have three vector currents V&(x) and
three axial-vector currents A'„(x)(i =1, 2, 3) satis-
fying the Sugawara algebra. "
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[P'(x), P'(y)] = [P'(x), l".(y)]

=. [P' (x), A.'(y)]

=0 (a=1, 2, 3),

[ V,'(x), P'(y)] =i~"'P' (y)5(x-y),
[P' (x), A.,'(y) ] =i R" (x)6 (x - y ) .

(5)

(6)

(7)

Equations (5) constitute one of the assumptions
of our model. ' Equation (6) follows from (4), and
we further assume that R" (x) in (7) is a function
of the P's only. » (R" is symmetric and Hermit-
ian. ) Anou ledge of R" (x) &vill fix the nonlinear
transformation lau of the P's.

Our energy mom-entum tensor is given by (2):

8„,= —
2 ((V„'(x),V', (x)j + [A„'(x),A'„(x)j

1

—&„,[&,'(x) V,*(x)+A,'(x)A,'(x)] }
+ 5„,y(P}.

As pointed out in I, the equations of motion of
the currents remain the same as in the symmetric
theory (see Eq. (14) of 1). The equation of motion
of the new variables P'(x) is:

s„P'(x) =—((R"(x), A'„'(x)] + e, ,„(P'(x), V'„(x)j}.I

becomes trivial:

H(&u, t ) = —t 'F ((u) +H ((u),

I.(u), t ) = t 'F((u) + L((u),

(12a)

(12b)

(12c)Z(~, t ) = t F(~) .
H (~) and L (~) are defined through Eqs. (12a) and

(12b). They are related to F(~) and Q(~) through
the set of differential equations:

P'(+)[H(v)+~F(~)] =1, (13c)

where a prime denotes differentiation with respect
to co. These are the basic equations of our model.

Knowledge of any one of the functions H, L, F, or
Q comPletely determines all the others thxough

Eqs. (13); to see this explicitly, define new func-

tions:

Then Eqs. (13) have the form

H (~) = 2L (4)) + (dF((d),

2H((u)F((u}

+ [H(~) + (uF((u)] (&uF '(u)) H'((u-)] = 2, (13b)

Following I, we choose a spherical basis in iso-
spin space:

Vp =—V' +iV V =—V

with similar definitions for A'„,P', A'„, and P,
and define (we drop the 5 functions from the right-
hand side for simplicity):

[P+ A+] -=(P+)'F

[P', A-] =H,

[P', A'] -=P Z,
[P', A ] =—L.

(10a)

(10b)

(10c)

(10d)

+, II, E, and 1- are functions of the P's only,
and they are Hermitian. ' Gur main task is to con-
nect those functions, which govern the nonlinear
transformation of the P's, to the symmetry-break-
ing term g. The equations relating them can be
obtained from Appendix B of I. It turns out that
they take a particularly simple form when ex-
pressed in terms of the variables:

G =(2e')-',

D(G -D) —2~GD' = ~.

F((u) =0. (14aj

Then Eqs. (13), along with Eqs. (12), yield the
unique solution:

K(ap) =0,
H((u) = 2L((u)

= 2(o. —(u)'",
p((u) = —(n- (u}'"+en,

(14b)

(14c }

(14d)

where o, is an integration constant, and in (14d)
we used the requirement the Q(0) =0 (symmetry
limit). Notice that Q(&u) is positive definite as
given by (14d).

Going back to (7), we find that

for which the above statement becomes obvious.
As a physically interesting example, let us

solve equations (13) for the case of vanishing ex-
otic commutatoxs. From equation (10a), this re-
quirement implies:

co —=P'P' R"(x) = 5" (n —(u)"' (15)

Then P and F are functions of ~ alone (i.e., iso-
scalars), and t dependence of the other functions

so that the nonlinear transformation of the P's be-
comes

[P'(x), Aj(y)] =i5 "(n —(u)"'.
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This is precisely the transformation obtained in
the a model. ' Ou~ nzodel, along saith the assump-
tion of vanishing exotic commutatows, Leads

uniquely to the o-modeL xeatization fow' the pseudo-
scataw fietd.

II. EXISTENCE OF CANONICAL MOMENTUM FORE'S

As is well known, the symmetric Sugawara the-
ory [Eq. (1)] is not canonical, i.e., there exists
no canonical momentum for the currents V'„(x)
and A„'(x)consistent with the equations of motion. '
Since, in our model, the equations of motion of
the currents remain the same, the above result
still holds'; in this section, we want to investigate
the possibility that the P's are canonical, i.e.,
that there exist operators w'(x) such that'

[ w( )x, P'(y)] =- 5 "b(x —y).
We will restrict ourselves to the solution found

for the case of vanishing exotic commutators, i.e.,
the transformation properties of the P's are given
by Eqs. (6) and (16). The main task is to find a
w'(x) such that (17) is compatible with the equation
of motion (9); in fact, taking space derivatives
of (17) on both' sides and substituting (9) on the
left-hand side, me get the constraint equation:

—cb '~ S,' 5 (x —y ) = [ w'(x), A.' (y) ] (n —(u) '"
P'(y)A,'(x) 5(-+( )i)2bx —y

—&;, v. (x)&(x-y)

+ c, ,P'(y)[w'(x), V", (y)],

(18)

where a is a Lorentz index running from 1 to 3.
We first look for a canonical momentum of the
general form:

w'(x) =Z" ((o)v,'(x) + G"((d)A,'(x),

where I" and t"" are functions of v only. Equa-
tion (17) then gives the restriction:

(20)

When we substitute (19) into (18), and use the re-
lations

[ S(",~P'(x), Vi(y)] = ~,.„P"(y)s(*.'5(x- y ), (21a)

[ s(x)Pi(x) Ai(y)] bi j [(w ~(y)j 1/2s(x)b(x y )

(21b)

w'(x) = —5"+ P'(x)P'(x) S4P'(x) .c ~ 1
Q Q —M

(23)

One easily verifies, using (21a)-(21b), that the
form (23) satisfies both requirements (17) and (18).
This is precisely the form of the canonical mo-
mentum in the nonlinear 0 model. Thus the anal-
ogy between the o model and our formalism is
quite far- reaching.

In conclusion, we found that although the
Sugawara theory is still noncanonical (since the
V's and A's have no canonical conjugate) it is
possible to find canonical conjugates to the pseudo-
scalar fields, of which (19), (22), and (23) are
special examples.

III. EXTENSIONS OF THE MODEL

In view of the success of the model thus far in
obtaining unique nonlinear realizations, it is
tempting to try to apply it to more complicated
cases. A physically very interesting case is that
of SU(3)8 SU(3), with only the vector isospin sub-

group conserved. Such extensions have been at-
tempted without much success. To understand
the main difficulty involved, let us consider the
simpler case of SU(2)I3 SU(2) with only the third
component of isospin conserved.

In this case, the current algebra is still given

by (3), but, besides the three pseudoscalar fields
P'(x) defined by (4), there will also be two scalar
fields S "(x) and S (x) corresponding to the non-
conserved vector currents:

(24)S'(x) = s„V'„(x).
The commutation relation (6) will not hold any-

more; in fact the 8's and I"s will transform non-

linearly under both the vector and axial-vector
SU(2) subgroups [except for the third component
of isospin, V,'(x)]. By following the general tech-
niques described in I, we can show that @ can be
written in two different ways; either as

y=P[X, X, Y, P']+P+[X,X, Y, -P'] (25a)

or

particularly simple special case of (19) corre-
sponds to g"=0

1
w'(x) =( )„,A,'(x).

Another possible form of the canonical momentum
ls:

where S(",~ =—&/Sx„a=1, 2, 3, ' we find that (18) is
satisfied if (20) holds. Therefore (29) and (20)
define an accePtabLe canonicaL momentum. A

Q=G[X, Y, Y, P'] +G*[X,Y, Y, —P'],
where

(25b)
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~=(S'+P')(S +P ),
g=-(S"-P")(S--P-),

I'-=(S +P )(S -P )

I.= (S'- P')(S +P )-, -

XX= YF,

(notice that all P's commute with all S's as well
as among themselves). All these variables have
zero third component of isospin, as they should.
Because of this ambiguity and the fact that the
variables are related by the nonlinear relation
(26), the form of P is not well defined. In partic-
ular, the relation between P and the nonlinear
transformation properties of the scalar and pseu-
doscalar fields may not be one-to-one. The same
kind of ambiguity appears in the case of SU(3)
8 SU(3) when only the vector SU(2) is conserved,
and have been noticed by the authors of Ref. 11.

In conclusion, we found that the formalism can
be applied to the case of chiral SU(2)II SU(2) with
conserved isospin; in this case a one-to-one con-
nection between the form of the symmetry-break-

ing term and the nonlinear transformation property
of the pseudoscalar fields is established. In par-
ticular, imposing the vanishing of exotic com-
mutators leads unambiguously to the commutation
relations of the nonlinear 0 model. The existence
of a canonical conjugate to the pseudoscalar fields
was established in Sec. II, and several examples
were exhibited. One of them was identical to the
canonical momentum in the 0 model.

Extension of our model to more complex cases,
like that of SU(3)8 SU(3) with only the vector SU(2)
conserved, leads to ambiguities and it is not clear
whether it provides a one-to-one connection be-
tween the form of the symmetry breaking and the
nonlinear realization of the scalar and pseudo-
scalar fields. It may be that the ambiguity is con-
nected to the fact that, e.g. , the vanishing of ex-
otic commutators does not fix uniquely the repre-
sentation of the symmetry-breaking term in this
case. [In SU(3) &&SU(3) vanishing exotic commuta-
tors allow a symmetry breaking which can be
either (3, 3*)+(3*,3) or (8, 1)+(1,8) or a mixture
of both. ] These questions are being further in-
vestigated.
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