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ing, since the transformations of Ref. 2 indicate that
the general bound x-space potential a&(x) transforms
into an unbounded hyperspherical potential A, (q). Note
that although the upper bound of Eq. (112) diverges
for / = 2, exact calculation for this case, taking gauge
invariance properly into account, indicates that
5&& ~tA] is convergent.

9A. Salam and P. T. Matthews, Phys. Rev. 90, 690
(1953); J. Schwinger, ibid. 93, 615 (1954). These
authors actually make fewer subtractions than we do
in the argument of Eqs. (116)-(118),because they
claim that Tr(KE~) is finite. However, although
Tr(KE~) is formally a four-point function, it does not
have the propagator and vertex factors arranged in the
correct order to be the usual gauge-invariant four-
point function. Since the four-point function is only
conditionally and not absolutely convergent, this sug-
gests that Tr gX~) will be divergent, and that the
Fredholm argument of Matthews and Salam and Schwin-
ger will need additional subtractions to be made precise.
B. Ja. Levin, Distribution of Zeros of Entire Functions,
Translations of Mathematical Monographs Vol. 5 (Amer-
ican Mathematical Society, Providence, R. I., 1964),
p. 17. I wish to thank A. S. Wightman for conversations
which suggested the argument of property (iv).

~~We note that our argument fails when the number of
modes kept is infinite. As NI, —~, the factor I'(n + 2N~)/
1(2N~) in Eq. (26) approaches unity, and so Eq. (126)

becomes

Although this equation no longer contains a combinatoric
factor which grows as nt for large n, we can draw no
conclusion about its radius of convergence, because
the estiInate of Eq. (124) for an upper bound 8 . on

lim sup(su~~"~(""

diverges as A . Nonanalyticity results related to
ours are given by E. R, Caianiello, A. Campolattaro,
and M. Marinaro [Nuovo Cimento 38, 1777 (1965)] and
D. Kershaw (unpublished).

~2The imaginary contour of course lies outside the
sector of Eq. (129), and hence cannot be developed
in an asymptotic expansion in e by direct term-by-term
integration. It may still have an asymptotic development
agreeing with perturbation theory after an appropriate
analytic continuation.

~3S. Coleman and S. B. Treiman (unpublished). Their
argument takes into account the presence of the asymp-
totically subdominant parts of zv&, which give rise to a
"background" amplitude integral which is analytic at e„.

l4This clustering is implied by Thm. 11 on p. 21 of Levin,
Ref. 10.

~F. J. Dyson, Phys. Rev. 85, 631 (1952).
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The consequences of the large magnitude of the bare coupling constant in Wilson's theory of critical
phenomena are examined for renormalized Geld theory in 4 —& dimensions. The scaling behavior of the
correlation functions, the relations among critical exponents, and the existence of a scaling equation of
state, regular in the temperature around T„are then obtained in this framework. Some corrections to
the scaling laws are also discussed and are shown to be dependent on another exponent.

I. INTRODUCTION

In a previous work' we have studied the existence
of asymptotic scaling forms for the correlation
functions near the critical point within the frame-
work of %ilson's theory' in 0=4 —e dimensions.
The main tool was the use of renormalized per-
turbation theory and of the Callan-Symanzik equa-
tions. ' All renormalizations were performed at
zero momenta. It was shown then that the renor-
malized coupling constant was fixed at a nontrival
solution of an eigenvalue condition simply because
one lets the bare coupling constant go to infinity.
This corresponds to the physical situations in
which the bare coupling is measured in units of

the. inverse lattice spacing a ', whereas the mass-
es and relevant momenta are proportional to the
inverse correlation length g ', and to the fact that,
in the vicinity ot' the critical point, t is much
greater than a.

However, the scaling behavior of the correlation
functions is not sufficient to obtain all the scaling
laws. En addition there are the Widom-Kadanoff'
relations among the critical exponents; there is
also an equation of state, i.e. , a relation between
the applied field H, the magnetization M, and the
temperature T, in scaling form:

a (&- r)
t
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In Refs. 5 and 6 the exponents P and 6, as well as
the function f, were calculated in powers of e,
using %'ilson's original bare perturbation theory
with a momentum cutoff A. It was then verified
that P and 5 were in agreement through the scaling
laws, with the value of g and y previously calcu-
lated by Wilson. ' ' Here we try to understand in
the framework of renormalized perturbation
theory, where no cutoff is needed, why these re-
l.ations are satisfied, and why there exists an
equation of state in the scaling form (1). All the
static scaling laws can, in fact, be derived in
this formalism. The assumptions which enter in
these derivations are justified order by order in c.

Furthermore, it turns out that the same methods
are useful to look for possible deviations to the
scaling laws. ' Let us mention the first correction
in a/r to the spatial correlation functions, correc-
tions to the power behavior in T —T, of the corre-
lation length and of the susceptibility, corrections
to the equation of state in stronger fields, etc.
These deviations are governed by a "sub-critical"
exponent' ~, which is calculated here up to order
Q3

Section II is a summary of earlier results. In
Sec. ID a more general renormalization scheme
is introduced, which turns out to be useful in the
following. It also enables us to make the connec-
tion with the approach of Mack&0 and Schroerii to
the same problem. " Section IV is devoted to the
derivation of the existence of a scaling equation
of state" and of its properties. In Sec. V, cor-
rections to scaling laws are discussed. Some of
the calculations are given in the appendixes. In par-
ticular, Appendix 8 contains a derivation of the
connection between the correlation length and the
temperature, and Appendix D is devoted to the
logarithmic corrections in four dimensions.

II. SUMMARY OF PREVIOUS RESULTS

Z (y2)2 (2)

where Q2=Q,"[p (x)]2, N being the number of com-
ponents of the order parameter, and u is a dimen-
sionless coupling constant.

When d is smaller than four, this theory is
super-renormalizable and Z, and Z, are finite
quantities. Nevertheless, in order to obtain finite
limits when e =4- d goes to zero, we perform all

We shall first review the notations and results
of a previous study' of scaling laws in 4 -c dimen-
81ons.

The renormalized Lagrangian" density is
lf

Z(x) = --.' Z, Q(e, j)2+m2y2 — (Z,m, '-m2)y2

the renormalizations needed in 4 dimensions. If
we call I'(")(P„.. . , P„;m, u) the one-particle irre-
ducible vertex functions" (I'" is the inverse prop-
agator, 1~4) the amputated 4-point function, etc.),
we choose the renormalization conditions to be

I'2)(p, -p;m, u) i,2, =m', (3a)

BP
——,Z'2)(P, -P; m, u)i2, ,=1,

I'(4i (0, 0, 0, 0; m, u) = um ' .

The vertex functions I' " satisfy the Callan-Sy-
manzik (CS) equations':

m +P(u) ———y, (u) I'" (P;;m, u)

= [2 y, (u)]m'~1'"'(p;; m, u), (4a)

d uZ, (u)
8(u) = -e —&n

du Z, '(u)

y (u) =P(u)
d lnZ3

It is important to keep in mind the statistical-
mechanical origin of the problem. In particular,
the bare coupling constant

g, = m ' uZ, (u)/Z22(u)

is given a.s g, =u,A', where u, is dimensionless and
A 1s a mass. This mass 18 of 01der Q, where 0
is the lattice spacing, and it is then very large
compared to the mass m and to the physical mo-
menta, which are all of order g '. In Ref. 1 it
was shown that the fa.ct that A is much greater
than m fixes u to a value u„which is the solution
of P(u) =0 and P'(u)) 0.

Then the vertex functions can be obtained as
power series in u„, which is of order &. In addi-
tion, their asymptotic behavior for p»m, i.e. ,
distances much smaller than the correlation length

(, is governed by the CS equations (4a) with a
right-hand side which may be neglected in this
limit. We thus obtain

(m -"-g r'.",' p,.;m, u„=O,
em 2

With

where the hI"(" are n-point vertex functions with
one mass insertion normalized by

ai'"(P=o;m, u) =1.
The AI' " are negligible, order by order in per-
turbation theory, with respect to I"" when all
the momenta are much larger than nz. The func-
tions P(u) and y(u) are finite even when c vanishes,
and they are defined by
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'6 =-y2(u„) .

Integrating Eq. (6) we find

I (n)(gp .m u ) ~ g((-n(4-2+ 2)/2 (10)

where the right-hand side contains an extra mass
insertion and is then also negligible, when the
momenta are large, with respect to the left-hand
side. The function y4(u) is computed from

Similarly it will be necessary to consider the
vertex functions, with one (t)2 insertion, of the
type ((P2(y)(P(xl) ~ ~ ~ (())(x„)). The corresponding one-
particle irreducible vertex functions I' '" ((I;P, ,
. . . , p„;m, u), which appeared already for (I =0
in the right-hand side of (4a), are renormalized
with the condition

I" '&(0 0 o. m u}=~i")(0 0 ~n u)

This means that an additional wave-function re-
normalization Z4(u) (finite in d(4 dimensions) has
been introduced. To be precise this means, in
terms of the bare vertex functions, that I' '"
=Z",/'(Z4/Z, )I'(„',"i. These functions satisfy the
CS equations:

c) 8 8
m —„—+P(u) —— ——1 y (u) —y (u)8m eu

gp(l, n) (12)

( ) ( )
dlnZ4(u)

dQ (13)

For u = u„and when the momenta are large, the
integration of (12) gives

p(l, n)(y~. yp . u ) y(((-2+ 2)(1-n/2) -y4(N )

(14)

It will be shown in Appendix B that y4(u„) is re-
lated to physical properties of the system through

p-1
y

= 2 —)7+y4(u„), (15)

where v is the critical exponent which governs the
divergence of the correlation length when T goes
to T, . The results of the e expansion of these for-
mulas are":

e(f)/+ 2) 6(%+3) 36(3%+14)(%+3), 12(5X+22), (%2+ 222%+ 560)

(16)

l) =y, (u„)

(K+ 2) 6(3N 14+) 1 1 24(ur+ 22)1+
(N 8). —

8
e+

( ), (-8~~N N' + '+RNllNO + R8 N4) 8—8,1(8) E

+ O(e') .

III. RENORMALIZED PERTURBATION THEORY
WITH A LARGE BARE COUPLING CONSTANT

Previously' we have discussed what happens in
the massive theory with subtractions made at zero
momentum. This was sufficient to describe the
scaling laws in the critical region above T, . In
some cases, and in particular for the equation of
state in the critical region, it is necessary to go
through T, . This corresponds to a correlation
length which becomes infinite, and the mass m

vanishes (Appendix 8). Therefore it is necessary
' to make the subtractions at an external mass p,

in order to avoid infrared divergences. This will
also allow us to make the connection with a differ-
ent approach followed in Hefs. 10 and 11. Specific-
ally, the renormalization conditions will be

(i7a)I'"(P, -P;m, u, p)i.2 .=m2,

I'"(p, -p; m, u, p)i, =„2m2' p, '+,

I' "'(p„.. . , p„m, u, p) i, = u(m'+ p2)'/',

where 8 is the symmetry point p, p =2p2(45. 1).
The new vertex functions 1 " are related to the

previous ones (which correspond to the choice ll
=0) by

(i7b)

(17c)

I'"'(p„m, u, p) = [Z(ll/m, u))" ' Z'"'(p,.; m, u) .

(is)

m'= Z(p/m, u)m', (19)

Once p, is chosen, the conditions (17) and the
relation (18) determine m, u, and the function Z in
terms of m, u, and p, . The results are:
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= (m'+ p. ')'~'uZ, (Z,) '. (22)

And now we remember that A is much larger than
m, (or equivalently a«$). This then fixes u to
some value u„, up to a term which vanishes with
m/A. It was shown in Ref. 1 that u —u„ is propor-
tional to (m/A), where

~=P'(u„) .

But, from Eq. (22), it is clear that concerning the
theory renormalized with the conditions (17), two
possibilities are still opened:

(i) p is taken'much smaller than A; then the
sit ation is similar to the previous one, i.e., u
is f xed at some value u„(which depends on the
ratio m/p).

(ii) p is taken of order A; then u remains a
function of u, and is not fixed to any special value.
When m =0, this is how one recovers the case
studied in Befs. 10 and 11.

Let us examine separately what happens to the
vertex-functions in these various situations.

(a) If p. =0 (or p, «A), for large momenta P; »m
the right-hand side of Eq. (4a) is negligible and
for u=u„ the asymptotic behavior is given by Eq.
(10}. In this case, it is instructive, if A is not
strictly infinite, to compute the first correction
in m /A (Sec. V), which gives for F~')

F ' (P m, u} =F„' (p; m, u„)

x ) +A{u,)(—) +B{M,)(—)
(23)

The value u = u„of the coupling constant is un-
stable for the short-distance limit since &u=P'(u„)
is positive. ' This fact is reflected here by the
appearance of a correction term which, for p» A,
is larger than the fir'st one. Nevertheless it may
indeed be neglected in the range m «p«A.

(b) The other possibility is to take p, of order
A. For m =0 it has been shown in Refs. 10, 11
that scaling laws hold in the long-distance limit
p«p, for an arbitrary value of the coupling con-
stant u (in some range around u„). Let us note

Z(p jm, u) = y, '[F '
(P, -P; m, u) (p2= g2 m'] ',

(20)

(m'+ p, ')'~' u = 1 {'~(p m u) ~~

x[Z'"(P;m u)1~2=„2-m'] 'p'.
(21)

The bare coupling constant g, =u,A' may be ex-
pressed in two different ways, in terms of the re-
normalization constants of the theory

u, A'=m'uz, (u)Z, '(u)

In the same limit the corresponding behavior of
Z(y/m, u) is established in Appendix A, where it
is shown that it behaves as B(u)(p jm)".

For u close to u„we may expand F " as:

F{"'(p m u 1'{.)

where

I",", 1 + (u —u„)—ln I' ~"
l~„,(25)

m«p« p Bu

F " =Z„"~'(p/rn, u)F " (P„m, u„') .
The asymptotic behavior of I'~" is given by Eq.

(10). For (s/su) lnF~"~~„„, we obtain it from the
CS equation (4), after differentation with respect
to u. The combined results yield

(26)

"Y ( )~(—)
2 co p,

The functions b " have the dimension of a mo-
mentum raised to the power &, and thus represent
a small correction only if P«p, [which is the
equivalent of the condition p«A of case (a)]. The
mass m is related to m and p, by (Appendix A)

m2
B(u)(p/m)" .

m p/m»l
(28)

In the leading term of Eq. (27), m has disappeared
and the result coincides with the result of the
massless theory. This was expected since the
I' " functions are infrared-convergent when m

goes to zero.
This shows that, from both points of view

(i) g= 0, m/A«1

(ii) u/A-1, m jp«1

that the condition p«p. is indeed satisfied by the
physical momenta since p. is of order A.

If nz does not vanish, the easiest way of obtain-
ing the vertex functions I' " is to relate them to
the F~") through Eq. (18). In particular, this equa-
tion enables us to determine the behavior of 1 "
for the range of momenta m, m «p«p, , for
which the I'~" may be replaced by their asymptotic
form at short distance. Furthermore Eq. (20)
shows that the large-(p/m) limit of Z(p/m, u) is
also related to the short-distance behavior of I'~' .

In addition, from Eq. (21), we shall derive in
Sec. V that, when p jm is large and u fixed, u ap-
proaches u„according to

(24)
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we can derive the same scaling behavior of the
correlation functions, and obtain the first correc-
tions. In the next sections, the second possibility
will be exploited, because we need the equivalent
of a cutoff to fix the scale and the renormaliza, -
tion-group equations are much simpler with that
scheme than with a momentum cutoff.

IV. EQUATION OF STATE

II/M5 (d+ 2) / 2 —6(d -2) / 2

y(Mm 2/(1-6) 2/( &-x) -(d-2)/2) (3o)

is satisfied.
The renormalization-group equations (18)-(21),

together with the CS equations, will enable us to
derive the relation (30).

We consider the Legendre transform of the con-
nected vacuum-to-vacuum amplitude (or free en-
ergy) in presence of a uniform source whose ex-
pansion is

"M"
r(M; m, u, t() =g, I" ")(P; = 0; m, u, p), (31)

nt

The equation of state relates the magnetization
M to the applied field JI and the temperature T.
In the vicinity of the critical point, scaling laws
postulate that the system is characterized by a
single thermodynamic parameter, for instance
(T —T,)M'/8, and the equation of state takes the
form

a/M =f((T —r, )/M'/8) .
In order to study this relation, a source term H(()

is added to the Lagrangian (2). We are thus in a
situation identical to that of the linear o model, '6

with the symmetry broken linearly. The renor-
malization of this theory has been discussed in
great detail, "and some of the results obtained
there will be used in the following. The expecta-
tion value

(29)

is then computed in terms of IJ, m, u, and p, . If
we then eliminate m in terms of the temperature
(Appendix 8), we shall obtain the equation of state.

In a first step, we want to show that the scaling
relation

" M"
I'(M; m, u, p, ) =g

(
Z "/ '(u; t/, /m)

x r(")(p, =O, m, u).

By dimensional arguments we know that

r '"'(p, = 0, m, u) = m'-'"/""-" C(")(u) .
This, together with Eq. (33), implies that

MZ"'I'(I; n~, u, u) =I'I '2 (u; u/m)u (, ,7-, , u),

r(M; m, u, t/, )
- a(u)m'M2(q/m) 2

It" '(u)Mxu, „, (p/I)', u„). (36)

We can now eliminate m in terms of m by Eq.
(28), and Eq. (36) takes the form of Eq. (30) pro-
vided we identify 5 with

2(2 - )))
d —2+'g (37)

which is one of the Widom-Kadanoff scaling laws.
In order to obtain the equation of state, it re-

mains now to eliminate the mass m in terms of
the temperature t = T —T, . In Appendix 8, it is
shown that m is proportional to the inverse of
the magnetic susceptibility and therefore m' is
proportional to t . Similarly, it is shown that m,
which is proportional to the inverse of the correla-
tion length $, behaves like t', where )/=y/(2 —))).

We shall now derive some properties of the func-
tion Ii, which entered in Eq. (30).

(i) Let us first notice that the equation of state
(30) obviously satisfies Griffiths's property"
which requires that the expansion

where m and u are related to m, u, and p, by Eqs.
(19)-(21).

We are now again interested in the limit m/t/. «1,
with fixed u. The behavior of Z is known (Appen-
dix A) and in the function 4, provided one consid-
ers magnetizations in the range M/t), ' '/'«1,
the coupling constant u may be replaced by u as
discussed in Sec. V. Thus in this limit, Eq. (36)
becomes

in terms of which the field is obtained as

8
I'(M;m, u, p) .

8M~
(32)

a/M' ga (t/V"')&
1

exists for t/M' 81arge, with

(38)

In these formulas, the I'~" still refer to the sym-
metric theory without source. Now, using Eq.
(18), we can replace (31) by

(39)

This means that there exists an expansion of the
form



APPROACH TO SCALING IN RENORMALIZED PERTURBATION. . . 2423

H/ ( + )/2=(m/ )2()/(('

00 —2' -1
g M 2/(: &-»- «-2&/2

1 -m
'"

J—.n~-.) t'

(40)

argument gives in addition

r(M, m) = m'M'h(y},

with

y =Mm'~2-'

(43)

for Mm' ' small. But this is an immediate con-
sequence of Eqs. (31)-(32) for M small.

(ii) At T = T„where m vanishes, it is known
that II is proportional to M where, according to
the scaling laws, 5 is given by Eq. (37). Techni-
cally it requires to show that the function E(y) of
Eq. (30) has a finite limit where y goes to infinity.
A more explicit derivation will be given in the
next paragraph but it is clear that this limit exists
since it corresponds to the existence of the zero-
mass theory renormalized at an external mass p, .

(iii) An important physical property of the equa-
tion of state is to be regular around x=0, where
x = t/M '/ 8, in such a way that a single function
describes the two regions T & T, and T& T, . This
is not obviously true since the limit x goes to zero
now corresponds to a large M limit, and the rest
of this section is devoted to the discussion of this
property.

We first start with the CS equation (4) at u=u„:

m ———q r (p mu)(
9 n

em 2 gP

= (2 —~)m'~r &")(P„m,u„),

and introduce the generating functionals:

and for y large Eq. (42) gives

(2-q)h„(y) -(1- -', ~+-,'q)h,', (y)=0. (44)

The solution of Eq. (44) is

h„(y) = const xy' ", (45)

with 5 related to e and g as indicated in Eq. (37).
This means that

I' (M'm) ~ m'M'(Mm' ' ')~ '
Qyg~l 2 1))1

(48)

and therefore for the function r from Eq. (33)

r„(M;m, u, p, ) ~ (Mp, "/') ". (4V)
P

1 6/ 2»g» f 1-6/ 2

Taking the derivative of Eq. (47) with respect to
M, we obtain for the magnetic field, under the
same conditions,

H~f/2-3 (M~E/2-1) 6 (48)

which establishes the result stated in the previous
paragraph.

Vfe now have to go one step further and compute
the corrections to (48) when the ratio m' ' '/M is
no longer neglected. We start with Eq. (13) for
u =u„, and the corresponding generating functionals
satisfy

MI'(M;m, u) =p, I" " (p, =0;m, u}nt

M"
~r(M;m, u)=g, ar'"'(p, =0;m, u).nt (41b)

(„(..),) I~r(M; )
s )7 s

Bm 2 8M

= (2 —g)m'b, 'r(M; m) . (49)

These functionals are related by a CS equation
which, for u=u„, reads

m ——M r(M; m) = (2 —g)m'ar(M; m) .
(

9

Bm 2 8M

(42)

When M/m' '/' is large, the right-hand side of
(42) is negligible. This property is not obvious
since each term of the expansions (41) diverges
when m vanishes. In order to verify it, one has
to perform a loop-wise summation, i.e. , an ex-
pansion in powers of u with fixed uM ', which, for
instance, is generated by the steepest-descent
method applied on the Feynman path integral (see
Appendix C). The effect of this summation is to
add to the mass squared in the propagators a term
proportional to M' in such a way that the limit
where M/m' ' ' goes to infinity can be taken in
AI' by letting m go to zero. A simple dimensional

Ar(M;m) =M'lA(y), y=Mm'/' '

and from (49}, we obtain when y is large

(50)

(1 —pE+ ~~)yd n. h„(y)+y~(u„)hh„(y) =0. (51)

Integrating Eq. (51), one finds

b, h„(y) =const xy "4""

=constxy~ ' '~~

where P is defined by

1 2 —q+y4(u„)
p 1 - 2e+ —,')7—

(52)

(53a)

From the relations (15) and (3V), one sees that
(53a) establishes the scaling law

Again the same argument indicates that the right-
hand side may be neglected when Mm'~2 ' js
large. The dimensions are such that
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(53b)

The behavior of nh(y) given by Eq. (52) is
compatible with the fact that the right-hand side
in Eq. (42) had been neglected. If we now keep in
Eq. (42) the right-hand side in its asymptotic
form, we shall obtain the first correction to
1(M, m):

(2 —ri)h(y) —(1 ——.e+ g)yh'(y) ~ y~ ' '~8. (54)
y large

Integration of Eq. (54) gives

h(y) ~ y' '(1+const xy '~a).
y large

More generally, we can write a similar equation
for A~I", the functional associated to the vertex
functions with p mass-insertions:

m-„- -- ——3f — —p y4 u —g 4~I' jg;yg

= (2 —)7)m'a" 'I'. (56)

It is important to note that for P&1, a mass inser-
tion does not create any new divergence and there-
fore no new renormalization constant is needed for
p)].

If the right-hand side of (56) is neglected, in
the limit where Mm' ' ' is large, we can build
successive corrections to I'(M;m) in powers of
y '~~, of the form

l(M, m) =m2M'y'-' Pu, y-)'~ '.
P=O

From this equation, we obtain an expansion for
I'(M; m, p, ) and differentiation with respect to M
gives the magnetic field. It is straightforward to
verify that Eq. (57) means that H/M~ is a regular
function of [(p/m) "~'Mm'~' '] '~ 8 which is pro-
portional to [Mt & ~ ' ] '~8=t/M' ~. This is just
what we wanted to prove.

In Appendix C, the equation of state is calculated
up to order e with these methods. The result
agrees with Hefs. 5 and 6.

V. CORRECTIONS TO SCALING LANS

Vfe have already mentioned that the scaling
limit was obtained by neglecting terms which were
indeed small in the vicinity of the critical point,
but that we want now to discuss by themselves.
%'e shall only study the corrections which appear
in the framework of. a (t)' theory with cutoff,
which is equivalent here to a theory with p/m,
large, but finite. Other corrections might be
considered as well, for instance those coming

I

from interaction terms of higher order in the
field. These effects have to be studied outside the
framework of renormalizable field theories. The
related problem of corrections to the Qell-Mann-
I.ow limit in four dimensions has been considered
by Mack and Symanzik'~ and analogous methods
will be used here too.

Let us first justify that u approaches u„when
m/p goes to zero, with fixed u, as indicated in
Eq. (24). First we consider Eq. (21) in its asymp-
totic form

I',4'(p,.; m, u) ~,
[~'..'(P. ..) I,.-„.]'

Then we replace in (58) F(,', ) and I'p) by the solu-
tions of the CS equations for an arbitrary coupling
constant u:

(58)

I as

( (,)), =)) (,)
—In(m/)))), (59)

where 4 is an arbitrary function. From Eqs. (58)-
(59) we see that one can compute f"d u/P(u')
—1n(m/p, ) in terms of u. If, for fixed u, one lets
m/g go to zero, the only way to keep fixed the
difference f"du~/p(u') —In(m/p) is to let u go to a
zero u„of P(u), where P(u„) =0 and ~=P'(u„) &0.
It is then simple to obtain the m/t(, dependence of
u in the form

u —u„=A(u)(m/p. ), m/p«1. (24')

8—P(u, m/tj, )
i~=a„(~t j )

(60)

From Eq. (21), and from the definition of P, it
is easy to show that

p„—/ )
P()

su/su p(u)(e/s-u) In(m/p) ' (61)

where m/p is related to u and m/p by Eqs. (19)-
(20). From Eq. (31) we first verify that P does
vanish for some u=@„corresponding to u=u„. In
addition, in the neighborhood of u„Eq. (61) gives

P(u, m/p, ) =
su/» '

and differentiation with respect to u leads to Eq.
(60). In the massless theory, the function P has
been calculated" up to order u' and from this we
obtain:

This exponent cv will be present in all our correc-
tions to scaling laws. One can remark that the
derivative of P(u), at a point where P vanishes, is
independent of the renormalization scheme. In
particular let us show that

(u = e — —, e'+[34 N '+~ %+740+ 24(5N+22)g(3)], —18, e'+O(e'),3(3N+ 14)
(62a)
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(-N'+ 8N+ 68) 2 (N+ 2)(N+3)(N+ 20), 9(3N+ 14)'
4(N+8)' 8(N+8)' (N+8)+,[~4N'+' ", N—+698+ 24(6N+ 22)f(3)]e'+ O(e') . (62b)

The convergence of this expansion for e = 1 is
very poor. For N= 1, 2, 3, Pade approximants give
the estimates co =0.8 and ~v-0.45. We shall now

discuss a few examples where corrections may be
computed.

(i) Correlation function at T = T, The . results
have already been mentioned in Eqs. (23) and (27),
and we shall now derive them.

From (24) we know that u is close to u„and
therefore

r '"'(p;; m, u) = r '"'(p, ; m, u„)

BF(n)
+(u —u„) (p„m, u) . (63)

f4

- BF(n)
PS ——'g+ M

Bm 2 Bu
= —,

' n y,'(u„)r ',",'(u„),

(64)
and the integration of (64) leads to

Br&"' n '&u=r',",~(p'm, u„) — ""+ 'b"'( p) m-~.
geo

Finally, this gives

For p, »m, the asymptotic form of I" ~"~(u„) is
given by Eq. (10); it remains to find the behavior
of (8I'"'/su)~„. We thke the derivative of Eq. (4a),
set u=u„, and neglect the right-hand side. This
gives

I'"'(p„m, u),;—, r'„"'(p„m, u„) 1+— ' " A(u) — + b'"'(p&) (66)

+A(R(b, (
—

) (67)

In position space, Eq. (67) implies for the spin-
spin correlation function that

1 t()-

(Q(X)P(0)) ~, „„1+const — . (68)
a«]Xl «L X

the corrections to the F functions are of the same
form from Eq. (18). In particular, for the two-
point function, Eq. (66) reads

QJ

I""(p,m, u) = p' " 1+ " " A(u)—
II »P»m (gP H/M fI,& 5)(1+ otnstxt (. "(71)

But if M/t') 8 is large, another correction will
appear.

This requires us to write the CS equation (42),
for arbitrary u, as

m + (8(u) —— ' M I'(M; m, u)
s s y, (u) s

Bm Bu 2 BM .

state when the field is such that M/p, ' ' ' is no
longer neglected If.M/t' e remains small, we
see through the mass corrections (69) and vertex
corrections (27) that

X ~ t &(1+const xt"'),
and the correlation length as

t ~ t "(1+const xi ").

(69)

(70)

(iii) Corrections to the equation of state. We
want to examine what happens to the equation of

In (68) the power ~ of a/X is universal, but not
the constant which is in front.

(ii) Correcfions to Pouer behavioxin f = T —T, .
The corrections in powers of u —u„are related to
powers of (m/g)", and since the correlation length
is both proportional to 1/m and to t ', finally this
yields corrections in powers of t' . For instance,
the magnetic susceptibility behaves as

=[2 —y, (u)]m'Lr(M;m, u). (72)

For M/f') 8»1 one has also M/m' ' '»1 and
the right-hand side is negligible. For u close to
u~,

BF
r(M;m, u) =r(M;m, u„)+(u-u„),—u g~

=M'm'[h(y)+(u -u„)k(y)], (73)

where h(y) was introduced in Eq. (43), y=—Mm')' '.
As for the corrections to the correlation func-

tions, we get an equation for k(y) by taking the
derivative of Eq. (72) with respect to u. For y
large, this gives
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(1 ——,e +;g)y —+ 71 —2 —~ k(y)
1 1

=.-'hl(u. )][(1—-'e)yk'(y) —2k(y)] (74)

Equation (45) gives k(y) for large y, and from (73)

1"(M;m, u) ~ M m'y' '[1+const(u-u„)
$ large

)( ~/(1-6/ 2+'g/ 2) f

(75)

This gives also I', and then the field H, and finally

Therefore, for x= p/m large,

x/f(u) = C(u).
p/~»&

Furthermore, in the same limit

""y(u')du'
,

"" du'

P(u') u-u "„P(u')

then

t,

'"y u' du'
gin(-m/g) +rjlnC(u) .

P(u')

H~- 1+const

where v and P are defined in (16) and (39).
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APPENDIX B: RELATION BETWEEN MASS
AND TEMPERATURE

Bm Bm
'

9m
dm g em g ~m

gp gP . gp

(Bl)

If one comes back to Wilson's original arguments
to show that the Lagrangian g(X) given in (2) de-
scribes the critical behavior of a magnetic system,
one sees that the scale of temperature is given
by the bare mass m, ' which varies linearly with T.

Unfortunately mp diverges with the cutoff, but
one can consider instead its derivative sm, '/
sm'~, which is finite when the cutoff becomes

gp
infinite. In physical terms m, which is the value
of the renormalized propagator at zero-momentum,
coincides, for large p, , with the magnetic suscep-
tibility X.

We start with the relations

For p, large, Eq. (20) relates Z to the asymptotic
behavior of I' ' which is given by the homogeneous
CS equation. This means that for large x, the
function Z(x, u) is the solution of

m'= Z(p/m, u)m'

m p.

y»~ I'"(p.';m, u)
' (B2)

8 8-x—+P(u) —+y(u) Z„(x,u)=0. (A2) From Eq. (B2) we obtain

By integration of this equation we find that

Z„(x,u) =4(x/f (u))exp— (AS)

where C is an arbitrary function, and f(u) is given
by

dQ
lnf(u) = — (,)

. (A4)

When u approaches u„, from (A4) we obtain lnf (u)- —(I/u)ln(u —u„) and then from (Al),

lnf (u) ~ —ln(m/p ) + lnC(u).
p /ns»1

= Z 1+— lnZ
0 0

and from the CS equation for Z [Eq. (A2) of Ap-
pendix A] we find

Bm =Z(1- -,'y, (u)).
~m

gp

(B2)

The right-hand side of the CS equation (4a) satis-
fied by I' ' is given at zero-momentum by the re-
normalization conditions. If we come back to the
derivation of Eqs. (4), through a differentiation of
I" ' with respect to m with fixed g„we obtain
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8 2

[2-y, (u)]m'=2Z, Z, 'm'
r gp

Therefore from Eqs. (81), (83), and (84) one has

(84)

)
Z '(p. /m, u) .

gp 3
(85)

or relating m to m,

8

Bm
&0 g fixed

(87)

Since, in the vicinity of T„ the magnetic suscep-
tlblllty m ls assumed to diverge as

Vfe now have to take into account that the behavior
of Z, Z„Z4 is known when u approaches u„as in
Eq. (24):

Z '(p, /m, u)- (m/p. )",
Z, (u) - (u —u„)"i

- (m/p)",

Z, (u) - (u —u„)~4(~-) i ~

- (m/p) ~4'""'

This with Eq. (85) means that

em, ' m &4'"-'

To be complete, let us derive the scaling law
which relates the specific heat exponent n to y
and g. The specific heat is related to the energy
fluctuations, which diverge nea, r 7,. They are
dominated by the Q' terms which are those with
the smaller dimension. Thus, one considers the
quantity fd'X(P, '(X)Q, '(0)), where Q,

' is the bare
field. This bare correlation function is related
to the renormalized one through a multipljcatjve
and an additive renormalization. This additive
renormalization necessitates the introduction of
a new function, K(u), finite in 4 dimensions, de-
fined by

m d X(P '(X)y, '(0)) = ~ m 'K(u).
0 Z4

(813)

Assuming that the function K(u) has a finite limit
when u approaches u„, which is true order by
order in e, since the behavior in m/p. of Z, and

Z, is known [Eq. (86)], for the energy fluctuations
we end up with

d "X(P,' (X)P,'(0)) =const x m'f" "4~"" ~ '

(814)
m 2~1~

t~+0 (88)
or, rela. ting m to t,

one should have for dt/dm', or rather for sm, '/
sm'i. .. which is proportional to it, ' d "X(Q,'(X)Q, '(0))=constx t'~" '~4'""' '~

(89)
8 pK 0 ( 2)ljp-1
Bm

0

Comparison between (88) and (89) yields the rela-
tion

Therefore

o= —vl2(n —y, (u )] —&l, (815)

1 y, (u„)
y 2 —n

(810)
and, taking into account (810)-(812), it is straight-
forward to write, instead of (815),

In addition, let us study the divergence of the
correlation length in the vicinity of T, . Since
r")(p, m) has, for dimensional reasons, the form
r('i(p, m) = p'g(p/m), the zero of r~'), which

gives the inverse of the correlation length, is
proportional to m. Now we know that m'=Z 'm2,

Z is known from Appendix A, and we end up with

which is one of Kadanoff's scaling laws.

APPENDIX C: FIRST-ORDER CALCULATION
OF THE EQUATION OF STATE

(816)

k '= const x m

= const x m'

=const x t&~~2 "~,

which establishes the scaling law

(811)

In the calculations of Refs. 5 and 6 the Lagran-
gian was expressed in terms of a new field P,'(X)
which has zero expectation value. In the present
work, the theory in presence of an external field
is expressed directly in terms of the symmetric
theory in zero field since

r
(2-g) ' (812) Mr(M;m)=g, r'"'(p,. =o;m, u„). (Cl)
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The lowest-order contribution to I'(M;m) is
given by the tree diagrams, and the first order in
c will be a result of the summation of the one-loop
diagrams. An easy method to obtain the loop-wise
expansion is to use the steepest-descent method
on the Feynman path integral. At the one-loop
order, the result for the generating functional
r(M) is

&'Z
r(M m) g(Q) 2 Tl( 8 )ln nx Sy 4u

(C2)

In fact, for the equation of state, it is sufficient
to know BI"/BM, and from (C2) we obtain in the
one-loop approximation

1 m'uM '/6

+~m u.M~ 2 2 6 2 2 2
S~ P'+m'+m'uM'/2 P'+m' (P'+m')'

=m M„(1++By +~~ (N- 1)u [(1++By )ln(l+ ~y ) —
~ y ]+ ~u„[(1+2 y )ln(1+ ~zy2) —~zy2]j, (C3)

r(M) = r(MWZ),
(C4)

where y2 ——u M 2m ~

To obtain the equation of state, it is now suffi-
cient to use the relations

and

H =0 for x=-l,
Eq. (C6) takes the form

II X-1
~

= 1+x+ e (x+ 1)ln(x+ 1)

Using Eq. (C3) and the large p/m behavior of Z,
we obtain in terms of x = t/M '~ ~,

1 1
M ' " 6

=x~+-'x' '+u„—'(N-1) x+- ln 1+—
6x 6„

3
+ —[(x+3)ln(x+ 3) —3 ln3

+ x(2 ln2 —3 ln3)II, (C7)

which coincides with the result of Ref, 6 at order e.

+—u„x+- ln 1+—

u = f+0(e ),6

and the e expansion of y:

y=1+ — 6+O(e ),(N+ 2)

one obtains the cancellation of the lnx terms of Eq.
(C4), which was expected since we derived in Sec.
IV that the equation of state was regular, in the
variable x around x=0. The result

H 1 1 (N 1)-
M~ 6 2 (N+8)
—= x+—+ — e[(x+&)ln(x+ —,') ——,']

+
(

e[(x+-,') ln(x+-,') ——,']. (C6)

If the normalizations of fields and temperature
are chosen so that

H/M =1 at x=0

(C5)

If we now take into account the value of u„, which
at order e is

APPENDIX D: LOGARITHMIC CORRECTIONS
TO SCALING LAWS IN FOUR DIMENSIONS

The fact that logarithmic deviations from free-
field theory are present in four dimensions has
been discussed by Larkin and Khmel'nitskii22
using the parquet approximation. Riedel and
Wegner" have established the same results with
the renormalization group techniques applied to
the cutoff field theory. For the sake of complete-
ness we want to show that the same results follow
naturally from the methods developed in this arti-
cle. The four dimensional theory will be studied
within the same limit in which u is fixed and the
subtraction mass g is large.

As an example we shall discuss in some details
the behavior on the critical isotherm. In the mass-
less theory, i.e., 7.'=T„ the free field result is
simply V=0. The term that we want to calculate
will appear as a correction to this trivial limit.
Let us start with the renormalization-group equa-
tions obtained when we vary the subtraction mass

p, —+P'(u) ———y, (u) I"~"l(P„.m =0, u, p) =0,
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and introduce the generating functional
()0

I'(M; t(, , u) = Q —, I'"'(x, ~ x„;m = 0, u, p, )
n=O

x y(x, ) ~ ~ (t)(x„)dx, ~ dx„l @„) „.

From dimensional considerations one can write

From (D3)-(D5) we end up with

M

which yields for &= s I /s M

M
lin(M/q) l

'

(D11)

(D12)

I'(M, tf, , u) =4, f(u, M/p, ),M
(D3)

with

and from (D1) we derive for the function f the equa-
tion

8-x—+P(u)-2y(u) f(u, x) =0,
1 1

e)n(m/u) ln*(m/u) ) ' (D13)

Corrections to scaling laws which involve the
temperature are obtained in a similar fashion.
The central remark is that the coupling constant
u of the massive theory renormalized at zero mo-
mentum vanishes like

p= 1+ A/3

y3' 1+-:y3 The equation (D13) follows directly from Eqs. (58)-
(59). The mass-temperature relation becomes

Integration of (D4) gives
t Q

f (pnu) =f(p(n), ,«) eup 2 du),P(u')

where u(X) is defined by

(x) d
P(u')

The large p, limit is obtained by letting X go to
zero, and if we write

(D5)

(D6)

Bt -u' ~'
ax' (D14)

n+2 1
y, (u) = c,u+ O(u'), c, =— (D15)

Taking into account the relation (D13) we obtain

where g is the magnetic susceptibility, which is
here proportional to m ', and c4 is the first term
in the expansion of y4'.

p(u) = bu'+ O(u'), tf = ,' (n+ 8—)S '

y(u)=c, u'+O(u'), c, = —,'., (n+2)S '
s-'=-8~'

(D7)

which, after integration, gives

1(M, u, ~) =u M

and therefore

(D9)

f(u(X), x) = u(A. )

the solution of (D6) for X small is
1 1

e lnl (lnl)') '

Since u(A. ) is small we can study f(u, A.x) by cal-
culating f (u(A. ), x) in perturbation theory Here, .
we are in a situation similar to the one studied
recently by Symanzik24 for a Q' theory with a nega-
tive coupling constant.

At lowest order in u (tree approximation) one has

(D16)

1 M
65 in(m/p)

' (D17)

For the spontaneous magnetization this leads to
M-m(llnml)' ' and from (D16) and m-)t '/' we
obtain

Finally let us note another consequence of (D13)
for the equation of state. In a region where
in(m/M) remains finite, perturbation theory in u
gives

II =m M+-uM6

1
elnl (inn)') ' (D10) (-t)"'lin(-t) I'""+' (D18)
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