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In terms of the electromagnetic and weak forces,
Q" (x) and W„(x), this symmetry implies that there
is not an em-type interaction for the massless
particle described by g(x). This is not the case
for a massive particle because the mass term
breaks the symmetry of the theory. So, the ab-
sence of em forces for a massless particle is a
consequence of the invariance of the theory under
the mapping (11).

forces appear as a consequence of the self-inter-
action of the y field as given by Eqs. (4) and (5).
Furthermore, the symmetries of the equation for
the spinor field give a natural explanation of the
absence of the electric charge of the neutrino.
These results suggest to us this question: Is it
possible to assign values to the fundamental set
(q„.. . , q,) of the coupling constants'? We intend
to consider this problem elsewhere.
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%e further develop the 0(5)-covariant formulation of massless quantum electrodynamics which was

introduced in an earlier paper. %e discuss the group theory of the free photon and electron

propagators, and develop a simple amplitude-integral form for the interlacing operator which applies
radiative corrections to closed fermion loops. Instead of involving path integrals defined by a limiting

process, the amplitude integral involves an infinite product of individually well-defined ordinary integrals
over coefFicients appearing in the hyperspherical harmonic expansion of an external electromagnetic field

A, . %'e use the amplitude integral to study the analyticity properties in coupling constant n of single fermion

loops, in a modified quantum electrodynamics in which the short-distance singularity of the photon
propagator is cut ofF. In this model we find that a = 0 is not a regular point, and that the single

fermion loops cannot develop an infinite-order zero as a approaches a positive ao from below.

I. INTRODUCTION

The conformal-invariant (i.e. , massless-fer-
mion) limit of quantum electrodynamics is of great
interest because of its connection with the eigen-
value problem for the coupling constant n imposed
by requiring all of the renormalization constants
of electrodynamics to be finite. ' In a recent paper'
we have studied reformulations of massless,
Euclidean quantum electrodynamics made possible
by invariance under the conformal group. Our
principal result was that the Feynman rules for
vacuum-polarization calculations and the equations
of motion in this theory can be simply rewritten

in terms of equivalent rules and equations of mo-
tion on the surface of the unit hypersphere embed-
ded in 5-dimensional Euclidean space. The 5-di-
mensional rules are summarized in Table I; as
in Ref. 2, g„g2, . . . denote 5-dimensional unit vec-
tors, J dQ„denotes integration over the surface
of the hypersphere, and n, are a set of five 8x 8
matrices satisfying the Clifford algebra {o.„n,j
= 25„and all anticommuting with a sixth matrix
n, . The salient feature of these rules is that they
involve a bounded„rather than an unbounded space,
and, correspondingly, eigenfunction expansions
involve summation over a discrete index, rather
than the integration over a continuum index which
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TABLE I. Five-dimensional and Euclidean Feynman rules.

5-dimensional Euclidean

electron propagator
& —,'(n q, -~)-,'(~ q, +i)

(q, —q, )4

g y (x, —x)
2'' (x, —x, )4

photon propagator
6~

4n2 (q&
—q&)~

&pv
& +gauge terms4~' (x, -x,)'

electron-photon vertex ~ iene—= 2ie[e ~ g~, ~,] 'L efp

each closed fermion loop -tr4

each virtual coordinate
integration

d4x

The two forms of the electron-photon vertex are equivalent when sandwiched between
electron propagato rs.

appears in the usual x-space formulation of elec-
trodynamics.

In the present paper we continue to pursue the
5-dimensional formalism, with the particular aim
of developing a 5-dimensional analog of the path-
integral formulation of electrodynamics and apply-
ing it to the study of the eigenvalue problem for

In Sec. II we describe some simple represen-
tation theory of the group O(5). We discuss the
group-theoretic properties of the vector spherical
harmonics and the spinor harmonics which are
the elementary eigensolutions of the free photon
and electron wave equations, and obtain the eigen-
function expansions of the free photon and electron
propagators. In Sec. III we consider the interlac-
ing operator which applies virtual-photon radiative
corrections to single closed fermion loops. In x
space this operator can be represented by a path
integral which, because of the limiting process
involved in its definition, does not readily lend
itself to approximations. In the 5-dimensional
formalism the situation is quite different. Because
of the discrete-index nature of eigenfunction ex-
pansions, we find that the interlacing operator on
the hypersphere can be represented as an infinite
product of individually well-defined ordinary inte-
grals over the coefficients appearing in the vector-
spherical-harmonic expansion of an external elec-
tromagnetic potential A, Inside this amplitude in-
tegral there stands the single-fermion-loop dia-
gram in question, evaluated in the presence of the
potential A. A particularly interesting approxima-
tion which can now be made consists of keeping
only a finite number of eigenmodes in the vector-
spherical-harmonic expansion of the photon prop-
agator, or, equivalently, keeping only a finite
number of amplitude integrals out of the infinite
product appearing in the interlacing operator.

(This approximation corresponds to cutting off the
short-distance singularity of the photon propaga-
tor, while leaving the long-distance behavior
qualitatively unchanged. ) In Sec. IV we examine,
in this truncated model, the analyticity properties
of single-fermion-loop diagrams as a function of
coupling constant n. As a preliminary step we
summarize some properties of the external-field
vacuum loop which appears inside the amplitude
integral. Then we use these to show that the ra-
diative-corrected single fermion loops in our
model are not analytic at n =0 and cannot develop
an infinite-order zero as n approaches a positive
a, from below. Other possible conclusions about
the coupling-constant analyticity of single fermion
loops are shown to depend on the detailed analytic-
ity and asymptotic properties of the external-field
problem, as a function of external-field amplitude.
We formulate a simple one-mode problem, the
study of whiph may help resolve some of the un-
answered questions about the finite-photon-mode-
number model. Finally, we discuss possible con-
nections between our results for the truncated
model and the behavior of the exact eigenvalue
problem in which all photon modes are retained.

II. GROUP THEORY OF THE FREE PHOTON
AND ELECTRON PROPAGATORS

The group O(5) is a simple I.ie group of rank 2.
Its irreducible representations are characterized'
by two numbers, p., & p, , ~ 0, which must be both
integers or both half-integers; the half-integer
representations are spinor representations. The
dimension of the general representation (p„p.,)
is given by
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dim(n, 0) = ,'(n+—1)(n+2)(2n+ 3) . (2)

Let us first consider the free photon propagator,
which according to Ref. 2 has the hyperspherical
harmonic expansion

D(0) ab.& (n„n.) =-4,2( )2

~ ' ~"Y..(n, ) Y..(n.)*5.,
(n + 1)(n+ 2)

We wish to rewrite the right-hand side of Eq. (3) in
the form

dim(p. „g,) = —,'(p, , —p. ,+1)(p,, + g, +2)

x (2p, , + 3)(2p,,+ 1) .

The fundamental representations are (~, —,), a
spinor representation of dimension 4, and (1,0),
a vector representation of dimension 5; these pl.ay
an important role in constructing the eigenfunction
expansions of the free electron and the free photon
propagators, respectively. The usual hyperspheri-
cal harmonics Y„(7i) transform according to the
representation (n, 0), with dimension

9 8
ab ~a~ ~b~

gb ja

and denote its square L,bL„by L'. Since

L'[(v ).Y. (n)]=(v ).L'Y. (n)

(Sa)

= -2n(n+3)[(v, ), Y„' (7)] (Bb)

the three irreducible representations into which
(v, ),Y„(q) decomposes are all eigenstates of L'
with the common eigenvalue -2n(n+3). To find
an eigenvalue which distinguishes the three irre-
ducible representations, we consider the eigen-
value equation

I„,A, (q) = ~A, (q) .
It is easy to see that this equation is rotationally
invariant: We consider the infinitesimal rotation
g, - g, —Q,blab and introduce the rotated vector field

It is instructive to discuss the quantum numbers
which characterize the three irreducible represen-
tations which appear on the right-hand side of Eq.
(7a). For this purpose we introduce the (anti-Her-
mitian) angular momentum operator

Z cg Y,.(7l,) Yy~(n. )*,

where the Y,,(q) are vector spherical harmonics
transforming according to definite irreducible
representations of O(5). To do this, we write

5.t,
= Q(vi). (vi)~

(4)

(5)

A'. (q) =A.(q —n q)+n. ,A, (7i)

=A, (7i)+ Q„I„,A, (q)+Q„A, (7i) . (10)

Then, from the angular momentum commutation
relations, it easily follows that if A, (q) satisfies
Eq. (9) then A", (g) satisfies the identical equation

L„A", (7)) = xA".(g) .

with (v, ), the unit vector with components 5„.
This transforms the right-hand side of Eq. (3) to

' ~'~ [(v, ).Y..(n, )][(v ) Y.An. ))* (6)

dim(n+ 1, 0) = —,
' (n+ 2)(n+ 3)(2n+ 5),

dim(n —1, 0)= —,' n(n+ 1)(2n+ 1),
dim(n, 1)= —,'n(n+ 3)(2n+ 3),
dim(1, 0) xdim(n, 0) = —,'(n+1)(n+ 2)(2n+3)

= dim(n+ 1, 0)

(7b)

+ dim(n —1, 0) +dim(n, 1) .

(7c)

which is of course not yet in the desired form be-
cause the harmonics (v, ),Y„(7l) transform accord-
ing to the product representation (1,0) S(n, 0),
which is reducible. We can readily infer the irre-
ducible representation content of this product from
the dimension formula, in Eq. (1); we find

(1,0) 3 (n, 0) = (n + 1, 0) 8 (n —1, 0)S (n, 1), (7a)

with

Consequently, if one basis function in an irreduc-
ible representation satisfies Eq. (9), then all the
other basis functions do also; hence the eigenvalue
A. is an additional quantum number which can be
used to characterize vector representations of
O(5). To determine the allowed values of A. , we
use the fact that the operator

Pca = 2LcbLba —6Lca+ L'&ca

satisfies

(12)

Lbc+ca +ba ' (13)

with the three roots

A. =1, -n, n+3. (15)

Since the three eigenvalues are distinct, we see
that the A. eigenvalue suffices to completely specify
the representations appearing on the right-hand
side of Eq. (7a). The correspondence between X

eigenvalues arid representations can be found by
explicitly constructing functions transforming

Hence for given eigenvalue -2n(n+3) associated
with L', the eigenvalue A. must satisfy the equation

A. [2A.
' —6X —2n(n+3)] = 2X' —6A. —2n(n+ 3), (14)
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TABLE II. Vector spherical harmonics (not orthonormalized) for n =1.

(Vk)ag Vl +(Vl)ag k

g V)(v)) 1
1~k&i«5m 10 harmonics m=1, . . . , 10 dim (2 0) 14
1« l «4 ~ 4 harmonics m =11,. . . , 14

1 harmonic dim (0, 0) =1

(Vk)a~ Vl (Vl)a~ Vk 1«k«i~5m 10 harmonics m=1, . . . , 10 dim (1, 1)=10

according to the various representations, as fol-
lows,

Representation (n, 1):

X=1,
A, ~ p„(v, )„y'„(q) .

Representation (n+1, 0):
A. =-n,

A, ~[(n+1)g, +q, L,.]y„„(q).
Representation (n —1, 0):

A. =n+3,

A, ~[- (n+2)gn+ fioLbn]1'n i m(q).

(16)

The number of functions exhibited for the repre-
sentation (n, 1) is

5 dim(n, 0) & dim(n, 1), (17)

so this set is obviously overcomplete. The basis
functions given for the other two representations
contain no redundancies. In Table II we give ex-
pressions for the X = 1, -1,4 basis functions for
n 1 n

Since, by the usual argument, eigenfunctions
corresponding to different values of n or A. are
orthogonal, we define orthonormalized vector
spherical harmonics

m =1, . . . , dim(n, 1) for X =1

F„,(q) m=1, . . . , dim(n+1, 0) for X=-n

m = 1, . . . , dim(n —1, 0) for A, =n+3

which satisfy

y( X) (~)y ( X ')

Because the harmonics form a complete set, we
have the completeness relation

(20)

Let us now consider the effect of propagating a
virtual-photon radiative correction from point q,
to point g, within a single-closed-fermion-loop
diagram. This is described by

(22)

where the currents J are, of course, just a con-
venient shorthand for describing the amplitude
from which the photon is emitted and absorbed,
with all variables other than those referring to
the virtual phonton in question suppressed. Because
the amplitude for photon emission from a closed
fermion loop is gauge-invariant, the currents in
Eq. (22) satisfy the current conservation condition

L„Z, (q) = Z. (q) . (23)

This fact will be of great utility in the next section,
where it will allow us to immediately eliminate
gauge degrees of freedom from the amplitude inte-
gral expression for the interlacing operator (An.
explicit formula for the effective propagator is
derived in the Appendix. )

%e turn our attention next to the free electron
propagator,

(2) g g
1 2((X Fly 1)2(Q 7/2+ 1)

(11' )2I ~2 (~ ~ }4 ! (25)

As a result, their expansions in terms of vector
spherical harmonics contain only harmonics with
A. =1, and hence, by orthonormality, only the
terms in Eq. (21) with X = 1 actually contribute to
the propagation of a virtual photon. In other words,
as far as propagation of a virtual photon in closed
loops is concerned, the photon propagator can be
replaced by the effective propagator

y(x) (].)
g (o)( ) ~ 4 nm ("lx) 4y 2(9n2) (24)'b """'" ~ (n+1)(n+2)

nm

n, X,m

which allows us, finally, to express the photon
propagator in the desired form

which obeys the wave equation

h'"(g, )S'"(q„q,) =5 (q, —q, )-,'(n q, +1) . (26)

1
L. 52(n, -n2)5. 2

2 1

p 1.'"(n, }y.".',(n.)*
(n+ 1)(n+ 2)

(21)

The electron Hamiltonian which appears here is
h~ (q)=2 —L S, (27a)

with the electron spin S [which satisfies the same
O(5) commutation relations as does L] given by
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Sab 4 I. +at +bf ' (27b)

Our aim is to find an expansion of the free electron
propagator in terms of spinor eigenfunctions of
the Hamiltonian in Eq. (27).

Let us begin by finding the irreducible represen-
tations of Q(5) to which the spinor eigenfunctions
of h ' belong. Since it is obvious that

[L' h ' ]=0 (28)

the spinor eigenfunctions may be characterized by
a given eigenvalue -2n(n+3) of L'. For given n
they will be linear combinations of terms of the
form

The irreducible representation content of each of
the products in Eq. (30) may again be inferred
from the dimension formula of Eq. (1), giving

(-, -', )e(n, o) =(n+, —,')(s(n ——,', —,')

with

dim(n+ —,', —,') = —', (n+ 1)(n+ 2)(n+3),

dim(n —;",—,') = —',(n+ 1)(n+ 2)n,

dim(,'-, —,') xdim(n, 0) = —',(n+ 1)(n+ 2)(2n+3)

(slb)

=dim(n+ —,', b)+dim(n —,'-, —,') .

(3lc)

Let us next find the eigenvalue spectrum of the
electron Hamiltonian h "())) in the subspace with
a given eigenvalue -2n(n+3) of L'. This is easily
done by noting that L, S satisfies the equation

1; (n)X. ,

with X, a spinor with numerical ())-independent)
components. Since we are using 8XB z matrices,
the spinor y, is an 8-component spinor and hence
transforms under O(5) as the direct sum of tN)o

fundamental 4-dimensional spinor representations
of type (,'-, —', ). The Q(5) transformation behavior
of the product wave function in Eq. (29) is there-
fore described by

(, —,')e(n, O)(9 (-,', —,')e(n, O).

operators on the subspaces with definite eigen-
values of h ' . We find

n+I. S n+3 —L, $P P2n+3 ' "" 2n+3 (34a)

2—P (n+ j.)
— (n+1)

2=Pn+2 -Pn+2~

P-(n + z) + Pn + 2
= 1 i

h(')P („,,)
= (n-+1)P („„),

h'"P„„=(n+ 2)P„„.

(s4b)

(34c)

We can now proceed to construct a set of spinor
eigenfunctions of h by acting with the projection
operators on the product wave functions of Eq. (29),
Dbtalnlng

nms
())-(a+ z) P-(a+ z) FnmXs ~

nms0s+ 2 a+2 tlmXs
(35)

Finally, noting that

tr, P („„) n dim(n ——,', —,')
tr, P„,, n+ 3 dim(n+ —,', 2)

(s8)

we infer that the eigenfunctions with h(' eigen-
values of -(n+1) and n+ 2 transform, respectively,
according to the (n ——,', —,') and the (n+-,', —,') repre-
sentations of O(5). We will find a direct confirma-
tion of this when we discuss the completeness rela-
tion below.

Before proceeding, let us note a useful symme-
try of the eigenvalue problem for h, which, as
we will find later, will carry over to the case
where an external electromagnetic field is present.
The symmetry follows immediately from the rela-
tion

h ' e g = —A r/h
' (37)

which may be verified by direct calculation. Using
Eq. (37), we see that if go(o) is an eigenfunction of
h ' with eigenvalue p, ',

h $o(o) P (o(o) ~ (38a)

then

(L S) = 3L'S —sL

= 3L S+ n(n+ 3)

with roots

I,.S= -n) n+3. (33a)

o(o) = ll "gl/)o(o)

is an eigenfunction with eigenvalue —p,

(o) = c'&h("q
( )-

i/i &(o) .

(38b)

(38c)

=n+2, (n+1) . - (33b)

The corresponding Hamiltonian eigenvalues are
clearly given by

h'"=2-I, S

In other words, the eigenvalues of h ' occur in
pairs + p,

' . We can see this explicitly from our
construction of the spinor eigenfunctions given
above. We note that when n = 0 the eigenfunction
$" („'„)vanishes,

Using Eq. (32) it is easy to construct projection
1

-1FooXs s L FooXs (39)
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since Zoo is g-independent and hence vanishes
when acted on by the g derivatives in L. Thus,
the spectrum of h ' contains

2dim(n ——,', 2) eigenvalues -(n+ I), n= 1, 2, 3, . . .

(40)

n+2, respectively, we find

dim(n, o)
Trl" („„)=tr, ' dQ„Q p g" ('„„)()))g" („„)()I)

m=1 $=1

n+L S 8)T' 2n+3=tr ' 2n+3 3 8))'
C3 21

2dim(n+ —,', —,') eigenvalues u+ 2, n= 0, 1, 2, . . . ,

which explicitly verifies the reflection symmetry.
In terms of the eigenfunctions of Eq. (35), we

can write down the completeness relation for the
electron eigenvalue problem,

ce dim (n ~O) 8

Z Z Z [0"-('.„)()),)4"(.' „)(n,)'
n=o tn= 1 $= 1

= 2dim(l1 —2, 2),

dim (n, o) 8

Trl„",, = tr, dQ„Q Qg"„,', (7)) g,;(7))
m=1 S=1

n+3 —L S Bv' 2n+3
2'+ 3

= 2dim(n+ —,', —,') .

(46)

with 1, the unit 8&&8 matrix.
Equation (41) is easily verified by noting that

(41)

Z)(. )(. = 18,
$=1

dim(n, o) 2Pl+3 3/2I;.(n,)I;.(n.)*= 8„, C:"(n, n.},
(42)

with C„'~' a Qegenbauer polynomial, as in Ref. 2.
Substituting Eqs. (35) and (42) into Eq. (41) and

using the Hermiticity of the projection operators
and Eq. (34b), we find that the sum in Eq. (41) be-
comes

C„'i'()7, )),)1,= 5~()), —)),)I, , (43)
n=o

as required. From Eq. (41) we can verify our
identification of the eigenvalues -(n+1) and n+2
with the respective O(5) representations (n ——,', —,')
and (n+, —,'). Letting Tr denote the complete trace

1 (n )I, + 1)—,'(n )I, —1)
'( Il& )g ~2 {q ~ )4

(o) ( n„-n.-),
S ',"(q„q,) = S '"())„q,)+S"(q„q,)

1 1 —O."gl a'g2
27)' ()7, —)I,)'

which obey the wave equations

h'"(9,)S '(ll„R,) =5~()7, —)7,)2(1 —n.V,),
h("()),)S(ro)()7„)7,) = 6,()7, —)),)I, .

(47)

(48)

Since S ' and S ' can be obtained from S~' by
projection,

[In the final step we have used the fact that C„'~'(I)
= —,(n+ 1)(n+ 2).] Equation (46) agrees with the
eigenvalue counting summarized in Eq. (40).

%e now have all the group-theoretic apparatus
required for writing down the eigenfunction expan-
sion of the free electron propagator. Let us begin
by defining two auxiliary electron propagators
S(')(~„~,) and S(, )(~„~,),

Tra = dn„tr, ())(ei))},

and letting

(44} S('(7)„)),) = —,'(1 —n )7,)S (ro) ())„)),)-,'(I+ n.)),),

S '"(n„n.) = 2(1 + n n, )S'r"(n„ n, )2(1 —n )I,),
(49)

(45}

denote the unit matrices in the subspaces with L
eigenvalue -2n(n+3) and h(o) eigenvalues -(n+1};

it suffices to find the eigenfunction expansionof
S~'. This, however, can be immediately obtained
from the completeness relation, 4

S' (n„n.) =(I'")-'&,(n, —n.)1.

-(n+1) 0g -(n+1) ~2 + n+2 ~1 n+2 ~2
-(n+ 1) n+2n=o ~=1 $=1

(50)

ps our final consistency check we explicitly evaluate the sum in Eq. (50). Summing over m and s, we get

2n+3 n+L, S Csi'()), q, ) @+3-L, S C„'i'()7, )I,)+
8)T' 2n+ 3 (n+ 1) 2n+ -3 n+ 2

(51)
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Substituting the relation

L„.SC„'~'()), )),) = (a )),o. )), —z) —C3~'(z),

lE XJJ g2 7

Eq. (51) can be reduced to the form

(52)

+ + + ~ . ~

(a)

+ + + ~ ~ ~

1 d 20+3 g/21+(z —a 7),o, )),)d— Q( )( )
C„' '(z)

— n=o

1 d 1
1+(z —n )),o. q,)—

+perm
+

+ perm

+

+ perm

+

+ perm

+ perm

1 1 —n ~a+'~2
8v2 (1-)), )),)2

—Sr ())„)),),
which completes the check.

(53)

III. AMPLITUDE INTEGRAL FOR
THE INTERLACING OPERATOR

W[A] =IW ' [Aj. (54)

Our starting point in deriving an expression for
I is the usual x-space path-integral formula for
the interlacing operator, ' which, in terms of the
electromagnetic potential a„(x) in Euclidean x
space, states that

t

W[a'] = C [daj exp d'xl!(x) W(') [a+a'],

(55a)

where C is a normalizing constant, f [da] is the
path integral

With the group-theoretic preliminaries of the
preceding section in mind, we proceed to develop
an amplitude-integral formula for the interlacing
operator which applies virtual-photon radiative
corrections to fermion loops. %e restrict our-
selves at the outset to diagrams containing a single
closed fermion loop, coupling to an arbitrary
number of external photons. A convenient gener-
ating functional for this entire class of diagrams
is obtained by calculating the vacuum amplitude
TV in the presence of an external electromagnetic
potential A. We let W "[A]denote the single-fer-
mion-loop vacuum amplitude with no internal vir-
tual photons [Fig. 1(a)] and W[A] denote the single-
fermion-loop vacuum amplitude with all internal
virtual-photon radiative corrections included
[Fig. 1(b)]. The interlacing operator I is then de-
fined as the linear operator which converts the
functional W ')[A] to W[A], that is,

(b)

FIG. 1. (a) Diagrams contributing to the single-fer-
mion-loop vacuum amplitude with no internal virtual
photons. Each ~ denotes a coupling to the external
potential A. (b) Diagrams contributing to the single-fer-
mion-loop vacuum amplitude v ith all internal-virtual-
photon radiative corrections included. "Perm" indicates
that we must include all distinct permutations of the in-
ternal virtual photons and the external potential couplings
X,

g(x) = - ' f„,f)", f„—,= 8 „a,—s,a„. (55c)

[dA] = g „dA, ()))
a, 1]

and with the kinetic Lagrangian given by

(56b)

(56c)

The argument of the exponential in Eq. (56a) can
be rewritten in a more convenient form by an
integration by parts, giving

dQ„(Ii,„,)'= --,'
Jt dQ„I, A,E.„
dn„A, g.,z.„

=-,'
J dQ„A, P„A, , (57)

with P„ the wave operator given in Eq. (12). We
next expand the potential A. in terms of the ortho-
normalized vector spherical harmonics of Eq. (18),

Equation (55) can be transcribed directly to the
hyperspherieal formalism, giving

W[A] = C' [dA] exp Jt dQ„g())) W ')[A+A'],

(56a)

with f [dA) the path integral

da = da„ x
g, x &

(55b)
().) y (x) (~) (58)

and Z(x) is the electromagnetic kinetic Lagrangian thereby introducing a set of expansion amplitudes



MASSLESS ELECTRODYNAMICS ON THE 5-DIMENSIONAL. . . 2407

Our aim is to reexpress the path integral in
terms of an infinite product of ordinary integrals
over the expansion amplitudes. We begin by sub-
stituting Eq. (58) into the expression in Eq. (57)
for the argument of the exponential. Using the
orthonormality of the vector spherical harmonics
and the fact that

sA, (q) BA, ()7)

= det dQ „Y„(~,) ()))Y„P ),()))

=det[e„„eqq 5 „]=1, (63)

P Y(l) (L2 4) Y(l)

= -2(n+ 1)(n+ 2) Y(„'), ,

we readily find that

(59)

dim(n t 1)

dQ„Z())) = ——,
' g Q (n+ 1)(n+ 2)[c(J']'. (60)

n=1 m=1

We see that the exponent has no dependence on the
coefficient of those harmonics which fail to satisfy
the hyperspherical Lorentz condition I.,~F, = Y,.
The same is true of the vacuum amplitude
W(o)[A+A'], by virtue of the argument which fol-
lows Eq. (23), and hence the entire integrand in
Eq. (56a) depends only on the set of coefficients
c('. We next must express the path integral
O'f d[A] in terms of an integral over the amplitudes
c„~. Proceeding heuristically, we write

n, m"-o
dcnm dc'n '"

nm (64y

gives simply an infinite constant factor which can
be absorbed into C'. We can then determine C'

by noting that Eq. (56a) must reduce to the trivial
identity

x exp dQ„Z(t)) W ' [0] (65)

where we have used Eq. (19) and have assumed
that the orthonormalized vector spherical harmon-
ics have been chosen to be real. Hence we have
J=1, and the Jacobian of the transformation is
trivial. Finally we must choose the normalizing
constant C'. Since the integrand has no dependence
on c„"and c„n", the product

(61) when the electromagnetic coupling e is set equal
to zero. We thus find that

with J the Jacobian

BA, ())) gJ -det (~)

To calculate J, we note that

(62)

&]~(n, &) (n+ 1)(n+ 2) &/2~=n n
n= 1 m= 1

giving as our final formula for the interlacing
operator

(ee)

n(&'] =
I
II II

with

(,) (n+ 1)(n+ 2)dcnm. 2'
dim(n, 1)

exp -2 n+1 n+2 c(l) 2 N(0) A+A
n= 1 m=1

(67a)

~ dim {n,l)
c„'."Y(.".(~) .

n= 1 m= 1
(67b)

Two features of Eq. (67) merit special emphasis. First, the formula no longer involves path integrals and
the troublesome limiting processes implicit in their definition, but rather involves only an infinite product
of individually well-defined ordinary integrals. Second, gauge degrees of freedom, represented by the vec-
tor spherical harmonics with A. = -n, n+3, have been completely and explicitly eliminated.

Since our derivation of Eq. (67) has been somewhat heuristic, we will check the formula explicitly by
expanding g ' in a power series in A and showing that the interlacing operator does correctly reassemble
the virtual-photon propagators. We write

W'"[A+A'] = W'"[A'] + dQ„dQ„,A, ,(t),)A, ,()7,)W(') [t),)),;A'J

+ dQ„dQ„dQ, dQ„A. (q,)A. (q, )A. ()),)A.,()),)W.",' .. [)),)),q,q„A']

+ ~ ~ ~ + dQ„~ ~ dQ„A, ()),) .A, (t),„)w(').., [)),. ~ ]7,„;A']+~ ~ ~ +terms odd in A, (68)
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where we have not indicated explicitly the terms
odd in A because they vanish when substituted
into the amplitude integral. The diagrammatic
content of W(') [A'], W,"), [f),g» A'], . . . is indicated
in Fig. 2; when the free photon ends are linked
with virtual photon propagators these become
equal respectively to the first, second, . . . lines
in Fig. 1(b). So to verify Eq. (67) we must check
that the amplitude integral in Eq. (67a) converts
the products of potentials A, (q, )A, (f)2), A, (g, )

A., (f)4), . . .appearing in Eq. (68) into the ap-
propriate photon propagator factors. Beginning
with the term containing two factors of A, and
denoting as above

w' [A] = + + + ~ ~ ~

w.",.', [~, q, ; ~'] =

(0)
Wa&a2a~a+I~i IPp~g'r A J =

+ perm

+ perm

+ ~ ~ ~

2
+ perm

2

+ e ~ ~

q perm

FIG. 2. Diagrammatic content of the amplitudes which
appear in the expansion of W(0) in powers of A. "Perm"
indicates that we must include all distinct permutations
of the external potential couplings & with respect to the
external photon vertices (external photon labels are
not permuted).

dim(n el) f. (,) „(n + I l (n + e )
nni 2~ we easily see that

we find

IA, ,(f),)A, (f)2)

~ dim(nel)
xexp —

2 n+ 1 n+ 2
n=l m=1

(68)

nln2

(ff, + 1)(n, + 2)
'

Hence the interlacing operator acting on the pro-
duct of two A's gives

y(1) f )y(1) ( )
(q )~ (q )= g nlmlal(f)1) nlml 2

(n, + 1)(ff, + 2)

nlrnl n2rn2
(o)

Dala2()1~ 92)eff ~ (72b)

Defining

(n+ 1)(n+ 2)J, (n) = dc 2'

(2l —1)!!
[(n+1)(n+2)]f '

exp[--,'(n+ 1)(n+ 2)c'] c"

(71)

(78a)

we find tha, t

which is just the effective photon propagator dis-
cussed in Sec. II. We next consider the term in
Eq. (68) containing four factors of A. Noting that

3

[(n+ l)(n+ 2)]' '

IA. ()),)A. (f),)A. (f),)A. ()),) = I y'(l) ( )y(l) ( ) y(l) ( Iy(»
(fl + I)(n + 2)(n + I)(n + 2) L nlmlal Vl' nlmla2(72) n2m242(13' n2m@4()4)

nm

(0)
ala2()ls )2)eff a2aa()au 14)eff

(o)

+ (0)+ Dalaa(f)ly 02)eff D4244(f)2~ f)4)eff + Dalaa()71& 94)effD4242(92& f)2)eff t
(0) + (0) (0) (73b)

(74)

each term of which contains one l-fold overlap involving the mode n, m. Vfe conclude that for the general
term in Eq. (68) we have

which is again the required string of photon propagators. The argument continues in the same fashion for
the higher terms in Eq. (68). In particular, wherever an overlap of 2l modes with the same indices n, m
is encountered, the amplitude integral in Eq. (71) supplies a combinatoric factor (2l —1)!!,which is just
the number of ways of dividing 21 objects into l groups of 2. But this is just equal to the number of terms
in the propagator subchain

Da, ( )
.
( )

(f) '{1)i f)f (2))eff ' ' D, (f)«», ), )7«2f)),ff + [(2l —1)!! —1] other orderings,
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a~( /1) z ( lz ) D
~ z( /z 7z) ff f/ (r/z z //zg) ff + [(2rz —1)!!—1] other orderings,

(0)[A] (»[p] g Tl [S zea A]
n

n= 1

(76)

which by%'ick's theorem is just the required vir-
tual-photon propagator string.

Having concluded our discussion of the interlac-
ing operator, we consider next the problem of con-
structing the non-radiative-corrected vacuum
functional W~o~[A]. According to the usual pertur-
bation-theory rules, we find

where

Iz = 2 —L S ——,'(1+ a r/)ie a A .
Equation (80), while simple in appearance, has
an important defect: Although the free part of h

is a Hermitian operator, the interaction term
(1+a r/)iea A is not Hermitian, and therefore we

cannot express the problem of evaluating Eq. (80)
in terms of a Hermitian eigenvalue problem.

In order to remedy this defect, we use the fact
that the projection operator P„satisfies

where we have introduced an operator notation
~c I'ca = O

~ (81a)

(77)

W [A] = Tr ln [/z ], (80)

and where the factor n ' in Eq. (76) is a combina-
toric factor characteristic of vacuum amplitudes.
[The terms in Eq. (76) with rz odd will of course
vanish, by Furry's theorem. ] Noting that

S'"= (2 —L S) ' '(1+ a-.r/-)

and summing the power series in Eq. (76), we get

W'" [A] —W'" [0]
= Tr in[1 —(2 —L S) 'z(1+ a r/)ie a A] . (79)

Hence, up to an A-independent constant (which is
of no interest in our subsequent discussion) we

can write

hence the individual harmonics 1"~'~, (r/) entering in-
to the amplitude-integral formula, as well as the
potential A, (r/) itself, satisfy the constraint'

~, r„"& (~) =0,

r/, A, (r/) =0.
(81b)

(81c)

We will now show that for the class of potentials
satisfying Eq. (8lc), Eq. (76) can be rewritten in
the alternative form

W(o)[A]W(Q)[p]QQTr[S/r'~zear/a. A]"
n

(82)
where S~' is the auxiliary propagator defined in
Eq. (47). To see this, we consider a portion of
the propagator-vertex string appearing in the nth-
order term in Eq. (82):

S'r'/ (r/„r/, )i e a.r/, a A (r/, )S~~"(r/„r/, ) ~ ~ ~~ ~
~

~ ~ ~ ~ ~

' dQ„z ~ [S ' (r/„r/, )iea r/, a A(r/, )S "(r/„r/, )+ S '
( „r/r)/ie ar/, a.A(r/, )S '~(r/„z/, )

+ S '
(7/&, r/z)ze a r/, a A(z/, )S '(r/„r/, )+S'»(r/„r/, )iea r/, a A(r/, ).S/''(z/„r/, )] ~ ~ . (83)

The terms containing one factor S ' and one factor S ' vanish, since

(a.z/, +1)a r/, a A(r/, )(a.r/, +1)= (a.r/z —1) . /,arAa(r/, )(a r/, —1)=0

by virtue of the constraint, Eq. (81c). The terms containing two factors S/' or two factors S~'/ can be sim-
plified by using

(a.r/, + 1)a.r/, = (a r/, + 1)(+1),

reducing Eq. (83) to

(84)

dn„. fS (r/„r/, )iea A(r/, )S/ (r/„or/, )+S/o~(z/„r/, )[-zea A(r/, )]S~ol(r/„z/, )j (85)

Continuing in this fashion entirely around the nth-order propagator-vertex string, we find that Eq. (82) re-
duces to

/»[ ],~ Tr[S ' iea AJ" + Tr[S" iea.A]"(-1)"
n

tl= &

(86)
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But on reverse-ordering the ~-matrix factors and
relabeling the coordinates in the second term, one
sees that

(a)

Tr[S ' ieo A]" = Tr[S ' ien A]",

which gives finally

W(p)[A] (p)[0] g Tr[S '

e'en

A]"

(87)

(88)

+ + ~ ~ ~

(b)

FIG. 3. (a)Diagrams contributing to W( ~ which are
divergent and therefore require renormalization sub-
tractions; (b) diagrams contributing to g & which are
convergent.

which by Furry's theorem is identical to Eq. (76).
Having verified the correctness of Eq. (82), we
substitute

W ' [A] = W ' [A] —W ' [0]—n —W ' [A]
n=p

S(o) (2 L.S)-1

and sum the series into a logarithm, giving

(89)

Substituting Eq. (94), Eq. (95a) reads
(95a)

W(o) [A] = —,
' Tr inh r,

8~=2 —L 8 —ice.gn A.
(91a)

The Hamiltonfan appearing in Eq. (91) has the
desired Hermiticity property, since by virtue of
Eq. (81c) we have

[ien )7o. A] = ien A()(~)}-
—se z.g cy.A (91b)

Having now a Hermitian Hamiltonian, we consid-
er the eigenvalue problem

i) r4y=P4p ~. (92)

analogous to Eq. (38a) of the noninteracting case.
Because

hzn. g= -o. phd, (93)

the argument of Eq. (38) tells us that the eigen-
values occur in pairs +p. . Since the eigenstates

gp of hr form a complete set, we can evaluate the
trace appearing in Eq. (91) in the basis in which

h~ is diagonal, giving for the vacuum amplitude
(again modulo a constant)

W ' [A.] = Q in', . (94)
p&p

Thus, the study of the behavior of W(') [A] is
equivalent to the study of the eigenvalue problem
posed in Eqs. (91) and (92). Up to this point we
have neglected renormalizations, which are neces-
sary because the two smallest vacuum diagrams,
illustrated in Fig. 3(a), are divergent. To make
Eq. (94) well defined, we must subtract off the
first two terms in its power-series expansion in

a, obtaining the renormalized expression

W ' [A] —W ' [0]= 3 Trln[l-(2-L S) 'n. )lien A]. .
(90)

Again, up to an A-independent constant, this is
equivalent to

W'"[A]=ln II p, II p("

n —-ln II pdQ ]i &p

&(o)
~(p) &p

(95b)

Equations (95a) and (95b) receive contributions
only from the larger loop diagrams of Fig. (3b),
and therefore are finite.

IV. FINITE-MODE-NUMBER APPROXIMATION

We now wish to apply our amplitude-integral
formalism to study the analyticity properties in
coupling constant ()(= e'/47( of single-fermion-loop
diagrams, and in particular to examine whether
they can develop an infinite-order zero (i.e. , an
essential singularity) when n approaches some
positive value np. We distinguish at the outset
two alternative ways in which an essential singu-
larity could appear. (i) Any finite subproduct of
the infinite product of ordinary integrals in Eq.
(67a) exists, but a divergence appears when the
limit of an infinite product is taken. The analysis
of this case is difficult, and will not be considered
further, apart from a brief mention in the conclud-
ing paragraph. We confine our attention hence-
forth to a more interesting possibility: (ii) An

essential singularity occurs even when Eq. (67a,)
is truncated down to a finite product, In this case,
instead of studying the full W[A'] we study the ap-
proximant W~[A'] defined by

(,) (n+ 1)(n+ 2)

o=1 IN 1

k dim(n, 1)
xexp -21 n+1 n+2 c(1 2

n= 1 m= 1

x W'"[A+A']
(96)

k dim(g, 1)
A, ()7) = p Q c("y(„",())) .

n=1 m=1
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Following the argument of Eqs. (68)-(75), we see
that Eq. (96) corresponds to the approximation
of replacing the full effective photon propagator
D (YJ] g2) ff by the truncated effective propagator

W [A+A'] = W o [e(A+A')]

and then making the rescalings

A. e 1A., A'- e 1A.'

(98a)

(98b)

we can make the coupling-constant dependence of
the right-hand side of Eq. (96) completely explicit.
Introducing the abbreviated notation

k dim{n, 1)

rr n =ri
n= 1 m=1 1

dim{n, 1)

Z Z =E
n= 1 rw= 1 1

(99)

L(L~ = +dim(n, 1)

= -', k(k + 1)[-',k(k+ 1)+ 3(k+ 2)],
we find

(n + ()(m + 2) '~ *

I

xexp — n+1 n+2 c„'
e

(97)

and then using this truncated propagator to calcu-
late virtual-photon radiative corrections to all
orders. For distances (']I, —]7,)' of order unity,
Eq. (97) is qualitatively similar to the full propa-
gator; substantial differences appear only in the
short-distance limit g,- g» where the full propa-
gator becomes singular, while Eq. (97) remains
finite. Thus, the study of case (ii), on which we
now embark, is essentially an examination of
whether an essential singularity in coupling con-
stant can appear in a model of massless electro-
dynamics in which fermions are treated exactly,
but in which the short-distance singularity of the
photon propagator is cut off.

To proceed, we note that W['][A+A'] depends on
the electric charge e only through the combination
e(A+A'), so by writing

Finally, transforming to polar coordinates in the
Nk-dimensional space of the c„' by introducing the
new integration variables

Nk
a' =Q (n+ l)(n+ 2)[c~„'~]',

a ' =[(n+1)(n+2)]' 'c ' /a
(101a)

we arrive at the expression

k[ & (2 2)N], / 2P(& ~ )
Oo ad(a')a"]] 'exp —,u, (a', A').

0

(1O2a)

Here

u]„(a', A')

I

Nk Nk

n f da, „' a ("—p[a ' ]')rv~ ~[g+g']
1

d„" 5 1-

(102b)

is the angular average of W '~[A+A'] in the space
of the coefficients c„' for fixed "radius" u.

It is immediately evident from Eq. (102) that the
study of the analyticity in coupling constant of TVk

depends on the properties of the external-field
vacuum amplitude W["[A+A'].' Hence we begin
our discussion by summarizing some facts about
the behavior of the external-field problem.

(i) For smaLL enough a, the perturbation series
for the renormaLised vacuum functionaL W!o][A]
is convergent. . This is easily proved by majoriza-
tion of the power-series expansion for Wt'][A].
To begin, we use the Schwarz inequality to bound

the absolute magnitude of the vector potential
A„(]7) on the hypersphere in terms of a. Writing

~ [(n+ 1)(n+ 2)]'t ' ' (108a)

and using the formula

N], m d (y! s]('"„,a ( p[ "-']') „[.2"'"=r (l A,)]
1 1

(10lb)

x W ['][A+A'] . (100) we have

But

iw, (n)l'- I~l'(Z[~!gl') 2 (,2
El('!"(n]l' . (1O3b)
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Z I

&'" (n) I'- Z [I1'"(n) I'+
I &.'.."'(n) I'+

I &.'".'."(n) I']
m, a

giving the bound

= 5 C't '(1)
8 2 n

5= ———,(n+ 1)(n+ 2)(2n+ 3), (104a)

5
—X/2

IA„(g)l ~ lal, h(h+4) -=A (104b)

We turn now to the power series for W~')[A] which, since we have subtracted off the terms of order e' and
e2, takes the form

W'"[A]= Ze" W'"[A]
l=2

Consulting the Feynman rules in Table I, we find that the general term in Eq. (105) is given by

2l

W'. [A]= rr d~„, (-)t, [ A(n, )S'"(n„n.) A(n. )S'"(n., n.)" A(n. )S'"(n.„n,)][(-1)'/2~].
j=1

To bound the trace in Eq. (106), we note that for a product M, ~ M~ of 8 x 8 matrices we have

ltr, (M, M, )l ~ 8 ma l(M, .M, );, I.
JW8

But for any i and j we have

l(M, . M, ),, l ZZ l(M, M, ),, l'=ZZZM „(M,. M, 4;I
i j f j

~ZZ I~i~.-l'ZZI(M, ~p)apl' = tr. (M,Mi)ZZI(M. . Mp4, I'

& ~ ~ &tr (MM') tr (M M')

(105)

(107)

(108a)

so we learn that

Itre(M~ . Mq)l ~8[tre(M,M, )

x tr (M M ) tr (M& M& )]~i 2.

(108b)

To apply this inequality to Eq. (106), we note that

tr, (~.A(q, )[a A(q, )]'}- 8A..„',
(109)

tr, [S~')(g„ )7,)S~ ~()7„ ri,)t] = 1

8m 1 —g~.g2

giving

(110)
1„= n d ))1—1111;q,) ' (1 —g, g1, ) '&'

J

x ~ ~ ~ (1 g .
7i ) t (1 g q )

To evaluate t», we substitute the hyperspherical
harmonic expansion

1 —g g ) ~t2=1(23t28ms)

xZ —1'..(v, )1:.(n.)*, (»1)2++3 nm 1 nm 2

I

obtaining
2l

t =(-,'2' '8m')" —— — '(n+1)(n+2)(2n+3)
rl=0

=(-,'2"8~')"[1+5 x (-,')2&+" ].
Thus, we conclude that

e'&IW'"[A]l ~(—'2' 'eA )"—[1+5x(—'}"+. ]

1~3 (113)

indicating that W~' [A] has a convergent power-
series expansion' for small external fields, ex-
tending at least to a radius of convergence eA
=(—,'2'i') '. The fact that there is a nonzero radius
of convergence is important, since it means that
the quantity W~' [A) appearing in the amplitude
integral formula is uniquely specified by perturba-
tion theory for small A.

(ii) The renormalized vacuum functional W~')[A]
satisfies the inequality EeWi')[A] ~&„(lal), upwith

g„a twelth-degree polynomial u)ith finite coeffi
cients. ' To show this we start from Eq. (90),
which, we recall, states that

W ' [A] —W ' [0]=—,Tr in[1 —S ')Q r/ieo. A). (114).
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Since W~o~[A] is even in A, we can average Eq.
(114) for A and -A, obtaining

W" [A] —W ' [0]= —,'(Tr in[1 —S"o. pico. A]

+ Tr in[1 + S',"n.rpeo. A])

with

= ~ Trln(1+K), (115a)

K = (S~~'~-n rye'. A)'. (115b)

ReW~'~[A] = —,' Tr[ln(1+K) -K+1n(1+K') -Kt]
= —,' Tr([ln(1+ B) —B+ ~ B' ——', lP]

+B—~B + ~ EP —(K+K )),
(llva)

with

B=K+K +KK = (1+K)(1+K) —1. (11'lb)

Since (1+K)(1+K) is a positive-semidefinite op-
erator, B satisfies the operator inequality B~-1.
Thus, using the fact that

ln(1+B') —B'+ —,(B')' ——,'(B')' ~0, B' ~ -1

we can conclude that

Tr[ln(l + B) —B+ —', B' ——,
' B'] ~0,

which gives immediately an upper bound for
Rew'"[A],

(118b)

ReW ' [A] & —,
' Tr[B—;B'+—', B' —(K+—K )] . (119)

The right-hand side of Eq. (119) is a twelth-degree
polynomial in the external potential A; to see that
it has finite coefficients we substitute Eq. (117b)
for B to get

Tr[B —,'B'+ ', IP —(K+K —)]—
=-Re Tr[K']+Tr[O(K', K'K', (K')'K) + "].

(120)

But Tr[K'] is just proportional to the fourth-order
diagram in Fig. 3(b), and hence is finite (although
only conditionally convergent), while the remain-
ing terms are easily seen to be absolutely conver-
gent by the bounding argument of Eqs. (105)-(113).

(iii) The comPlete (multi-fermion-looP) vacuum
amplitude A(a) = exp[W ~0~[A]) is an entire function
of the camPlex variable a, for arbitrary direction

Noting that ~ TrK is just the second-order diagram
in Fig. 3(a), we see that the renormalized vacuum
functional is given by

W ' [A] = ~ Tr [ln(l +K) -K] .
Hence

cosines a~'. This result, first derived by Matthews
and Salam and Schwinger, ' follows heuristically
from the fact that exponentiation of Eq. (79) gives

exp[W '1[A])~exp Tr in[1+ 8 o~ —,'(1+ o. rt)ieo. A]

=det[1+S~'~ —,'(1+ o.rt)ien. A], (121)

which is a Fredholm determinant and therefore is
an entire function of a. The need for renormaliza-
tion subtractions does not alter the conclusion,
since the factor needed to convert exp[Wt'~[A])
to exp[Wt' [A]) is the exponential of a quadratic
polynomial in a, and is therefore entire. Note
that if instead of using Eq. (79) we exponentia. te
Eq. (90), we get

exp{W ' [A])o- (det[1- S'r' o. rpeo. A])' ' (122)

The presence of the square root in this version
produces no singularities, because the p. —-p,
reflection symmetry of the spectrum of h~ implies
that any zero of the Fredholm determinant in Eq.
(122) must necessarily be a double zero

(iv) Eor arbitrary (fixed) direction cosines
a„', the function b, (a) = exp(W o [A])has at least
one zero in the complex a plane, and hence
W~'~[A] has at least one logarithmic type bran-ch
Point. An obvious corollary is that the Perturba-
tion exPansion for Wto~[A] (which, as goe have seen,
exists for small enough a) has a finite radius of
convergence. To prove this statement, let us
suppose that b.(a) is an entire function with no
zeros. Then E(a) —= W~'~[A] is also an entire func-
tion, which according to (ii) satisfies the bound

ReE(a) ~ P»([a~) in the whole complex a plane.
But applying Caratheadory's inequality"

max, ~E(re's)
~

~ [maxs ReE(Re's)

—ReE(0)] — + ~E(0)(,

r &R (123a)

on a circle of radius r = ~R and noting that E(0) =0,
we have

max s ~E(-,'Re'e)
~

~ 2 maxs ReE(Re's) ~ 2P»(R),

(123b)

indicating that the modulus of E is polynomial-
bounded. Hence E is a polynomial, which is false,
since the perturbation expansion for W~o~[A] does
not terminate in finite order. Thus A(a) must
have at least one zero. We actually expect there
to be an infinite number of zeros of b, (a). These
zeros of course correspond to the values of a
which produce vanishing eigenvalues p, in the
eigenvalue problem hrg = pg.

With the above properties of the external field
problem in mind, we turn to an examination of the
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behavior of the truncated amplitude-integral for-
mulas of Eqs. (100) and (102). We divide our dis-
cussion into four parts. First, we show that the
perturbation series in coupling constant n for the
single-fermion-loop vacuum amplitude and 2n-
point functions have zero radius of convergence;
hence they are only asymptotic series and do not
uniquely specify the physical theory. We then

argue that this nonuniqueness is associated with
the freedom to make inequivalent choices of con-
tour in the amplitude integral, and suggest that
unitarity restricts the actual choice of contour to
one (or possibly two) at most. Third, for the
choices of contour suggested by unitarity we ex-
amine the conditions under which an infinite-order
zero in coupling constant can occur. Finally, we
formulate a simple one-mode problem, the study
of which may help resolve some of the unanswered
questions about the finite-mode-number case.

A. Zero Radius of Convergence of Perturbation Expansions

5
- -1/a

It . =,I20'2+4) (2222~2) '. (124)

However, according to (iv), w» must develop a

We consider first the radiative-corrected single-
fermion-loop vacuum amplitude in zero external
field, obtained by setting A' = 0 in Eq. (102a).
According to property (i) above, the weighting
function 2(t»(a2, 0) has a convergent power-series
expansion in a, with a radius of convergence of
at least

singularity for finite a, since for large enough
complex values of a singularities of W(o)IAI will
be encountered at endpoints in the integration over
direction cosines in Eq. (102b). Thus the actual
radius of convergence A is finite, and if we write

gg (a2 0) g 2((tn) a2n

n=O

then we have

(125a)

li m sup lg(t
"

I

'in =—)0 .
1

~ OO
k (125t)

Now let us substitute the power-series expansion
of Eq. (125a) into Eq. (102a) and integrate term
by term, giving the perturbation series for the
vacuum amplitude in powers of e',

(126)

The inverse radius of convergence of this series is

»m sup IM'") 2"1(n+ ' N)/I'( —'-N») I""

= —lim supl I'(n+ ,' N»)/I'(2 N—»)]jti"= ~, (127)

that is, Eq. (126) has zero radius of convergence. "
An analagous argument applies to the radiative-
correeted single-fermion-loop 2n-point function
in zero external field. An expression for this
quantity is obtained by functionally differentiating
Eq. (102) with respect to A' and then setting A' to
zero:

T»(91 lt ' ' ' ))2 2n) (2 2)ttt»y 2 t 1 N
d(a )a» exP —

2 t»(a i ))1 1 ' ' ' t ))2 2tr) t28

Ng

~
~ ~ ~

~ ~ ~

~
1t»(a t91 lt'''t /2n 2nt pj~»J" da(1) 5 I ~la(1)P

1 1

Here

I'»fA;)I,a„,n..a..f=--."tr.b(2n, (2. ()),II 'In. &t(2)).c(. (n. l11r 'I)4&. . to'1)..(. ())...IIr 'In, &1

+permutations of g,a». . . , g,„a,„,

(128a)

(128b)

with

hz=2 —L, 8 —s~ gn A (128c)

the same expression as in Eq. (9la) except that the
charge e has been scaled out. Again, properties
(i) and (iv) tell us that t»(a';)I,a„.. . , )12„a2„)is
power-series-expandable with a finite, nonzero
radius of convergence A, determined by the com-
plex values a which produce vanishing eigenvalues
of h~. The argument then proceedts as in Eqs.
(125)-(127).

8. Choice of Contour in the Amplitude Integrals

The fact that the perturbation series for the ra-
diative-corrected vacuum amplitude and 2n-point
functions have zero radius of convergence means
that they are at best asymptotic series, which do
not uniquely specify the physical theory for non-
zero coupling. To better understand this non-
uniqueness, let us return to Eq. (102) for the vacu-
um amplitude. Although we have assumed up to
this point that the a-integration contour runs along
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the real axis, in fact the term-by-term integration
to get the perturbation expansion in e' is conver-
gent and yields the same answer for any integration
contour which lies within the sector

j. 1——,m & arga'& —,m . (129)

Let us now consider two such contours, which pass
on opposite sides of a branch cut of w~(a', 0) which
originates from a branch point a, They make con-
tributions to Eq. (102) which differ by the amount

(2e*) "'I'(-'N) ~- 2e*)

x die c[w ~(a', 0) ] (130)

where disc denotes the discontinuity of ~„across
its branch cut. The nonvanishing difference in
Eq. (130) shows that different amplitude-integra-
tion contours yield inequivalent physical theories.
However, since Re(a') &0 on the contour in Eq.
(130), the asymptotic expansion of this equation
about e'=0 vanishes, consistent with our statement
above that all integration contours in the sector
of Eq. (129) yield the same perturbation-expansion
coefficients.

Clearly, we can uniquely specify the choice of
physical theory by specifying the contour on which
the amplitude integral is to be taken. It seems a
Plausible conjecture t.hat this choice of contour will
be dictated by the requirement of unitarity. In non-
relativistic potential theory a unitary or probabil-
ity-conserving system has a real Lagrangian den-
sity. %e speculate that the corresponding unitarity
requirement, in defining Euclidean quantum elec-
trodynamics by a photon amplitude integral, is
that the effective photon Lagrangian Z,ff[A] ob-
tained after integration over charged-particle co-
ordinates, should be real. Since g,ff is even in A,
this suggests that we must choose our amplitude-
integration contour to be purely real, or (a much

more speculative possibility)" purely imaginary.
The real contour corresponds to the choice which
we have implicitly made in all of the above discus-
sion. Amplitude integrals evaluated on a real con-
tour will be unambiguously defined only if br has
no vanishing ei genvalues for a real; we conjecture
this to be the case. The imaginary contour will
be of interest only if (i) hr has no zero eigenvalues
for a imaginary, and (ii) the external-field ampli-
tude w~[a', 0] decreases in Gaussian fashion [w,
-exp(ca'), c&0] as a-i~, so that the integral in
Eq. (102) exists for e large enough.

C. Conditions for the Occurrence of an Infinite-Order
Zero in Coupling Constant

Let us now examine the conditions for single-
fermion-loop diagrams to develop an infinite-order
zero in coupling constant, for the cases of real
and imaginary amplitude-integral contours de-
scribed above.

(i) Real contour. When Eq. (102) is integrated
on a real contour, there are two possibilities of
interest, depending on the asymptotic rate of
growth of w, (a', A') for large a. If w„grows as-
ymptotically more weakly than a Gaussian [for ex-
ample, as either a power of a or as an exponential
exp(Xa), with any value of X] then Eq. (102a) de-
fines a function of e' analytic in the right half-
plane, and an essential singularity obviously can-
not occur. On the other hand, if the leading as-
ymptotic behavior of ~~ is Gaussian as a- ~,

a
w, = exp, x (non-Gaussian factor), (131)28p

then Eq. (102a) will converge for 0 &e &e„, but
will develop a singularity at e„. If the non-Gaus-
sian factors oscillate an infinite number of times,
as in the specific example

p,— exp, e'"+e '" = —, , exp —,'t', ' » Ret' 0 (132)

then the singularity can take the form of an infi-
nite-order zero as e- e~ from below. However,
such oscillatory Gaussian growth is ruled out by
ProPerty (ii), which states that w, is bounded from
above by a polynomial in a. Although the example
of Eq. (132) is very special, the argument which
we have just sketched can be made general and
precise, "and indicates that for real amPlitude
integral contour Eq. (202a) cannot develop an in
finite order zero as e ap-proaches a positive sin
gularity from below. The bound from above on
the real part of w„does not rule out nonoscillatory
Gaussian growth of ie„such as

2

= -exp 8 +8, R«&0
28„

(133)

which would lead to singular behavior of Eq. (102a)
as e- e~ from below. For zo„ to behave as in Eq.
(133), the complete vacuum amplitude A(a) would
have to decrease in modulus as exp[ —exp(a'/2e~')]
along the real axis. But this can happen only if
there is a clustering of zeros of b, (a) in the strip
of the complex plane adjacent to the real axis, "
with a linear density (when the zeros are projected
onto the real axis) which increases in roughly
Gaussian fashion as Rea- ~. Such a high density



2416 STEPHEN L. ADLER

of zeros seems very implausible. W'e conjecture
that u~ in fact grows more weakly than a Gaussian,
which, as noted, would imply that in the finite-
mode-number approximation with a real contour,
all single-fermion-loop diagrams are analytic
functions of e' in the right half-plane.

(ii) Imaginary contour If.A(a) has no zeros for
a imaginary, and if w, [a', A'] decreases as rapidly
as

a 2

w„=exp, x (non-Gaussian factor) (134)

along the imaginary axis, then Eq. (102a) will
exist when integrated along the imaginary axis
provided that Bee'& e&'. Clearly, Gaussian de-
creasing behavior of M, is consistent with our
polynomial upper bound irrespective of the sign of
the non-Gaussian factors; hence an infinite-order
zero as e approaches a finite singularity from
above may be possible in the finite-mode-number
ease.

D. One-Mode Model

v '=v '=1 v .v, =0, (135)

Distinguishing among the various possibilities
discussed above will require a knowledge of the
distribution of zeros and the asymptotic behavior
of the vacuum amplitude h(a). The simplest model
which permits one to study these questions is the
one-mode approximation on the hypersphere, in
which only one of the ten modes belonging to the
(1, 1) representation is kept. That is, for the po-
tential A, (q) one takes the linear form

15 i/2
A, (g)=a --, (v„rt v, —v„q v, ),

tension of this result to the full theory would con-
stitute a proof (for the class of single-fermion-
loop diagrams) of Dyson's" old conjecture that
perturbation expansions are asymptotic series at
best. If the perturbation series for the eigenvalue
function F~' ~(o) is divergent, then as discussed
in See. IV B, the perturbation coefficients do
not determine the function uniquely; to define
the full theory additional information, perhaps
from a specific choice of contour in an amplitude-
integral formulation, will be needed.

(ii) If analysis of the finite-mode-number case
shows that

ln lnw ~(a', 0)lim
& a i Inla

(135)

then the real amplitude-integral contour discussed
in Sec. IVC. is likely to be the only correct one,
and will give vacuum amplitudes which are ana-
lytic functions of e' in the right half-plane. It
then becomes an important question to determine
the convergence properties of the vacuum ampli-
tudes as the photon mode number N, becomes
infinite. The appearance of an essential singularity
from the limit of a sequence of analytic functions
would require nonuniform convergence; on the
other hand, if one could prove sufficiently uniform
convergence, one could rule out the presence of
an essential singularity in the full theory, and
hence prove that a finite quantum electrodynamics
is not possible. If nonuniform convergence turns
out to be the case, the challenge, of course, will
be to find alternative approximation schemes, not
involving the restriction to finite-photon-mode
number, for studying whether an essential singular-
ity in e' is present.

which has unit normalization when a = 1. The eigen-
value problem hrP = pg for the potential of Eq.
(135) can be reduced to a single ordinary second-
order differential equation, which may permit the
study of its properties by standard techniques.
The details of this reduction will be fully described
elsewhere.

Finally, let us close by briefly discussing pos-
sible connections between our results for the trun-
cated model and the behavior of the exact eigen-
value problem in electrodynamics, the study of
which is, of course, our ultimate goal. Because
our methods are not powerful enough at this point
to handle the infinite-mode-number case, we can
make no definite statements, but instead pose
some pertinent questions for future investigation.

(i) The first question is whether the result that
o. =0 is not a regular point is just an artifact of
the truncation approximation, or in fact continues
to be valid when all photon modes are kept. Ex-
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APPENDIX

We derive here an explicit formula for the effec-
tive photon propagator D„(q„q,),ff defined in Eq.
(24). It is convenient to remove normalization con-
stants, so we define



MASSLESS ELECTRODYNAMICS ON THE 5-DIMENSIONAL. . .

d,',"(r)„r)2)=8n'D,'b)(f)„r)2)

(Al)

%'e can determine the unknown functions appearing
in Eq. (AS) by requiring that Eq. (Al) satisfy the
known properties of the effective propagator. Im-
posing the constraint

dab (Qls )2)eff 8z Dab ()1& 92)eff
(o) (o)

= d,',"+~d,(,", )ladab ()li )2)eff
(o)

implies that

(A4)

with Ad„" the negative of the contribution to d„'
of the vector spherical harmonics with A. = -n,
n+8 (the gauge degrees of freedom). Since these
harmonics are linear combinations of terms of
the form

1).1'(1)),
(A2)

93 L b, Y(ll),
'

and since d,b (r)„f4),« is symmetric under inter-
change of the photon variables, the most general
structure of hd„' is

r)d (,') = r)„f7234,(z) + (1)„1)~ L,„,+ r)~r) „L„,)4 2(z)

+ f)lc L„ar)22Lzap 3(z)

= n,.n.,4', ( )+ [n,.(n; — n )+n. (n — n,.)]@.'( )

+ (6ab )la 1rb )aa 42b Z )la )zb) 3 (

4,(z) =—,4,'(z) =— (A5)

The second constraint.

(o) (o)
Lice ab ()lt 12)eff deb (r)ry r)2)eff t

requires that 4, '(z) satisfy the inhomogeneous
differential equation

„—[(1—z')4, "(z) —6z4, '(z)] =d, „, 6-5z

(A6)

(AV)

The unique solution of this equation which is regu-
lar at z = -1 and no more singular than (z —1) ' at
z=1 is

43'(z) = —— +,((z'+ Sz + —',)/in[ —,'(1-z)]+,'—', }

+ (r)~ —zr)r. )(r)rb —zf)zr)4 3"(z) . (AS) 3 ~20 130 (A8)

~For a review of work on finite quantum electrodynamics,
see S. L. Adler, Phys. Rev. D 5, 3021 (1972); K. John-
son and M. Baker, Phys. Rev. D 8, 1110 (1973).

S. L. Adler, Phys. Rev. D 6, 3445 (1972). We wiQ
repeatedly draw upon results contained in this paper.

3We follow the notation of M. Hamermesh, G~oup Theory
(Addison-Wesley, Beading, Mass. , 1962), p. 309.
[Hamermesh does not discuss the spinor representations
of O(5); these are dealt with in the review article of
B. E. Behrends et al. , Bev. Mod. Phys. 34, 1 (1962).]

Since 4dim(n, 0) &dim(n + 2, 2), the eigenfunctions de-
fined in Eq. (35) form an overcomplete, nonorthonor-
malized set. The definition is convenient, however,
since it leads to the simple form for the completeness
relation given in Eq. (41). If the redundancies are
eliminated, to give orthonormalized eigenfunctions
g" („+&&

and g„"+2, the completeness relation takes the
form

-aim(n -kb z)
0-(n+ f)()f)~ (n+'1)( lz)-

n=0

dllll (n + —,+)
+ g 4.",'z(g)g,'z(r)z)' = ~&(g-g)13 ~

k~1

The corresponding form for S(0~(g, g) can be obtained,
immediately from the relation S(zb)(r)r, r)z) = ()r(r ))
Xg~ (g ( —g2) 18.

5For a review see B. W. Lee and J. Zinn-Justin, Phys.
Rev. D 5, 3121 (1972), Sec. II and references contained
therein.

Referring to Eq. (16), we see that the harmonies

n-1 ma (~) ~a + ~ILL ~nm«) ~

F„"+f (r]) [- ( + 3)g + g~L~ j F„m(g),

which represent gauge degrees of freedom, do not
satisfy the analogous constraint

&a n:~ ma«) = o~ &a~n+~'ma(n)= o ~

Since Eq. (81c) for the potential must always be main-
tained, this means that the gauge harmonics must
always occur correlated in the combination

(n + ) nba + ~yLya ~nm(~)+nr (n + 3) ga + gyLyaj ~nm(g)

= (2n + 3)ny&ya ~nm(n) ~

The general form for gauge transformations on the
hypersphere (first pointed out to me by S.-J. Chang)
is then

~The importance of the behavior of the external-field
problem was first pointed out to me in conversations
with S.Coleman and D. Gross.

An analogous statement is not true fox bounded potentials
in x space, because the x-space analog of Eq. (110),
2E

II f&'*;i*i— gl "'l*g — sl
'"

r zz~ f~' 2'-rI zz 1 -zr~ ~

is infrared-divergent. This dissimilarity between x
space and the hyperspherical formalism is not surpris-
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ing, since the transformations of Ref. 2 indicate that
the general bound x-space potential a&(x) transforms
into an unbounded hyperspherical potential A, (q). Note
that although the upper bound of Eq. (112) diverges
for / = 2, exact calculation for this case, taking gauge
invariance properly into account, indicates that
5&& ~tA] is convergent.

9A. Salam and P. T. Matthews, Phys. Rev. 90, 690
(1953); J. Schwinger, ibid. 93, 615 (1954). These
authors actually make fewer subtractions than we do
in the argument of Eqs. (116)-(118),because they
claim that Tr(KE~) is finite. However, although
Tr(KE~) is formally a four-point function, it does not
have the propagator and vertex factors arranged in the
correct order to be the usual gauge-invariant four-
point function. Since the four-point function is only
conditionally and not absolutely convergent, this sug-
gests that Tr gX~) will be divergent, and that the
Fredholm argument of Matthews and Salam and Schwin-
ger will need additional subtractions to be made precise.
B. Ja. Levin, Distribution of Zeros of Entire Functions,
Translations of Mathematical Monographs Vol. 5 (Amer-
ican Mathematical Society, Providence, R. I., 1964),
p. 17. I wish to thank A. S. Wightman for conversations
which suggested the argument of property (iv).

~~We note that our argument fails when the number of
modes kept is infinite. As NI, —~, the factor I'(n + 2N~)/
1(2N~) in Eq. (26) approaches unity, and so Eq. (126)

becomes

Although this equation no longer contains a combinatoric
factor which grows as nt for large n, we can draw no
conclusion about its radius of convergence, because
the estiInate of Eq. (124) for an upper bound 8 . on

lim sup(su~~"~(""

diverges as A . Nonanalyticity results related to
ours are given by E. R, Caianiello, A. Campolattaro,
and M. Marinaro [Nuovo Cimento 38, 1777 (1965)] and
D. Kershaw (unpublished).

~2The imaginary contour of course lies outside the
sector of Eq. (129), and hence cannot be developed
in an asymptotic expansion in e by direct term-by-term
integration. It may still have an asymptotic development
agreeing with perturbation theory after an appropriate
analytic continuation.

~3S. Coleman and S. B. Treiman (unpublished). Their
argument takes into account the presence of the asymp-
totically subdominant parts of zv&, which give rise to a
"background" amplitude integral which is analytic at e„.

l4This clustering is implied by Thm. 11 on p. 21 of Levin,
Ref. 10.

~F. J. Dyson, Phys. Rev. 85, 631 (1952).
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The consequences of the large magnitude of the bare coupling constant in Wilson's theory of critical
phenomena are examined for renormalized Geld theory in 4 —& dimensions. The scaling behavior of the
correlation functions, the relations among critical exponents, and the existence of a scaling equation of
state, regular in the temperature around T„are then obtained in this framework. Some corrections to
the scaling laws are also discussed and are shown to be dependent on another exponent.

I. INTRODUCTION

In a previous work' we have studied the existence
of asymptotic scaling forms for the correlation
functions near the critical point within the frame-
work of %ilson's theory' in 0=4 —e dimensions.
The main tool was the use of renormalized per-
turbation theory and of the Callan-Symanzik equa-
tions. ' All renormalizations were performed at
zero momenta. It was shown then that the renor-
malized coupling constant was fixed at a nontrival
solution of an eigenvalue condition simply because
one lets the bare coupling constant go to infinity.
This corresponds to the physical situations in
which the bare coupling is measured in units of

the. inverse lattice spacing a ', whereas the mass-
es and relevant momenta are proportional to the
inverse correlation length g ', and to the fact that,
in the vicinity ot' the critical point, t is much
greater than a.

However, the scaling behavior of the correlation
functions is not sufficient to obtain all the scaling
laws. En addition there are the Widom-Kadanoff'
relations among the critical exponents; there is
also an equation of state, i.e. , a relation between
the applied field H, the magnetization M, and the
temperature T, in scaling form:

a (&- r)
t


