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Dynamical Model of Spontaneously Broken Gauge Symmetries~

R, Jacldw and K. Johnson

(Received 3 May 1973)

We demonstrate how a theory consisting of massless Fermi and vector-meson fields can lead to an
excitation spectrum of solely massive particles. We eschew spinless Bose fields in the fundamental
Lagrangian, contrary to current practice, A detailed model is presented and solved in lowest order.
Fermion and axial-vector-meson masses are spontaneously generated, and the vector particle's mass is
computed in terms of the fermion mass.

I. INTRODUCTION II"'(q) = (g"'q' —q"q')iii(q')

where

pv & 9'
(q) g 2 2 2II( 2)

An attractive idea for field-theoretic models
involving massive vector mesons is that the mass
arises from spontaneous breakdown of a gauge
symmetry. Indeed the currect activity in the theory
of weak interactions is centered around such a
possibility. ' In these examples, both fermions
and vector mesons become massive because a
canonical scalar field, already present in the La-
grangian, acquires a symmetry-violating vacuum
expectation value. In a now familiar fashion, this
vacuum expectation value immediately leads to a
fermion mass and a massless excitation, The
massless excitation, however, does not correspond
to a particle, but rather combines with a massless
vector gauge field to produce a massive vector-
meson particle. For brevity we shall refer to this
phenomenon as the Higgs mechanism. '

In this paper we examine the possibility that
masses of fermions and vector mesons can arise
spontaneously, uithout the presence of canonical
scalar fields in the Lagrangian. ' Thus we are ex-
tending the work of Nambu and Jona-Lasinio,
who showed that the Goldstone mechanism ean
take place even when the Lagrangian' does not in-
clude spin-zero fields.

The fundamental reason why an appa, rently mass-
less vector meson acquires a mass was given a
decade ago by Schwinger. ' The reason is that the
vacuum polarization tensor, that is, the proper two-
point correlation function of the conserved current
J" to which the meson couples with strength g, ac-
quires a pole at zero momentum transfer. To see
this explicitly, consider the complete vector-me-
son propagator,

Va"'(q)=-i(g"'-, a(q),
g

which is given by8

= -g' d'xe""(0~T*J "(x)Z"(0)~0)~ . (I.l)

Here the subscript pp indicates the proper part;
i.e., only one-vector-meson-irreducible graphs
contribute to II"'(q). [We insist that II"'(q) be
transverse, since the current is conserved; this
entails a judicious choice of seagull terms. ]
clearly, if II(q') has a pole at q'=0, the vector me-
son is massive, even though it is massless in the
absence of interactions (g=0, Il =0). We shall call
this the Schwinger mechanism.

There is no physical principle which would pre-
vent II(q') from acquiring a pole. Indeed, for
massless spinor electrodynamics in two dimen-
sions, ' Schwinger found that 1I(q') does acquire a
pole, as can be seen on purely dimensional
grounds: In that theory g has units of mass. (The
occurrence of the vector-meson mass in this mod-
el is also related to the anomaly of the axial-vec-
tor fermion current. ' The axial-vector current
will also be important in our four-dimensional
analysis. ) The Higgs mechanism, now seen as a
special realization of the Schwinger mechanism,
provides an explicit reason for a pole in II(q'):
The vacuum expectation value of a canonical scalar
field coupled to the vector meson gives rise to
tadpole contributions to II(q') which produce a pole.
%e show that such a pole can occur for purely
dynamical reasons, even in the absence of canoni-
cal scalar fields.

In Sec. II, it is demonstrated that a pole in II(q')
can arise whenever a massless fermion acquires
a mass through spontaneous symmetry breaking.
This is an elaboration on ideas of Englert and
Brout. '' As in Ref. 4, this symmetry breaking
is not due to a vacuum expectation value of canoni-
cal scalar field; rather it is assumed to be a con-
sequence of a symmetry-breaking solution to the
integral equations of the theory. This gives rise
to a zero-mass bound excitation in the two-fer-
mion sector, which produces a pole in II(q'). Con-
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sequently, as explained above, the vector meson
also acquires a mass. Furthermore, we show that
the zero-mass excitation decouples from the
theory. We give in Sec. III a "phenomenological"
description of the previous "fundamental" theory.
The phenomenological theory, valid at low energy,
is realized by a nonlinear Lagrangian, which is not
renormalizable, even though the fundamental
theory possesses this property. In an appendix
we show how the various unrenormalized equations
encountered in the text should be renormalized.
Also we solve them in the lowest-order Bethe-Sal-
peter approximation, and exhibit explicitly the
workings of the Schwinger mechanism. We find a
formula for the spontaneously generated vector-
meson mass.

II. SPONTANEOUS MASS GENERATION

A. Preliminaries

We consider a theory with a massless fermion
field g and a neutral vector-meson field Aj', inter-
acting through a conserved current J". (No inter-
nal symmetry degrees of freedom are included
in this simplified discussion. ) Furthermore we
assume that the Schwinger-Dyson equation for the
fermion mass operator Z(p) has a symmetry-breaking
solution, (y', Z (P)}o 0. It is well known that this can
happen if there is a massless, bound excitation in
the fermion-antifermion channel. Since a fermion
mass is being generated, this zero-mass excita-
tion couples to gg or gy'P. Ultimately we shall
want the zero-mass state to combine with the
massless vector-meson field and generate a me-
son mass. This can only happen if a transition
between J" and gg or Q't)t is allowed. Therefore,
as long as charge-conjugation invariance is not
spontaneously broken, J"must contain the axial-
vectox current.

We are thus led to consider a theory described
by the Lagrangian

(It is interesting that the axial-vector current,
together with the anomaly —which, to be sure,
must be removed —is central to the present dis-
cussion, just as it is central in Schwinger's two-
dimensional model. ) In Sec. IIE, the effect of the
anomaly will be considered further.

The theory (2.1) is chirally invariant and renor-
malizable, in the sense that off-mass-shell Green's
functions can be computed in perturbation theory.
The normalization point will not be taken at O'=0
because of possible infrared divergences; rather
an arbitrary value k'=k, ' will be chosen.

G (p)=-i )i-g (p)

D (q)

~A
P

(2.4)

I gPg5

= Iz {p,p+q)

FIG. 1. Scbw|nger-Dyson equation for fermion prop-
agator.

B. Spontaneous Mass Generation

The proper vertex function I'5I'(P, P') associated
with J," satisfies a Ward- Takahashi identity:

V„I."(P,P+V) =r'G '(P+e)+G '(P)r' (2.3)

There must not be any anomalous exceptions to
this equation, since the current, a source of the
gauge field, must be always conserved; see
(2.2)." In (2.3), G(P) is the complete fermion
Qreen's function, which is given by the following
Schwinger-Dyson equation, shown diagrammatic-
ally as Eq. (2.4) in Fig. 1. We assume that a

(2.1)

(A vector interaction may also be included. This
complication will be discussed further in Sec. IID.)
The axial-vector anomaly occurs in the above
theory by virtue of the axial-vector coupling. ' For
the time being, we shall ignore this; the anomaly
can be eliminated by introducing additional fer-
mions. " Indeed the anomaly must be removed;
otherwise the equation of motion

(2.2)

is not consistent with the antisymmetry of I' "".

chiral symmetry-breaking solution for Eq. (2.4)
exists such that (y', Z(P)j is not zero. Then (2.3)
implies that I'5&(P, P+q) has a pole at q=0 with
residue il', (P), where

(2.5)

This is our principal assumption. In the Appendix
we show that to lowest order in the coupling a
symmetry-breaking solutio~ exists.

The proper vertex function is also related to a
portion of the fermion-fermion scattering ampli-
tude. The relation is exhibited as Eq. (2.6) in Fig.
2, where T' is the "one-vector-meson-irreducible"
fermion-fermion scattering amplitude; i.e., the
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p+q

P

(2.6)

FIG. 2. Proper vertex function expressed in terms of
the scattering amplitude.

FIG. 4. Example of graph excluded from proper
vertex function.

~ 92

FIG. 3. Relation between complete and one-vector-
meson-irreducible scattering amplitudes. FIG. 5. Singular contribution to T'.

full scattering amplitude T is given by T' supple-
mented by one-vector-meson exchange graphs;
see Eq. (2.7) in Fig. S. The reason why T' rather
than T appears in (2.6) is that I'," is the proper
vertex function and does not contain graphs like
that of Fig. 4. [The minus sign in (2.7) arises
from the fact that the graph is second-order in
the coupling, i.e., (ig)' is the correct factor. ]

The pole in I'," is to be attributed to a pole in
T'." Thus we represent T' by a pole term plus
a regular term A, as in Eq. (2.8) of Fig. 5. In
other words, we attribute the chiral-symmetry
breaking of the fermion mass to the existence of
a massless Goldstone excitation. This excitation

is a bound state in the fermion-antifermion chan-
nel; the proper vertex which describes the cou-
pling of the bound state to P is represented by
Fig. 6 and is given by P(P, P'). This set of circum-
stances is different from that envisioned for mass-
less spinor electrodynamics. " In the latter theory
the electron acquires a mass spontaneously, but
the Goldstone theorem is evaded due to anomalous
nonconservation of the axial-vector current. In
the present theory, as we have repeatedly stated,
the axial-vector current must be conserved, and
the Goldstone theorem holds.

Upon inserting (2.8) into (2.6), we determine the

pole term in F,". The relation is

4

r~»„,,(p, p+q) = ——Tr
J ~ G(r)iy"y'G(x+q) p(r+q, x) —,p(p, p+q),2w' (2.9a)

which is given graphically in Fig. 7. By Lorentz
invariance, the integral in (2.9a) is proportional
to q~.

~&
de

q"I(q') = Tr III,G(r)iy"y'G(r+q)p(r+q, r),J (2w)'

f(0) =h. (2.9b)

zq"r,',.„(P,P+q) = —,hP(P, P+q) (2.9c)

and comparison with (2.3) yields

r, (p) =hp(p, p). (2.10)

Note that Eq. (2.9c) establishes the result that the
singularity in I'", is a pole in q', as well as a pole
in q. As a consequence P(p, p+q) is ambiguous
up to terms of O(q'); however, terms of O(q) are
well defined.

It is clear that P(P, P+q) must be an odd-parity
vertex, and that P(p, p) must be nonvanishing.

11',:.(q) =g '[q "&(q')] —,[-q'f(q')]

ig 'h'q~q'/q-'. (2.11)

[The minus sign in the last factor in the first equa-
tion above arises as follows. The second pseudo-

Therefore the massless excitation must be a pseu-
doscalar, with some nonderivative coupling to the
fermion antifermion channel.

Let us now examine the vacuum polarization
tensor, which is given by the Schwinger-Dyson
equation shown in Fig. 8, apart from seagull
terms. Since the proper vertex function occurring
in the equation for H"" has a pole, II"' also devel-
ops this singularity. The pole contribution to II""
can be obtained by inserting the singular part of
the vertex function [Fig. 7 and Eqs. (2.9)] into
the Schwinger-Dyson equation of Fig. 8. The re-
sult is given diagrammatically in Fig. 9. The
integrals occurring in Fig, 9 are already intro-
duced in (2.9b). We find therefore
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pi

FIG. 6. Dynamical pseudoscalar vertex.

r+q

5 p )
~P. u+q) P-------q

FIG. 7. Pole term in proper vertex function. FIG. 10. The complete scattering amplitude.

(2.13}

D(0) = —1/g'A, '

may also be given.

(2.12)

scalar vertex in Fig. 9 occurs with arguments
P(r, x+q), rather than P(r+q, r) as in the definition
q~I(q') in (2.9b). To make contact with (2.9b) the
integration variable r is shifted to r-q, and q is
replaced by —q. ] Eq. (2.11) shows that ll(q'), de-
fined in (1.1), has the pole Il~,~, (q') =g'A. '/q'. This
indicates that the vector meson acquires a mass

In the approximation where only the pole term
is kept, p. =gA. . An exact formula

zero-mass pole, are represented by (2.14) of Fig.
11. The right-hand part of the top diagram in Fig.
11 is the regular part of the axial-vertex function
which we call f'Is. The pole term (2.9a) in the
rightmost vertex function of the last diagram in
Fig. 11 has been explicitly exhibited.

We concentrate on the last term in (2.14). We
may set I',"= I","-I',",&, . Since the remaining part
of the graph is proportional to q", I"," does not
contribute, and we are left with (2.15) given in

Fig. 12. Evaluating this at q'=0, and recalling
that q'II(q')~. . .=g'X', we find that (2.15) is

C. Decoupling of the Massless Excitation

The amplitude T' contains a massless pole;
nevertheless, it is true that the full on-mass shell
scattering amplitude does not possess this pole.
Hence the massless excitation decouples from the
theory. To establish this important result, we
combine (2.7) and (2.8) to obtain (2.13) as shown in
Fig. 10.

Only the last two terms in (2.13) contain poles at
q'=0. The external fermions are on mass shell;
thus the q"q' term of the vector-meson propagator
in the last term in (2.13) gives zero contribution
since the on-mass-shell vertex is transverse.
Consequently D"'(q) may be set equal to ig""D(q'-)
Furthermore, if the leftmost vertex function in
the last term in (2.13) is decomposed into a regu-
lar piece and the pole term (2.9c), one sees that
the pole term does not contribute: The pole is pro-

- portional to q~, which contracts with the rightmost
vertex function and annihilates it. Thus the last
two terms in (2.13), which pote'ntially contain a

P(P'+q, P') .P(f, P+q—)

This is precisely the negative of the second term
in (2.14); hence all the pole terms cancel.

Clearly a similar analysis can be performed in
the crossed channel, and we conclude that T on
the mass shell is free from massless poles.

D. The Problem of Other Symmetries

The theory which we have studied is formally
scale-invariant. Consequently the emergence of
mass terms appears to violate that symmetry and

to lead to further massless excitations. It is clear
that these potential Goldstone bosons are spin-
zero, positive-parity objects. They could couple
to the energy-momentum tensor, but not to a vec-
tor or axial-vector meson.

Tpo~e =

FIG. 8. Schwinger-Dyson equation for vacuum polar-
ization tensor.

+ g2
( 2.14}

/LV

g

FIG. 9. Pole term in vacuum polarization tensor.
FIG. 11. Potentially singular portion of scattering

amplitude.
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-g —I'5
~

—ig „(q ) 5p

I+ q p+q r+q
--- P P -—-

=-g', P(p'+q, p')», , P(p, p+q) (2.15)
iq+X

& I
—jg p. v i q

q~
' --q —q II(q )-

FIG. 12. Diagrammatic representation of Eq. (2.15).

However, the above circumstances very likely
do not occur, since scale invariance does not
appear to be realized in the solutions of a field
theory, in spite of the formal symmetry of the
Lagrangian. The reason is not spontaneous viola-
tion, but rather the presence of anomalies, anal-
ogous to those of the axial-vector current. " Thus
we shall ignore any considerations of scale invari-
ance.

Indeed it would appear that scalar massless me-
sons coupled to the energy-momentum tensor must
be avoided. Such mesons would lead to a pole in
the vacuum polarization tensor of two energy-mo-
mentum tensors. If one then considers coupling
the energy-momentum tensor to a graviational
gauge field, the pole would produce a mass for
the graviton, in a fashion entirely analogous to
our previous discussions. Since massive gravity
apparently is not realized in nature, this state of
affairs must be avoided.

The model in (2.1) possesses two other currents
which are formally conserved These. are gy~ysg'
and its Hermitian conjugate. Here g' is the charge-
conjugate field g'; = C;~)~; C is the charge-conjuga-
tion matrix iy y which satisfies C = -C = -C ' = -C,
and which transposes the y matrices: C 'yj" C= -yI',
C 'r'C =y'.

If these two currents are conserved in the solu-
tions of the theory, one obtains Ward identities
which at zero momentum transfer require that
G(p)y'C+y'CG( —p) =0. By charge-conjugation
invariance of the theory, it is also true that
CG(-p) =G(p)C. Hence the conservation of these
odd currents requires massless fermions:
(~', ~(P6= o

Clearly this result is not acceptable, nor is its
evasion with Goldstone particles satisfactory.
We do not wish to deal with a theory which pos-
sesses massless, doubly charged scalars. The
additional, unwanted symmetries may be disposed
of by one of two devices.

Firstly, one may argue that in the solutions of
the theory the currents are not conserved, again
because of anomalies. The envisioned situation

E. The Problem of the Triangle Anomaly

Of course our theory (2.1) is inconsistent be-
cause of the triangle anomaly. ' In order to remove
this contradiction, the number of fermion fields
must be increased. ' ' " We introduce a multiplet of
n fields

coupled to the axial-vector field by the interaction
i4y" y'g+A„. Provided the nxn Hermitian matrix
g satisfies Trg =0, the anomaly is absent. We
shall limit the discussion to the simplest, two-
fermion case:

1 g (2.16)

is analogous to the discussion of massless electro-
dynamics, where the electron acquires a mass
spontaneously. "' '4 The axial-vector curt-ent is
formally conserved in that model, yet one can show
that it is consistent that the equations determining
the matrix elements of the axial-vector current
and of its divergence admit a nonconserved solu-
tion. This comes to pass because of the diver-
gences of perturbation theory. (Unlike the anom-
alies of the triangle graph and of scale invariance
which occur in a low order of perturbation theory,
examples of this mechanism require infinite sum-
mation of graphs. )

The second way of destroying the additional
symmetry is by introducing vector couplings into
the Lagrangian (2.1). This vector coupling can
be a gauge coupling to the vector field A": The
interaction term in (2.1) is replaced by
4Z" (g'+&~ )gA„. This leads to a parity violating
theory. If one wishes to maintain parity, one can
introduce an additional (massive) vector field B&
coupled to ~"g. In the presence of a vector inter-
action, Q"y'g' is no longer conserved. A massive
vector field also destroys formal scale invariance.
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and

g, -iP„P,—-ig„A"- —A~.

(2.17)

The theory now possesses many conserved cur-
rents. Two, given by 4' y"gk and Ty&k, or g, y&g, ,
i = 1, 2, ensure the conservation of the individual
species of fermions. In order to avoid further
Goldstone bosons, this continuous symmetry must
not be spontaneously broken. Fortunately even if
we allow each of the fermions to acquire a differ
ent mass, and a differen& coupling to the massless
bound state, the new symmetry remains operative.
The model possesses additional, formally con-
served, charged currents as discussed in the pre-
vious subsection. These must be disposed of by
one of the two models mentioned above. Finally,
the axial-vector current 4 y"y%, though beset by
the triangle anomaly, would also lead to Goldstone
bosons. The reason is that the anomaly does not
contribute to the Ward identity at zero momentum,
while it is only the zero-momentum Ward identity
that is required to establish the existence of mass-
less excitations. Thus conservation of this current
must be broken, by the first method discussed
above, just as in massless quantum electrodynam-
ics.

There are also discrete symmetries present in
the model; for example,

Z =iy'ge' ——,'P~'P„+e'y~gy'A, . (2.18)

In the general case, when there are n fermions,
care must be exercised that the spontaneously
generated masses do not violate any new continu-
ous symmetries. This would lead to massless
excitations which may not decouple from the sys-
tem.

(This eliminates 3-meson couplings, and the
anomaly. ) The discrete symmetry implies that
G, (p) = Q,( p) and P,(p, p') = -P,(p, p') [subscripts
refer to fermion species]. Clearly, as a conse-
quence of the symmetry the masses of the two fer-
mions are the same, and the coupling of the pseu-
doscalar massless excitation to the fermions is
equal in magnitude and opposite in sign. If we
wish that the masses of the two fermions be differ-
ent, this discrete symmetry must be broken.
This breaking does no violence to the continuous
symmetries, and since the symmetry which is
being boken is discrete, no new massless excita-
tions are required.

The discrete symmetry which we have discussed
is not unlike ordinary charge-conjugation invari-
ance. Indeed, the analogy can be made explicit
by redefining the fields 4' as follows:

e = —,'(1+ i'y)e' +—,'(1 iy')M-e',

where M=(o»'). The Lagrangian (2.1) becomes
now

F. Discussion

An interesting sum rule for the vector-meson mass may be derived in our model. Let us begin with
(2.9b):

,

" d4~
q"I(q') = Tr ~ [G(r)iy" y'Q(r+q)P(r+q, r)]„(2v)'

" de= —Tr ~ [G(r+q)iy" y'Q(r)P(r, r+q)],
J 7f

(2.19a)

~ 5 8g""X= —Tr, O'G(r)iy" y'Q(r)P(r, r) + G(r)iy" y'G(r) P(r, r+q)(2n)' ' sq„

We also know from (2.3) and (2.9a) that

P(P, P+q)
8

&9'v q-0

Inserting (2.21) in (2.19b) gives

=y's'G '(f ) f ".(~,-f )—

g""Z'= —Tr [Q(r)8"G '(r)Q(r)y" —G(r)s'G '(r)G(r)y"y'G(r)y'G '(r)
" d4~

(2v)'
+ Q(r)y" y'Q(r)y's "Q '(r) —Q(r)y" y'Q(r) I"~(r~ r)) .

q„f'."(~,f +q) =y'Q-'(f +q)+ G '(~)y'-iP(~, i +-q)~,

where I,"(p, P+q) is the vertex function, wi&hou& its pole at q'=0. Hence it is true that

i»(f, u) =(r', G '(e6, -

(2.19b)

(2.20)

(2.21)

(2.22a)

The middle two terms cancel against each other, while 8"G '(r) may be related to the vertex function I"
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of the vector current:

s'G-'(r) = iI-"(r, r) .

Hence

g""&'=I Tr
2

[G(r)I"(r,r) G(r)y" G(r)—I","(r, r)G(r)iy"y'] .
V

(2.22b)

Recalling the definition of the vacuum polarization
tensor (1.1) and its representation in terms of the
Schwinger-Dyson equation of Fig. 8, we recognize
that (2.22b) is equivalent to

g &'g '~' = -i[II "(O) —11~'(0)] . (2.23)

II„"' is the vacuum polarization tensor associated
with the nonsingular, nonconserved axial-vector
current, while II~' is the vacuum polarization of
the conserved vector current, apart from seagull
terms.

Formally, if one ignores seagull terms, II «"(0)
= 0, since the vector current is conserved. This
is also seen from (2.22a), where the integrand in
the first term on the right-hand side is a total
divergence 8'G(r)—y" Howe. ver, if G(r) - 1/r for
large r, II»'(0) is in fact a quadratically divergent
constant which cancels a similar quadratic diver-
gence in II„"'(0). In other words, II»'(0) is the sea-
gull term, which is necessary to convert the for-
mal Schwinger-Dyson equation for II„"' into a cor-
rect expression. Thus we may replace (2.23) by

2my5B(m ') = A, P(P, P) i» (2.27)

Define A =mi, where A. is a dimensionless number.
Also, P(P, P)i» is defined to be 2y'f, again a
dimensionless quantity. Thus

B(m') = Kf. (2.2S)

The vector-meson mass satisfies p. '=g'A. ', or

times the Schwinger term S~ of the vector current
commutator, and similarly for the Schwinger
term S„of the regular part of the axial-vector
current, then (2.23) reads A. '+ S„=S». This is rec-
ognized as %einberg's first sum rule, when it is
recalled that the Schwinger term of the t'otal axial-
vector current differs from that of the regular
part by the square of the current-pseudoscalar
coupling, which in our case is A. .

It is useful to estimate the various quantities
that have been encountered. We set Z(p) =pA(p')
+mB(p'). Since iG '(p) = p —Z(p), it follows that
Z(P)i» =m, or A(m')+B(m') =1. From (2.5) and
(2.10) we have

g"'g'y'=-iII~~'(0), (2.24)
B(m')

P, =g PR ~ (2.29)

where II„"' is now understood to include the requi-
site seagull term.

The formula (2.24) may also be understood from
(1.1) and (2.11). We have

II"'(q) = (g"'q' —q~q') iII(q') +i, —, (2.25)
g

where II(q') is by definition regular It is n.atural
to identify II~~' with the regular part of (2.25).
Thus the following nontransverse expression is
found:

11"(q)=ig'&'g"'+(g "q'-q"q")ill(q') (2 25)

and —iII„"'(0)=g"'g'A. ', which agrees with (2.24).
Note also that II„"'(q), though nonconserved, has a
conserved absorptive part. Qf course in the ap-
proximation p, '=g'A. ', (2.23) and (2.24) become
mass formulas.

Equation (2.23) is also related to Weinberg's
first sum rule. '8 If we identify iII"„'(0) with g'g"'

E""fm
(

A'

)
From (2.22b) we find

(2.30a)

Thus if we imagine p, to be an order of magnitude
larger than rn, and g to be of electromagnetic
strength, then B(m')/f is of order 100. Moreover,
if B(m') is of order unity, then f is very small.
Such a small coupling constant is perhaps unnatur-
al, if it is a fundamental parameter. However, in
the present context, f is of dynamical origin, and
no preconceptions about its magnitude exist.

Qne may attempt a sort of tree approximation by
setting Z(p) equal to m and P(p, p+q) to 2y'f. It
is then consistent, according to (2.21) that 7=f ',
p. =gmf ', I'"(r, r) =y", and I"~(r, r) =iy"y' From.
(2.19b) or (2.22b) one may compute X. The former
gives

d'r (r'+ m)y" (y'+ m)y" y'(r'+ m)y'
(r' m2)~

g"'A. m =-i Tr I 4, » [( 'pm+) (yg +)my+(p+m)y"y5(g+m)y&y']
d4~ 1

(2w)' (r' —m')'

(2.30b)
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Equations (2.30) imply that X'=f'I, '= L, where I,
is the logarithmically divergent quantity

'. ln —', -1.

Thus we must not set P(P, P+ q) = 2y'f, and Z(P) = m.
A more plausible approximation for Z(P) is

m (~P'[/m') '~', "where e(g') is a positive, cou-
pling-constant-dependent quantity. %'e expect that
for small g' e(g ) = c'g'. With this approxima-
tion, it is still consistent to leading order in g',
to set I'"(r, r) =y" and f","(r, r) =iy"y' From .(2.20b)
we now get, instead of (2.30b), to leading order in

g"'7'm' =g""m 1
2v' 2e(g') ' (2.31)

We thus find that 7 is of order 1/g, and g =m/2vc
is independent of g. Consequently, f becomes of
order g. In the Appendix we discuss in greater
detail these results, with special emphasis on the
problem of renormalization. %e justify the above
approximation for Z(P), and evaluate e(g') in
lowest order.

III. PHENOMENOLOGICAL LAGRANGIANS

The mechanism which we have discussed is
attractive in that it dispenses with fundamental
scalar fields as the agents responsible for a pole
in the vacuum polarization tensor. Furthermore,
since the vector meson propagator has the form

Consistency with A. '=f ' is achieved if L=f '
These results are not satisfactory, since they

indicate that the dynamical quantity X is divergent,
for which there does not appear a possibility of
renormalization. In a truly consistent theory X

should be finite. It is not difficult to see the
source of the problem. Our approximation Z(p)
=m commits us to the result that lim~ „Z(P)=m,
which would indicate that the baze mass is non-
zero. Clearly the solution of the Schwinger-Dyson
equation for Z(p) should have the property that
apart from terms proportional to p„Z(p) vanishes
asymptotically; i.e.,

limXP(p, p) =lim(y', Z(p))=0.

@=i(P|c&+—8"$9&$ — P" E&„+ -'—
p &i

+ iuTy" y'0&„P&4S(4)+-A"4P(4)

-2gA. I'aqua(p) + b(p) . (3.1)

The real functions a(P), b(Q), S($), and P(P) are
to be determined. By parity conservation, the
first three are even in Q; the last is odd. Also
S(0) =m. Since we wish to realize chiral symme-
try, with a single boson field P, it is to be ex-
pected that the Lagrangian will not be a polynomial
in Q. The equations of motion are

id' = igy"y'q~-„+ yS(y) y'yP(y)-, (3.2)

oe = 2gs, ~"(~) AS'(e)+—Cy'CP'(e)+ f '(e),
(3 3)

will never expose a bound state: To any finite
order in g we shall always have massless fermions
and vector mesons.

Qne possible, though incomplete, approach is
to describe the physical system by an effective
Lagrangian. The effective Lagrangian, in tree
approximation, should reproduce some of the dy-
namics of the complete theory. The description,
necessarily limited to a low-energy domain, should
take into account the following features of the com-
plete theory: (1) the excitation spectrum, (2) cou-
plings of the states to each other, and (3) the sym-
metries of the problem.

In the simple model considered in Sec. II, the
excitation spectrum consists of a massive fer-
mion, a massive axial-vector meson, and a mass-
less pseudoscalar meson, which, however, de-
couples from the theory. There may be other
massive bound states in the theory. Presumably
these are important only at higher energies, and
for a low-energy phenomenology may be ignored.

The interactions of the theory involve fermion-
vector-meson couplings, fermion-pseudoscalar
couplings, and vector-meson-pseudoscalar cou-
plings. The latter two, however, are removable
by an appropriate choice of fields.

Finally, the symmetries which are to be main-
tained are vector and axial-vector-current con-
servation and parity conservation. The axial-vec-
tor current should be related to a gauge symmetry.

Guided by the above considerations, we are led
to the Lagrange function

s „P"'= ig 4y'y'0 —-V'&'+ 2gs'4a(4) (3.4)

its high-energy behavior is no more divergent than
that of the free propagator, and the theory should
be renormalizable.

An obvious shortcoming of the theory, as devel-
oped so far, is that no effective method of compu-
tation has been found. Ordinary perturbation theory

~".

=i@�

"y'0 2a(4) s"4— (3.5)

By virtue of the equations of motion the diver-
gence of J," is

Clearly the vector current gy" g is conserved. The
axial-vector current which must be conserved is
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@q[P(y) a(y)S'(y)] 4g B„A&a'(@)

2a(4)f (4) —28~4, 8„ya (0) . (3 6)

S(A) = -a&'(4),

&(y) = aS'(y) .
(3.7)

The solution of these equations which conserves
parity and leads to a properly normalized S(0) is

S($) =m cosp/a,

P(P) = -m sin&/&/a.

(3 6)

Since ultimately we shall wish to arrive at a gauge
theory, B„A"may be set to zero. This is also con-
sistent with (3.4), when it is assumed that B„J,"=0.
In order that (3.6) be zero, we choose b(P) =0,
a(P) =constant, and

2 =sgPg+ —,
' B„vB"7t + —8 o 8 "v —,'E—"'E

+iggy" y'gA„—2g(vB "n—' wB~v)A„

+ 2g '(v'+ m')A' —Gg(y'w + o)P, (3.12)

~0 = r'48, ~tt' = Py'&,

6v = -2o L9, 50 =2@'8,

aA~= —-e~e.1

(3.13)

However, the phenomenological Lagrangian rele-
vant to our theory should possess only one spin-
zero field, since we are ignoring the possibility
of higher-mass bound states. Thus we set u'+ m'

= p, '/4g ', and (3.12) becomes
2

~ 4g 2O2

where the various couplings are chosen to be con-
sistent with the gauge principle

Consequently the Lagrangian (3.1) is given by

2 =if'if(+ 28~ $8"Q —4F""F~,+ 2p, A

+ igPy" y'gA„—mug cosg/a

-m+'g sing/a —2agA"8& p . (3.9)

+i&y"y'gA —Gfi(y'v+v)q — " A'8 v,2gv

(3.14)

The theory (3.9) possesses a global symmetry
with the transformations

5P =r'0,

5$ = -2a,
aa~=o.

(3.10a)

54= kr'8,
(3.10b)

This can only happen if 2ga = p, . Thus the final
phenomenological Lagrangian is

However, we require that (3.10a) should be extend-
ible to local symmetry transformation:

Upon redefining the field vr by

v =—sin —Q,
2g

2g JL(, (3.15)

v =—cos —.Q ~2g

we again get (3.11), with m = Gy/2g.
It should be possible to derive the phenomenolog-

ical Lagrangian by yet another method, which
would exhibit the multiple fermion-massless-bo-
son couplings. In this approach, which we have
not studied, one would analyze the Ward identities'
of the underlying physical theory for n currents
and two Fermi fields. The phenomenological de-
scription of the massless boson dynamics corre-
sponds to keeping only the pole terms in these
amplitudes.

It i:s not difficult to see that the massless field
Q, present in (3.11), in fact decouples. " Change
variables in (3.11):

2 =i jTgg+ 2 8 „$8"p —,'E"'E~„+ —,
'

p. 'A—'

(3.11)

The expression (3.11) may also be arrived at by
a different argument. Since we seek a Lagrange
function which gives a realization of a theory with
chiral U(l) xU(l) symmetry, we are naturally led
to a O.-type model, without isospin":

(3.16)

A"- A" +—8&g .1

2 = i/8/ —mfa —,E""E„„+~ p, 'A'+—ig gy~y'PA„.

(3.17)
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This Lagrangian exhibits the physical spectrum of
excitations: A massive fermion and vector meson
interacting through the axial-vector current.
Since (3.17) represents a choice of gauge, one may
no longer set B„A." to zero. Therefore the current
J',"=igy"y'g is no longer conserved. There does
exist a conserved axial vector in the theory:
g'4" +iggy"y'g. However, since the time compo-
nent of this object is equal to B,E ', the "charge"
vanishes, and no symmetry is generated.

The phenomenological description of our theory
does not lead to a renormalizable Lagrangian.
This is seen either from (3.11), where the nonre-
normalizability resides in the nonpolynomial fer-
mion-pseudoscalar interaction, or from (3.17),
where it is the nonconservation of i(y"y'g that is
responsible for the divergent, presumably unphys-
ical, high-energy behavior of the theory. We do
not consider the rapid growth at high energy as a
defect of the fundamental theory. The phenomeno-
logical description is not meant to extend to high
energies; in particular one does not expect to use
the Lagrangians (3.11) or (3.17) for higher-order
calculations.

Indeed it is quite possible that a more accurate
phenomenological description of the fundamental
theory can be given in terms of a renormalizable
Lagrangian. For example, if there is another
bound state in theory —a massive scalar —which
together with the massless excitation forms a
chiral multiplet, then the appropriate phenomeno-
logical Lagrangian would be (3.12) (supplemented
with various chirally invariant o and w terms) with-
out the nonlinear constraint relating rr to m. That
theory is renormalizable; it is an example of the
conventional Higgs mechanism.

It is well known that the nonlinear o model is
the limiting form of a renormalizable linear 0

model, where the mass of the scalar field tends to
infinity. Thus we envision a hierarchy of phenom-
enological Lagrangians: In the low-energy domain
where only the massless excitation is considered,
and all other bound states are ignored, the de-
scription is in terms of (3.11). If other bound
states are present, and if they should be included,
then the description is as in (3.12). Renormaliz-
ability, on the phenomenological level, does not
appear to be a fundamental requirement. Of
course the construction of this hierarchy of phe-
nomenological Lagrangians presupposes the pos-
sibility of solving the fundamental theory and ex-
hibiting its complete excitation spectrum. Need-
less to say, at the present time, this is not pos-
sible.

In spite of our abandonment of renormalizability,
the form of the phenomenological Lagrangian is
nevertheless somewhat limited. For example, a

nonrenormalizable Lagrangian which exhibits the
Higgs mechanism could include a fermion-scalar-
meson interaction of the form Ggg(o'+v'). Yet it
does not appear that such a term can arise in a
bound-state model.

It is easy to set up a correspondence between
the couplings encountered in our fundamental
theory and those exhibited in the phenomenological
theory (3.11). In the former, the Zn~ &f& -transition
is characterized by the strength A, , and hence the
A -Q interaction is gA. . Examining the last term
in (3.11), we find an old relation gA. = g. Similarly,
the fundamental, fermion-P interaction is de-
scribed by 2f. Comparison with the next-to-last
term in (3.11) gives f=mg/y. , again an old result.

IV. CONCLUSION

The interesting aspect of the present investiga-
tion is the demonstration that vector particles can
acquire a mass from a bound-state mechanism,
rather than from a vacuum expectation value of a
canonical scalar field.

The present work should be extended to include
internal symmetry. More importantly, an effec-
tive computational method should be developed
which bypasses ordinary perturbation theory, yet
maintains renormalizability.

The physical relevance of this mechanism is not
apparent at the present time. Clearly a non-Abe-
lian version of our theory may be used for weak-
interaction model building. More interesting is
the possibility that the Abelian model may be rele-
vant to pure strong interactions. A world with
massless quarks and gluons which acquire their
mass spontaneously without Goldstone bosons is
attractive for its economy. Moreover, we see in
this picture the possibility of avoiding the problem
of too much symmetry in the quark model. If
chiral U(3) is spontaneously broken in the fashion
described here, then the troublesome ninth Gold-
stone boson disappears from the theory.
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APPENDIX

In this appendix we return to some of the
Schwinger-Dyson equations which we have encoun-
tered in the main body of the text. Our purpose is
to show how they are to be written in finite, re-
normalized form. Also we solve them in the low-
est-order Bethe-Salpeter approximation; a sponta-
neously generated mass is found for the fermion
and vector meson.
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Let us return to the equation satisfied by the
proper vertex function, (2.6), and reexpress it in
Bethe-Salpeter form; see Eq. (Al) of Fig. 13. In
that formula E' is the Bethe-Salpeter kernel, with
one-vector-meson lines deleted [compare (2.'t)].
Evidently T', is multiplicatively renormalizable,
and in the usual fashion we learn from the Ward
identity (2.3) that I"," may be renormalized by the
same constant that renormalizes G '(P). (The
triangle anomaly is being ignored. )

Decomposing F", into its regular and pole parts,
we have, according to (2.9c), the relation given by
Eq. (A2) in Fig. 13. If (A2) is substituted into (Al),
we find, by equating pole terms, that at q' = 0 P satis-
fies the homogeneous Bethe-Salpeter equation (AS) of
Fig. 13. Consequently a formula for I'", which fol-
lows from (Al)-(AS) can be found. It is Eq. (A4)
of Fig. 13. The central hypothesis of this paper is
that (AS) has a nontrivial solution, P(P,P) x0. Ac-
cording to (2.5), (2.9), and (2.10), this allows the
fermion to acquire a mass spontaneously. We
shall show below that to lowest order in the cou-
pling (A3) does indeed have a nontrivial solution.

Next we consider the equation for A.. The formu-
la for A.

' in terms of the vacuum polarization ten-
sors, (2.22b), suffers from well-known overlapping
divergences. Similarly the defining equation
(2.9b) involves overlaps. It is our purpose to
remove these overlaps and to express A in terms
of renormalized quantities.

(A5}

K' I:(@-

p'I: I.K'
I

+ —-~P} IK' I

:IK'I

(A7)

(As}

FIG. 14. Diagrammatic representation of Eqs. (A5)—
(A8) .

(AI}

= ~A)
(A2}

+ 0 (q')

+ —@):IK'I

+ O (q}
(A4}

FIG. 13. Diagrammatic representation of Eqs. (A1)—
(A4) .

We represent (2.9b) or (2.19b) by Eq. (A5) in Fig.
14. The slash indicates differentiation with re-
spect to q (the external momentum) and evaluation
at q'= 0. The external momentum is routed through
the upper fermion line. The bare vertex in (A5)
may be evaluated from (A4) of Fig. 13. Hence
Eq. (A6) is obtained; see Fig. 14. [The undeter-
mined part of (A4) does not contribute, since q =O.j
Also from (A3) of Fig. 13 we find a formula for
the derivative of P. It is Eq. (AV) of Fig. 14.
(Again the undetermined part disappears at q = 0.)
Upon substituting (AV) into the third term of (A6),
one finds that many terms cancel and A. becomes
determined by Eq. (AS) of Fig. 14.

Since P and F", each renormalize like G ' and E'
renormalizes like G 2, the formula (AS) for & is
invariant under renormalization. Therefore finite,
renormalized quantities I', I'"„and 6 can be used
in evaluating A. Furthermore, P(r, r) is propor-
tional to (y', Z(r}j; we expect it to go to zero with
large r, since the bare mass is zero. Then the
integrations in (AS) converge, and A, is well de-
fined and finite, Qf course if no symmetry-break-
ing solution exists, I' = 0 and A. vanishes.

Next we examine the lowest-order Bethe-Salpeter
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P.,(p,p+q)=,G~(r)P„(r, r+q)
d'r

x G,~(r+ q)K„» (p, r;q)

+ o(q') (A9)

equation for P. Equation (A3), written explicitly,
is

q =0 becomes

" d4r 6'(r')'. (2v)4 r'-m'

(A12)
(the subscripts are spinor indices). With pure
axial-vector coupling, the lowest-order kernel is

K„»(p, r; q) = —g '(i y"y")» D „(p —r) (i y" y ')„.
For reasons that will emerge presently, we also
imagine that there exists in the theory a massive
vector meson, with vector coupling. (Recall that
we found in Sec. II D that vector couplings are
needed to eliminate explicitly undesirable addition-
al symmetries. ) Thus, with obvious notation, the
lowest-order kernel is taken to be

K„»(p, r;q) = -Z,'(i y"y')» D„".(p —r)(i y "y'),.
gr2(y~ )&,D&~(p r)(y') (A10)

For the propagators in (A9) and (A10) we take the
lowest-order expressions. However, as we shall
see, the spontaneously induced fermion mass is
independent of coupling, while the vector-meson
mass will not influence the result. Hence we keep
all mass terms.

The solution to (A12) for large P~, where pr' and
p.„' may be ignored, is well known. " A solution is
obtained only if gv' &g„', in which case

3 - lk"v -zz ) ~

16M

(A13)

p.g =A, gg =TOP —2/ 2
Sv ~~~

(A14)

In the case g„'&gr2, N(p') would increase with p',
and the integral equation (A12) could not be sat-
isfied. The reason for our insistence on additional
vector coupling is now clear: For pure axial cou-
pling no solution is found.

Since AP(P,P) =Ay'6'(P') =(y', Z(P)), it is con-
sistent to set Z(p) equal to m(~p'~/m') ', which is
the formula we used in the text (Sec. II F).

According to (2.31), the axial-vector-meson
mass becomes in this approximation

DPu(k)= —' &" —
ka k2 2 ~

l
Dq, (k)=-i S"'

k2 k'— ,v

(A11)

We need only determine P(P,P) which is set equal
to y'6'(P'). The Bethe-Salpeter equation (A9) at

The mass p,„is independent of coupling strength
(in the sense that it depends on the ratio of g„'/g„'),
and can become arbitrarily large as g„'/g„'-1.

Of course the present considerations do not hold
for strong coupling, where the lowest order Bethe-
Salpeter approximation is not applicable. In par-
ticular, we do not wish to imply that pure axial-
vector coupling would necessarily fail in that case.
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A model is proposed which geometrizes the electromagnetic and the weak forces, The absence of
electromagnetic properties of the neutrino is understood in terms of a symmetry principle.

I. INTRODUCTION

The idea that all processes in nature can be
linked to geometry is at least as old as Einstein's
theory. ' However, the Eotvos experiment that
gave a good reason to use the geometrical method
to describe gravitational (G) interaction has no
counterpart in the rest of physics. Nevertheless,
the fact that all known elementary particles have
the same coupling constant with the electromag-
netic (em) field could also suggest that em prop-
erties can be described by means of a modification
of the structure of space-time. One important
distinction between em and G forces is the uni-
versality of the gravitational process and the lack
of electromagnetic properties in some particles,
the neutrino for instance.

So, if one considers the geometric approach,
one should be faced with the first crucial question:
Why does the neutrino not have an electric charge?
The second question is: What modification on the
Riemannian nature of space-time could electro-
magnetic or even weak forces make? It is our pur-

pose in this paper to show that these two questions
can be answered. We will prove it, in a naive
model, in the following.

II. THE FUNDAMENTAL OBJECTS
OF SPACE- TIME

As in Ref. 2, we will assume that the fundamen-
tal objects of space-time are the generalized y's
that are linked to the metric tensor by the anti-
commutation relation

The choice of a set of elements of a Clifford (C)
algebra as fundamental has been considered in the
literature many times. The real motivation for
doing this rests on the fact that going from the
g„s(x) metric to the y„(x) submetric the additional
degrees of freedom could be used to introduce
new features in the theory. It seems to us, how-
ever, that this program was not fully realized,
and that is the Ieason to come back to it here.

Expression (l) shows that besides the manifold


