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The crossing-symmetric amplitude possessing Regge behavior for mN scattering is con-
structed using suitable combinations of beta-function terms and t-dependent form factors.
The input parameters obtained from nucleon-pole and low-energy pion-nucleon resonances
are being used to predict the charge-exchange polarizations, forward differential cross
sections, and ~+p and x p backward differential cross sections. The theoretical predictions
agree reasonably well with experimental data.

I. INTRODUCTION

The most attractive feature of a Veneziano-type
amplitude' is that it can describe both the high-
energy and the low-energy regions of any scatter-
ing process. The conventional high-energy Regge-
pole amplitude describes the average behavior of
the low-energy region. ' In general, the Regge am-
plitude can successfully predict the large-s be-
havior for small t or small u only. The amplitude
when extrapolated should give the observed prop-
erties of the t- and u-channel resonances. But
the amplitude parametrized in terms of Regge
poles does not show the observed behavior for any
process of the low-energy region with the accuracy
demanded from the principle of duality. The Ve-
neziano-type expression for the amplitude can be
expressed either in terms of low-energy resonance
parameters of the 8 channel or in terms of residue
functions of crossed channels. In principle, the
resonance parameters alone should be able to pre-
dict the high-energy forward, backward differen-
tial cross sections, polarizations, etc. Several
authors' have met with partial success with the
Veneziano-type amplitude in.the pion-nucleon sys-
tem where extensive experimental information is
available. In spite of good results at high s and
small t predicted from the low-energy resonance
parameters, the m p backward differential cross
sections are predicted to be 2000 times larger
than the observed values. ' We have attempted here
with the Veneziano-type amplitude to predict the
observed m p backward differential cross sections,
charge-exchange forward differential cross sec-
tions, polarizations, and w'p backward differen-
tial cross sections. %'e have introduced t-depen-
dent form factors to the h, ~ trajectory consistent
with the requirement of Regge asymptotic be-
havior, crossing symmetry, and poles at points
corresponding to resonances.

In this investigation, the elastic scattering po-

larizati. on is not considered at all. The polariza-
tion for any process is caused by the interference
between the spin-flip and the spin-nonflip ampli-
tudes. In the nonf lip amplitudes, the dominating
part comes from the "Pomeranchukon" amplitude.
There is no "Pomeranchukon" amplitude in the
flip amplitudes. In the dual approach to this in-
vestigation, the "Pomeranchukon" amplitude is
absent. Therefore, the elastic polarization arises
largely due to interference with a dominating
"Pomeranchukon" amplitude in the nonf lip ampli-
tudes with the flip amplitudes. Since our present
investigation uses the dual approach, the elastic
polarization is not considered.

Usually, a Veneziano-type amplitude allows only
constant residues for its representations. Since
the constant residues for the h~ resonance fail
completely to predict backward differential cross
sections for mN scattering, simple combinations of
beta-function terms for such an amplitude are not
adequate to predict simultaneously aQ data which
are observed these days. Therefore, Veneziano-
type amplitudes with constant residues require
modifications for a full description of the real
world. The minimum change we want to make for
the amplitude without violating crossing symmetry
and asymptotic behavior is to introduce exponen-
tially t-dependent form factors for the residues
of the A~ resonance in order to predict simulta-
neously w p, m'p backward differential cross sec-
tions, charge-exchange polarizations, and forward
differential cross sections.

The aim of the present investigation is to cor-
relate successfully the low-energy resonance pa-
rameters with the high-energy differential cross
sections and polarizations. For this purpose, we
have introduced two fermion trajectories N and

Since the contribution due to the N& trajecto-
ry' is insignificant according to the work of
Barger and Olsson, we have not considered it
here at all. The usual p and P' along with their
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daughters p' and P" occur in our formulations of
Veneziano-type beta-function terms. Both p and
P' trajectories choose nonsense with no extra
power of a. Another p, trajectory half a unit be-
low the p trajectory is introduced here. Our work
resembles to a great extent that of Fenster and
Wali' except that we have introduced t-dependent
form factors to h~ trajectories.

In the u channel, the MacDowell symmetry re-
lates E~' (J; su) to E (J, -vu) such that
E 'l(J, v u) =-E (J, -v u). This symmetry can
be continued for complex J and, therefore, places
a significant restriction on u-channel Regge tra-
jectories. The trajectories and residues of (+) and
(-) poles are related by

u'(v u) = u (-v u)

Since in the Veneziano representations the col-
lisions between different Regge trajectories to
produce cuts are not allowed, we are free to
choose as many trajectories as we require to pre-
dict observed facts. The p, trajectory with the
same quantum numbers of the usual p is essential
to predict the charge-exchange (CEX) polariza-
tion data. Indeed, it is intended to reproduce some
features of cuts in absorption fits translated into
Regge-pole-plus- cut parametrizations. In the mN

system, the Q-(f - f') cut is equivalent to the p, tra. -
jectory in the Veneziano representations in some
sense, although they play significant parts in dif-
ferent models.

In Sec. II, we construct the invariant amplitudes
with suitable choice of beta-function terms. Sec-
tion III deals with determination of parameters
and numerical evaluation of the model.

P'(~u) = P(-~&) ~

Nature does not seem to obey the MacDowell re-
flection symmetry. For the nucleon
Ã~(938, J =2+), tt'8(938, J =2 ) should be ob-
served due to MacDowell symmetry. Since there
is no —,

' particle with mass =nucleon, we are left
with no alternative but not to consider the NB tra-
jectory at all. In other words, one should assume
X8 trajectory chooses nonsense at o. (Vu) =-,' in
order that the residue y (Wu) vanish there. The
five dominant I= —,

' resonances fall nicely on a A~

trajectory with its lowest state n. ~(1236, —,")reso-
nance. But there is no D» state with mass =1236
for the MacDowell reflection of the P,,(1236).
Therefore, we do not strictly consider the N& tra-
jectory. Also the contributions due to iV& trajec-
tory' is insignificant according to the work of
Barger and Olsson.

II. CONSTRUCTION OF AMPLITUDE

To construct a Veneziano-type pion-nucleon
scattering amplitude, one has to take care of
s u crossing symmetry. It is well known that

A ' (s, t, u) = aA '
(u, t, s) .

Regge asymptotic behavior for large s and fixed
t gives

(A(s, t)-s "~', B(s, t)-s
where o.(t) is the appropriate exchanged meson
trajectory, and for large s and fixed u gives

A(s, u)-s " ' ', B(s,u)-s" " (2)

where n(u) refers to the exchanged fermion trajec-
tory.

We are using the following notations for the Euler
functions':

r(n n(t)) r(-,' -mo. „(s)) I"(n- u(t)) r(-,'m —o., (u))
I'(n+ —,'m —~(t) ct, (s)) I-'(n+ —,'m —a(t) —a„(u))

(3)

I'(-,' m —a, (s)) I'(-,'n —o.„(u)) I"(-,' m —a„(u)) I'(-,'n —c.„(s))
I (-,'m+ ,'n —n, (—s)—o.„(u)) r( ,'m+ ,'n —-n. (—u)—o., (s))

(, ,
)

I"(-,'m —n„(s))r( ,'m- a, (u)-)
I'(m- a, (s) —n„(u))

Here x denotes the fermion trajectories N„and h|;. The C functions, where C(x, y) =I (x)r(y)/r(x+y —1),
are defined in a similar fashion. Below, we write A. , A ', B, and B ' which satisfy s-u crossing
and display Regge behavior and have resonance poles on Regge trajectories.

(-)
=(n,-- e;)[c;„(I,—,')+ c„- (-,', —,')]+8;[c;,„„(1,—,')+ c„-.(-;, —,')]

+ d 1+, +c C,~ (1, —,')+c C, (-;, —,')-d 1+2-2 Cp ~ (2, —,') e'" '
2t 2 2@2 P&6~ ~ 2 (6)
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(+)
=n,'[C,',„(1,—,')+C (-,', —,')]

+ d 1+ +c Cpg (1,-)-c Cp (-, —,)-d+ 1+, Cp. ~ (2, -') e

I

+ a-+b- 1+, a,',,(1, -',}+ b- 1+, -a- a,,(-,', —,')

ta ++5»3
+)

= a,'[a;„„(1,—,')+ a„-„(-,', —;)]

%'hex'e t* is the valQe of t Rt Ule 6& resoHallce all@ g 18 the 8-chanQel cellter-of-mass momegta of the gQ
system. For large g and fixed t, ere have

(-)
=(&, —n, )I"(1—n,(t))(bs) ' "(1-e " i ")-8,1"(1-n~(t))(bs) ui~'&(1 e-«~pg(i))

+ e- Z(1 n (t))(bs)&p(i)(1 e ir~pe)-)e&(i tent)-
2q'

+d- y+ I 2 & g y Np(t)-1 y+ &-fmo&(t) ec'(t-t+)
2q

(10)

-n+Z(1 n (t))(bs)+p~(i)(1+ e-iw+pi(i))
4m

d+ 1+ + &+ p(1 n (t))(bs)+p'(i)(1+e-ir+p~(i))ep(i i+)-
2q2 P'

I 2 + t y+ CtJ i(t) -~ j @-$%&Ji(t) ++(t-t )
2$

(-)
4m

=(P -it )r(1- n{t))(bs)"i " '(1-e ""'i) y+r(1-n (t))(bs) p&"" '(1-e " i&'")
Pj.

+ a +b 1+ r(1- n(t))(bs)"i"' '(1-e '""~t'~)e"" '*'
2q'

-&- C+ r 2-e t ys "n("-' t+e-" ~(" e "-'*'
2q'

p+p(1 n (t))(bs)+pi(t)i l(1 +e-inap'(i))

a+ + b+ 1+ p(1 n {t))(bs) + (tp) 1{1+ eiw 0
p( ))iBe( i +i)-

2$

+y+ y+ ~ I 2 ~ t Its g (t)-8 y ~-)n~ (t) ~3(t-t+)
2 ttt
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=-n I'(-' —n„(u)) (fis)a" a[u& / (1+e iu[asa[u& / &)
4~ 1 2 N~

—c Z'(-" —n (u))([is)a&& u ' 2(1 —e iu[aas[u) j/Qi) c[azs s) (14)

=n'1"(-' —n (u))(fis) "sa'u' ' '(1+ e "»["' ' ")
4~ 1 2 N~

+ c+ p(3 n (u)) (Qs)ass[ td -1/2(] e- iu[ 4$[ u ~ -1/23)eo[aps -u)
0'.

&(-)
p- p(& n (u)) (f s) asa[u) -i/2(1 ~ e-iu[asa[u)-i/21)

4~ I & Ã~

+i2-f (& n (u))(6s) gs(u)-I/2(1 e i7r[a-gs[u)-1/21)eA[~gs -s)

+(+)
p+Z'(& n (u)) ([is) a&a[u) -i/2(1+ e-iufasaiu)-1/23)

I 2 E~

(i6)

(16)

(u))(f s)az&[u)-i/2(1 e-iu[azz[ )-i/21)es[ gg -s) (17)

III. EVALUATION OF CONSTANTS AND RESULTS

In this section, we discuss the evaluation of the
parameters and compare our predictions with

expe rimental data.
In w p backward scattering, only b, ~ resonance

exchange takes place. Therefore it yields cRy Qy.
The residues of P, and P,' can be expressed easily
in terms of the pion-nucleon coupling constant g
at the nucleon pole,

The constants a, a', b, b', c, c', d, and d'
can be evaluated from the residues of A~ reso-
nance from the expressions'

A =
2 q* rnid, +m cos8

g*' ~, 1E +m Iq* cosO --—
3 E*—m mph'

—g

(ia)

n~ (u) =-0.03+ u . (19)

where Z*/p is the coupling constant of as decay-
ing in N+n. E* is the energy of nucleon at h~
resonance and q* is the center-of-mass momen-
tum of nN system at ~~ resonance. The n~ tra-
jectory is given by

10.0 .-
/(

10.0-

1.0 1.0-

0..1 I I ~ s I s ~ ~ I s a

- 0.05 0.0 0.2 0.4

-u (GeV/c)

0.6 0.8
0.1

-0.025 0.0
I I

0.1 0.2

-u (GeV/c)

I

0.3 0.4

FIG. 1. Backward differential cross section for x p—m p at laboratorymomentum 5.91 GeV/c. Data from
Ref. 6.

FIG. 2. Backward differential cross section for n p
x p at laboratory momentum 8.0 GeV/c. Data from

Ref. 7.
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The constant a' s, b's, c's, and d's obtained from
the residues. of 6& resonance are given below:

a =-16.7978 (GeV/c) ',
a' =-28.0065 (GeV/c) ',
5 =1.62 (GeV/c) ',
5' =6.65 (GeV/c) ',
c =1.47 (GeV/c) ',
c'=-8.35 (GeV/c} ',
d =0.4188 (GeV/c) ',
d' = 0.3152 (GeV/c) ' .

(20)

B(II p-pII ) =BI'(s, u)+B (s, u)

In n p backward elastic scattering all the param-
eters are known except the parameters occurring
in the form factors of A~ resonance. At the L~
resonance, these are equal to unity and, therefore,
they cannot be determined. We want to evaluate
the parameters A, B, C, and D from the best fit
of y' of backward m p differential cross sections.
In backward elastic scattering, the invariant
amplitudes B and A are linear combinations of
B ' (s, u), B (s, u), A' (s, u), and A (s, u) de-
fined earlier'.

where

f,(s, u) = ™(AI'I(s, u)+At '(s, u)

+ (W-m)[B'"'(s, u)+ B'-'(s, u)] J

f,(s, u) =- (-[A"(s, u)+A' '(s, u)]

(22)

+(W+III)[B+(s,u)+B (s, )]) .

( [If(s t) „I'+ Ig(s t) I']
CEX

and

The m p backward differential cross sections are
evaluated from best fit of X' at laboratory momen-
tum 5.91 GeV/c (Ref. 6) and 8.0 GeV/c (Ref. 7).
The exponentially t-dependent parameters ob-
tained, thereby, are A=—0.1 (GeV/c} ', B=0.15
(GeV/c) ', C=20.0 (GeV/c) ', and D=0.20
(GeV/c) '. Figures 1 and 2 give quantitative fea-
tures of predictions. For charge-exchange (CEX)
mN forward scattering, we have

BCEX (Sl t ) = WB (S~ t) 1

Ac,„(s,t) = vY A'-&(s, t) .

Here

A(II p-pw )=A"(s, u)+A' '(s, u) .

= —,[if,(s, u)+ f,(s, u) cos9i'
baCkWard 7t P P

+ if, (s, u) sinei'],

(21)

21m[f*(s, t)g(s, t)]cEx
If(s, t 4&l'+ Ig(s, t 4J' " '

where n is the unit vector perpendicular to the
plane of scattering. We have defined f(s, t) and

g(s, t) in the following way:

1.0-

P =5.0 GeV/c
Lab 0.8-

P =8.0 GeV/c
[ab

0.4-
—/M

0.0
0.2 0.4 0.6 1.4 2.0

I I I I I
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0.0~

0 4 0.8 1.2
I
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FIG. 3. Polarization of the recoil neutron in 7I p
7l'On at laboratory momentum 5.0 GeV/c. Data from

Ref. 8.

FIG. 4. Polarization of the recoil neutron in m p
m n at laboratory momentum 8.0 GeV/e. Data from

Ref. 8.
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f(s, t) =f,(s, t)+f, (s, t) cos8

g(s, t ) =f,(s, t) sine .
(26)

The only unknown parameters occuring in mN for-
ward charge-exchange differential cross sections
and polarizations are o, , 8, , and Q, . We want to
evaluate them in a similar fashion from the best
fit of y'. They turned out to be

0.1

o.,=-2.13 (GeV/c) ',
8, =-0.64 (GeV/c) ',
P, =-8.05 (GeV/c) ' .

E

0,01 .-

Figures 3-7 compare our predictions with the ex-
perimental data.

Finally in w'p backward differential cross sec-
tions, we have no adjustable parameters to fit in.
We predict w'p backward differential cross sec-
tions in Figs. 8 and 9. The a~ trajectory is

„o( )u=-0.38+u .

0.001 I I I I I I I I I

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
—t (GeV/c)

FIG. 6. Differentia& cross section for m p x n at
laboratory momentum 9.8 GeV/c. Data from Ref. 9.

Except in the neighborhood of u=O, our model can
predict the backward differential cross sections
of both n p and m'p processes accurately and con-
sistently with the experimental data. The qualita-
tive features of the polarizations are exhibited

over a wide range of t. Our work cannot repro-
duce the large polarizations observed recently. '
Our model, however, has been able to describe
all the processes of mNscattering with reasonable
success.

]4

1.0- i(
1.0 .-

P =13.3 GeV/c
lab

0.1 0.1

E

lJ

J5
E

0.01- 0.01

0.001
0.0 0.1

I I I

0.3 0.5

(GeV/c)

0.7 0.9
0.001

0.0 0.1 0.3 0.5

-t (GeV/c)

0.7 0.9

FIG. 5. Differential cross section for n p —n n at
laboratory momentum 5.9 GeV/c. Data from Ref. 9.

FIG. 7. Differential cross section for n p n I at
laboratory momentum 13.3 GeV/c. Data from Ref. 9.
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/4

10.0; 10.0 :1'i

1.0

P =9.85 GeV/c
lab

10 . P =13.73 GeV/c
lab

'14
10

10 I I I I I

0.0 0.4 0.8 1.2 1.6 2.0

-U (GeV/c)

2.4 2.8

-2
10 & I i I ~ I I I i

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2

(GeV/c)

FIG. 8. Backward differential cross section for
z+p z+p at laboratory momentum 9.85 GeV/c. Data
from Ref. 10.

FIG. 9. Backward differential cross section for 7t+p

~'p at laboratory momentum 13.73 GeV/c. Data from
Ref. 10.

IV. CONCLUSIONS

We have studied in this paper the modified Ve-
neziano-type amplitude for mN scattering. In our
model, we have introduced daughter trajectories
of p and P'. Since the daughter trajectories are
parallel to their parent trajectories and lie one
unit below their parents, we have simplified our
notations in the asymptotic limit to denote them
in terms of their parents. The signatures of the
daughter trajectories are of opposite sign. A sec-
ond trajectory of p quantum numbers half a unit
below p called p, trajectory together with p pre-
vents the vanishing of charge-exchange differen-
tial cross sections when o.~(t) goes through zero.
Furthermore, the p and p, together provide an
explanation for the nonzero polarizations for m p
~tt Q

0

The simple combinations of beta functions with
constant-residue parameters satisfy the principle
of duality. Earlier attempts to describe m p back-
ward differential cross sections failed completely
for such a combination of beta functions with con-

stant residues (without any form factors). Any phe-
nomenological model should be partially success-
ful to describe all processes simultaneously. In
order to satisfy this requirement, we believe that
the Veneziano-type amplitude should be modified
for fuller description of nature. Without violating
the crossing symmetry and Regge asymptotic be-
havior, we have made minimum modifications for
our amplitude by introducing t-dependent form
factors for the residues of h~ resonance only.
Conventional Veneziano-type amplitude does not
allow such a modification, but this seems to work
for our model to describe all processes of mN

scattering.
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