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We formulate the quantum theory of a neutral scalar field, either minimally or conformally coupled to
gravity, in nonrotating Bianchi type IX (mixmaster) universes. Creation and annihilation operators in the
Heisenberg picture develop in time under a general Bogolubov transformation, which we calculate for a
particular definition of those operators. That transformation expresses mathematically the physical processes
of particle creation and mode mixing, the latter being a new effect, absent in simpler models. Our results
should be useful for investigating the possible damping of anisotropy in the expansion of closed,
homogeneous universes as a result of particle creation and mode mixing.

INTRODUCTION

Classical waves propagating in a time-varying
background geometry suffer backscattering and
reflection. In the context of quantum field theory,
the amplification of waves by nonadiabatic process-
es and parametric resonance corresponds to par-
ticle creation. In a slowly varying geometry the
number of particles is an adiabatic invariant, but
in strong or rapidly changing fields (near a singu-
larity or under conditions of high curvature) par-
ticle number is no longer conserved.

Particle creation constitutes an important mech-
anism by which the anisotropy energy of geometry
may be converted to matter energy. For isotropic
Robertson-Walker (Friedmann) universes, there
is no production of massless particles satisfying
conformally invariant field equations, because of
the conformal flatness of the metric.!”® Produc-
tion of particles of small or zero mass is there-
fore expected to be enhanced in anisotropic met-
rics. According to the semiquantitative argument
of Zel’dovich,*® the production of elementary par-
ticles near the singularity in an anisotropic cos-
mological model can accumulate an energy density
sufficient for isotropization of the expansion with-
in the first 10™** seconds of the history of the uni-
verse.

The present paper is the first step in a study of
quantized fields in a closed, homogeneous, and
anisotropic universe, Misner’s “mixmaster uni-
verse” ®~% (Bianchi type IX). Many of the results
obtained for other cases remain valid here. But
in the mixmaster universe another important fea-
ture is encountered, namely, the mixing of differ-
ent modes. In universes of simpler types, such
as Robertson-Walker, Kasner, or Taub, scalar
fields decompose into independent modes. A

change in the geometry mixes the positive- and
negative-frequency solutions of each mode,
bringing forth particle creation. In the mixmaster
universe, on the other hand, scalar fields do not
decompose into completely independent modes.
Under the influence of a changing background, in
addition to the mixing of positive- and negative-
frequency parts of each mode, there is a mixing
among the coupled modes themselves. Particles
created in one mode in the mixmaster universe
will appear in other coupled modes during the
course of the evolution of the system. The result-
ing energy exchange among modes should help the
particles to extract energy from the geometry.
Mode mixing, therefore, ought to increase the ef-
fectiveness of the process of anisotropy damping
in the early universe. It is toward an understand-
ing of anisotropy damping resulting from particle
creation and mode mixing that the present work is
directed.

Quantum field theory in an external mixmaster
gravitational field is of interest not only because
of the application to the anisotropy problem but
also because this is the first metric, beyond the
relatively simple cases which can be solved by
separation of variables, for which the canonical
field theory has been studied in detail. New prob-
lems in defining particle observables and the en-
ergy-momentum tensor must therefore be dealt
with.

We write down the canonical theory of a neutral
scalar field in a mixmaster space-time, assuming
“minimal coupling” at first, and discuss the solu-
tion of the operator field equations. Creation and
annihilation operators are tentatively defined so
that the states with a fixed number of quanta in
each mode at a given time are the eigenstates of
the Hamiltonian of the field theory at that time.
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One can solve for the operators at one time in
terms of those at another time, and the resulting
transformation makes manifest the phenomena of
particle creation and mode mixing. We calculate
the coefficients of this transformation in terms of
the quantities appearing in the c-number solutions
of the field equation. Finally, we make the mod-
ifications necessary to treat the theory with “con-
formal coupling,” and we describe the next steps
in the program of investigating anisotropy damp-
ing.

1. QUANTIZED FIELD IN MIXMASTER SPACE-TIME

The covariant Klein-Gordon equation®
(g""v,v, - u*)2=0, (1)

which describes a spin-zero field “minimally
coupled” to the geometry of a curved space-time,
is derived from the scalar Lagrangian density

£==3(-g)"*(g" 8,80,8 + u?®?), @)

where v, and 8, denote the covariant and ordinary
derivatives, respectively. Equation (1) is not con-
formally invariant when the mass u equals 0, un-
like the simplest field equations for massless par-
ticles with spin. Zel’dovich and co-workers (Refs.
4 and 5) study the modified field equation contain-
ing an additional term -+R®, where R is the sca-
lar curvature of the space-time. That theory in-
volves what may be called “conformal coupling”
of the scalar field, since the field equation is con-
formally invariant when ©=0. Here we shall first
study Eq. (1) because it is simpler, but the
changes necessary to handle the conformally
coupled field will be fully discussed in Sec. IV.

The mixmaster metric under study has the form
(see Ref. 7)

ds®=—dt® + i 1,%(0°), (3)
. a=1
where the [, (functions of the time ¢) are the three
principal curvatures, and the o® are the invariant
forms on a Bianchi type IX space, which obey the
exterior differential relations do®=3¢,,,0°+0° (€,
being the completely antisymmetric tensor). By a
“mixmaster universe” we mean any manifold with
a metric of the form (3). The terms “Kasner” and
“Taub” are to be understood in the analogous gen-
eralized sense, in which they only characterize
the type of three-space geometry.
A convenient coordinate system in the space

with metric (3) is provided by the Euler angles®
(8, ¢, ), with the ranges

O<o=<m, Os¢p<2m, O0<yp=<dr, (4)

in terms of which the invariant forms are
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ol =~sinpdb+cosypsinfde,
o®=cosydé +siny sindde, (5)
o*=dy+cosfde.

The covariant metric tensor is then [(x?, x?, x°)

= (6, ¢, 9]
8o0==1, £,=8,0=0,

&1 =1"sin’y + L,’cos’y,

for a=1,2,3

822 = 8in?6(1,2cos®y + 1 ,%sin%y) + 1 *cos?0,

812 =81 = (1,° = 1,%)siny cosy sind, ()
83=1s%, £13=8,=0,

823 =832 =15°COSH.

The square root of the negative of the determinant
of g, is

(g1 /2=1,1,1,sin6 = V(¢)sing. (7)

When all the I’s are equal, the metric reduces
to that of a closed Robertson-Walker universe of
radius a(¢)=2] (where ! is the common value).
When two of the I’s are equal, the space is a Taub
universe.!

The field equation (1) takes the form

3+2rd -9k + 20 =0, (8)

where a dot denotes differentiation with respect to
t.

3

1L/, 9)

a=1

r

1]

and

(S)AE(-g)-l/zaa[(—g)l/zg”bab] (10)

is the Laplace-Beltrami operator on the three-
dimensional mixmaster space. The negative of
this covariant Laplacian (which depends on ¢) is
the Hamiltonian, expressed in Euler angle vari-
ables, of an asymmetric top®® with principal mo-
ments of inertia I, =37,% (a=1,2, 3).

The metric is treated in the present work as an
unquantized external field. The scalar field is
quantized canonically by imposing the equal-time
commutation relations

[®(x, t), ®(x",1)]=0,
[(x, 1), 7(x’, ¢)]=0, (11)
[<I>(x, t), 1T(x', t)] =i5(3)(x_ %),

where 1=0L/0®= (-—g)l/z:I) is the conjugate mo-
mentum to &,

The solutions of the wave equation (8) in a mix-
master universe have been studied previously by
one of the authors.'®*''* We shall treat the purely
mathematical problem of the time development



separately from the question of defining annihila-
tion and creation operators.

On the one hand, the general Hermitian solution
of Eq. (8) is conveniently written as

®(x, t)= 2"/2; [CaltYwy(x) + C (D w ()],
(12)

where the C, are operators satisfying Eq. (14) be-
low and the w, (x) form a complete set of time-
independent functions. (The symbol % stands for

a multiple index to be specified below.) We choose
the normalization [cf. Eq. (7)]

fdxsine wE(x)wy (%) =6, 4

[x=(6, ¢, ), dx=d8d¢dy]. (13)

In particular, the w, are chosen to be linear com-
binations of the familiar hyperspherical harmon-
ics,'® eigenfunctions of the Laplacian on the metric
three-sphere [not of the actual mixmaster Laplac-
ian (YA of Eq. (10)]. When two of the quantities I,
are equal at all times (the case of a Taub universe
or a symmetrical top), the w, are eigenfunctions
of ¥ if the polar axis of the harmonics is chosen
to be the axis of symmetry. (The metric three-
sphere is, of course, the special case of all three
I’ s being equal.) The existence of time-indepen-
dent eigenfunctions in the symmetrical situation is
responsible for the breaking of the field into uncou-
pled modes (i.e., solvability by separation of vari-
ables). We are interested in the case that the
symmetry is absent, when the eigenfunctions are
different at each time and solving the equation
directly in terms of them becomes inconvenient.
The functions w,(8, ¢, ¥) are linear combinations
of the representation functions®® e*®q7,(6) e'*? of
the three-dimensional rotaticn group. (Here both
M and K range from —J to J in integral steps.)
The basis w, includes the eigenfunctions of the
quantum-mechanical Hamiltonian for a symmetric
top. In such a case the index % stands for
(J,M,y,K), where (1) J is an integer, (2) M=-J,
J+1,...,d, (8)y=0or1, 4)K=0,1,...,dJ for
¥y=0; K=1,...,J for y=1. The J multiplet is
thereby split into four submultiplets, labeled by vy
and the parity of K, of different behavior under
certain discrete symmetries (see Refs. 12-14).
However, half-integral J’s appear in the mix -
master problem and not for the top because the
three-sphere is in two-to-one correspondence with
the configuration space of the top. For them the
decomposition into symmetry classes is not so
easy, so we shall think of % in this case as stand-
ing for (J,M,K), where K can take either sign.
We expect that half-integral J’s with their com-
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plications can be avoided in most model calcula-
tions, since for large J the qualitative physical
difference between states with adjacent values of
J is small.

The expression (12) is a solution of the field
equation (8) if the operators C,(t) satisfy the cou-
pled equations

d?C,
dr?

+chkklckr=0’ (14)
'y

where the new time coordinate 7 is defined by

dat _ _

I V(t)= 11,1, (15)
and

3 (1) = f dxsind wi(x)[ 5w, ] (x) (16)

are the matrix elements of the operator
30(7) = VA=A + u). (17)

(An alternative approach which does not require a
change of time scale is described at the end of
Sec. IV.) A given mode % is coupled to only finite-
ly many others: those with the same values of J,
M, y, and the parity of K (if J is an integer). We
do not require that the C, satisfy canonical com-
mutation relations, since we do not assign them
any physical interpretation. The specification of
the C’s (incomplete so far) will be completed by
Eq. (36) in Sec. III, where they will be used to re-
duce the dynamics of the field to a ¢-number prob-
lem. It will then be seen from Eqs. (37) and (38)
that Eq. (12) is a completely general solution of
the field equation.

On the other hand, if each I, were independent
of time, one would expect the eigenfunctions of the
mixmaster Laplacian (10) to define modes corre-
sponding to stable physical particles.!” When the
metric is changing in time, the notion of particle
becomes ambiguous, because there is no unique
way of classifying the solutions of the wave equa-
tion into positive- and negative-frequency functions
(see Refs. 1 and 2). Similarly, since modes are
being mixed, the separation of the field into modes
becomes somewhat arbitrary. Nevertheless, it is
natural to define'® particlelike observables at each
time ¢, by expanding ¢ and 7 at that time accord-
ing to

®(x, o) =) (2E) 72 A;(to)u,(x) + A () ()],
i

(18a)
(x, o) = -z'<—g)1/2§]; BE) 2 At o)u;(x)
- Al ur()],
(18b)
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where the u;(x) are eigenfunctions of —®a+ 1 at
¢, with eigenvalues E;?. Note that the u; and E,
are different for different ¢, (unless the metric is
static). The time dependence of A,(t,), therefore,
has two sources: the Heisenberg-picture time de-
pendence of the fields ¢ and 7, and the time de-
pendence in the definition of A,(¢,) in terms of the
fields at ¢#,. The eigenfunctions at each time ¢,
should be normalized so that

V(to) [ dxesing uf(elu; () =055, (192)

Z w(Du,(x) = (-g) /26D (x = x7) . (19b)
7

The annihilation operators Aj(to) and creation
operators A}(to) then satisfy, as a consequence of
Eq. (11), the commutation relations

[A;,A;]=0=[A],AL], [4,,Al]=6,;,. (20)

The canonical formalism yields a Hamiltonian®
for the field theory:

H(t)=3V(¢) fdx sinf[(-g) 1% + g9, 88,8+ u2d?].

(21a)
Substitution of Eqs. (18) gives
H(to)=Y E;A](t,)A,(t,) +divergent c-number.
§

(21b)

The quanta corresponding to the A; may be called
quasiparticles. A deeper physical study of the
particle concept suggests another definition of par-
ticles (see Sec. V and Ref. 27).

For integral J the functions u; are the eigenfunc-
tions of an asymmetric top (see Refs. 12—14).
The index j then stands for (J,M,y,0,X), where J,
M, and y have the same significance as in the
symmetric case, o corresponds to the parity of
K, and y is an index number for the eigenvalues of
(3)A, which takes on the same number of values as
K does in the corresponding symmetric situation
described above. The u; can be expanded in terms
of the w’s, with coefficients which depend on time
through the functions [,:

—y-1/2
u; =V Zakjwk ,
k

where all the indices in k except K are fixed and
are those of j. [The factor V~'/2 is needed to ac-
count for the difference in the normalization con-
ventions (13) and (19).] The a,; and the associated
eigenvalues E;® are functions of 1,, 7,, and I,
(and hence, of time). For further information
about them, including numerical calculations, see
Refs. 12-14.

The operator A,(¢,) is related by a general

(22)

S. A. FULLING,

AND LEONARD PARKER 8

Bogolubov transformation (also called a linear
canonical transformation or symplectic transfor-
mation) to the operators A;.(¢,) and AJ.(¢,) defined
at a different time ¢#,. Terms in 4,(¢,) involving
A™(t,) operators correspond to the physical pro-
cess of particle creation, to the extent that the
particle interpretation of the operators is legiti-
mate. Similarly, terms with j’ #j describe mode
mixing (a scattering of the particles by the time-
dependent anisotropic gravitational field). In Sec.
II we shall elaborate on these general remarks,
and in Sec. III the coefficients of the Bogolubov
transformation in the mixmaster universe will be
calculated.

II. PARTICLE CREATION, MODE MIXING,
AND BOGOLUBOV TRANSFORMATIONS

For time-dependent Robertson-Walker, Kasner,
and Taub universes, separation of variables in
the scalar wave equation allows for mode decom-
position (Refs. 2,5,13). However, the time depen-
dence of the field amplitudes is not simple har-
monic, as it would be in a static universe, but
rather is the solution of a more general second-
order differential equation of the form (14) with
diagonal 3C,,,(¢). The positive- and negative-
frequency parts of the field become mixed in the
course of the evoluticn of the universe; creation
and annihilation operators® at one time are linear
combinations of those at a different time, so that
a state in Fock space with no particles present
initially has at a later time a nonzero average par-
ticle number. This is the process of particle crea-
tion. Since there is no mode coupling in universes
of this class, the process is described by a diag-
onal Bogolubov transformation:

A(t) = ap(t)Ay(t,) +Bu(t)AT(2,),
[au(t)[? = |Bu(t) 7 =1.

The quantity |8,(¢)|? gives the average number of
particles present in the k£th mode at time ¢ if the
state is the vacuum at ¢,. If the initial state is not
the vacuum, the number of particles created is
increased by a factor 1+2N,, where N, is the av-
erage number of particles initially present (see
Ref. 2).

For a general time-dependent metric (including
the mixmaster universe), the fact that the eigen-
functions of the covariant Laplacian depend on time
results in mode mixing. Instead of Eq. (23) it is
necessary to consider the most general linear
transformation on the creation and annihilation
operators of the system:

A )= [ (A (t) + v, (DAT(E)],  (24)
j'

(23)

where u;;.and v;;,are complex c-number functions
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of time. Here, and in what follows, the indices j,
j', i denote the collective quantum numbers
(J,M,v,0,x) of the asymmetric top eigenfunctions,
and k, k', p denote the (J, M, y, K) of the symmetric
top eigenfunctions (with extensions to cover half-
integral J, if needed). If at ¢, the operators A;.(¢,)
satisfy the canonical commutation relations (20),
then in order that the transformed operators Aj(t)
also obey these relations,

[A,(1),A;(#)]=0, [A,t),Al.(t)]=6,,, (25)

it is necessary and sufficient that the transforma-
tion coefficients satisfy the following conditions:

E (i = v05:) =850 (26a)
7

> (w5050 = vy5u;0,) = 0. (26b)
1

Regarding the quantities A,(¢) and A,(¢,) as the jth
components of column vectors A(t) and A(¢,), we
may write the transformation (24) in matrix nota-
tion as

Alt)=uA(ty)+vAT(t,), (@7
and the conditions (26) take the form
_ui"f_ﬂler ut - v%=0, (28)

where the tilde and dagger denote transposition
and Hermitian conjugation, respectively. The
transformation is invertible (as it will be in all the
cases which arise in this paper) if and only if

wu-gv*=1, u'v-u*=0, (29)
where * denotes complex conjugation. Equations
(27)—-(29) define a (general) Bogolubov transforma-
tion.?!

The transformation matrices v;;/(¢) and u;,.(¢)
corresponding to the time development of a field
in the mixmaster universe are not diagonal [see
Eqgs. (43) below]. If we start out with a pure posi-
tive-frequency wave component in a certain mode
j1, at some later time we will find a certain
amount of positive- and negative-frequency waves
of some other mode j,, as well as a negative-
frequency j, component. These effects correspond
to particle creation and mode scattering, in ac-
cordance with Eq. (24).

III. CALCULATION OF THE BOGOLUBOV
TRANSFORMATION

To calculate A,(¢) and A;r(t), defined as in Eqs.
(18), in terms of the analogous operators at an-
other time, A;.(¢,) and A].(¢,)—in other words, to
determine the coefficients u;;.(¢) and v;;.(¢) of the
Bogolubov transformation (24)—one may proceed
in several ways. One method is to substitute Eq.

(18a) into Eq. (8) to find a set of coupled differen-
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tial equations satisfied by the operators A;. These
equations, however, are rather complicated.?

We prefer to make an intermediate transformation
to the operators C,, which obey the comparatively
simple equation (14). We shall go from the A,(¢,)
to the A,(¢) in the following steps:

{A,(t0), Af(2)} = {8(2,), m(t )}
~{Cilty), Ci(to)}
~{G®), C(t), (1), CE ()}
~{@@),n(2)}
-~ A 2). (30)

Here C, is the derivative of C, with respect to ¢
(not 7).

First, we express A,(¢) in terms of C,(¢), etc.
Differentiation of Eq. (12) yields for all ¢

m(x, t)=272(=g) /23" [ C, (t)w, ()

+CL (Y wr(0)]. (31)
Noting from Eq. (22) that

[ axsingur(xwy0=v-"2ag, , (32a)
we set
b= Vl/zfdx sing uf(x)w}(x)

[k=(J,M,y,K)].
(32b)

= ("' 1)7 K- Ma( J,-M,y,K),§

Here we have noted that our phase convention (see
Ref. 16) entails

diu=din=dlg _u, (33a)
and hence
wiiy= DT g (33b)

We find from Eqs. (18) at time ¢ that

Ai(t)=Z"I/Z[Ejl/zfdx(—g)l/zu}"(x)é(x, t)

+4E, 712 fdxu;*(x)ﬂ(x, 0],  (34)

where E; and u; are those for time ¢. (The can-
cellation of terms involving AT operators depends
on the fact that the asymmetric top eigenfunctions
u; and u}, are orthogonal unless E;=E,,.) Thus
Egs. (12) and (31) at time ¢ [with Egs. (32)] yield

A(8) =%V”2{Eﬁ”§[ afCult) + by CL (1))
+iE; -1/22 [a,’fjék(t)+ bkjé‘;r(t)]},
k

(35)
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where V, E;, a,; and b,; are all evaluated at time
t.

Next we consider the inverse of the analogous
transformation at the ¢, end. It is convenient to
impose the condition

Culto) ==iChlt,), (36)

which we have the freedom to do, since C,(¢) was
not uniquely defined previously. We now have®
from Eq. (31) at time ¢,

m(x, t,) = —z‘2'1/2(—g)1/22 [Cilto) w(x)

3

- Citwi ()],
(37
which with Eq. (12) is easily inverted to yield
C, (t0)=2'1/2[fdx sinfw ¥ (x)®(x, ¢,)
+iV '1fdxw,§‘(x)ﬂ(x, to)}
=3V Ly (B2 4 B A1)
i
+ by, (E; 72— E;Y2)AT(2,)].
(38)

In this case V, E;, a,;, and b,; are evaluated at
time ¢,.
It remains to find the C(¢)’s in terms of the

J
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C(t,)’s. Let ¥ (7) be the solutions of

d hk + z:«:kk,hk, -0, (39)

such that

h;P)(To) =0sp s (40)

A o8 ()
a7 1 (1) =V

= —iV(to)Okp ’

where 7, is the value of 7 corresponding to the val-
ue ¢, of the time variable [see Eq. (15)]. (Sim-
ilarly, we shall let 7, correspond to the time ¢.)
Then

Cult) =3 MP()C,(t o) (41)
b

(summed over all the modes coupled to %) is a
solution of Eq. (14) which satisfies Eq. (36) and
has the correct initial value C,(¢,) at ¢,. Thus we
have

ck(t)=Z:h§ap)(71)cp(to)’ (
42)

. (»
&) =73 B (e, (e,

?

Finally, combining Eqs. (35), (42), and (38), we
obtain the coefficients of the Bogolubov transfor-
mation:

1f v(e) 72 120, g -1/25(N (@ ~1/2 . @ 1/2
U0 =5 Z[a;jaﬁ,(Ei P+ B,V 2PN E;, +E;M?)
k,p

4Lv(z¢,)
+ by b3 (B 2HP* + BV PN E; T2 - B, (43a)
1 V() 1/2 ( Y _
vjj,zz[m] Z[a:j b,,(EjI/th’)+Ej l/zhkp))(Ej: 1/2_Ej11/2)
) &b
+ by aky (Ejllzhf,‘)*+Ej'1/2h£’)*)(Ej,'1/2+EJ.,1/2)] . (43b)

Here quantities with indices j and j’ are evaluated at times ¢ and ¢,, respectively; also, hﬁ") and its de-
rivative are evaluated at 7,, and the time differentiation in hﬁ") is with respect to ¢. The physical signifi-
cance of these transformation coefficients has been discussed in Sec. II.

IV. CONFORMAL COUPLING

The equation of a conformally coupled scalar
field is

(g""9,v, - k-t R)® =0, (44)

where the scalar curvature®® of the mixmaster
space-time is

=(4)R

1,0, Li, 1 2)
— a 4_2 1¢3
2<zl LLLL T,

—V_z[l14+lz4+ls4‘%(112*'122*'132)2]' (45)

r

The first term has the form of ‘YR for a Kasner
universe, and the second term is the three-dimen-
sional scalar curvature, (3)R, of the mixmaster
space. Equation (8) is replaced by

&+ 2ré - OAd + (u2+1R)® =0, (46)

The damping of anisotropy in the expansion rates
should be most evident in the case of conformal
coupling, since it is in that case that isotropy
tends to reduce the particle production.

The eigenfunctions of ~‘®A + u+1R are the same
as those of —‘3a + 42, with different eigenvalues,
E?+%R. We shall show that the field equation (46)
can be reduced, like Eq. (8), to a system of cou-
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pled equations of the form (14), with different co-
efficients in place of 3C,.. Therefore, the entire
calculation of Sec. III applies to the conformal the-
ory, except for minor changes which will be clear-
ly indicated in the following discussion.

There are several transformations which can be
used to remove the & term from Eq. (46), arriving
at equations like Eq. (14). First, using the vari-
able 7 of Eq. (15), one obtains much as before

V-2 Tq’ ad + (u2+1R)® =0, (47)

and hence Eq. (14) with
3e(7)= VE(=B®a+ p? ++R). (48)

With this operator 3¢ in Eq. (16) and with E; re-
placed by (E2+%R)'/?, Sec. III applies.
On the other hand following Ref. 5, one can
write
dt

d—n=vE V‘/3, x=v®. (49)

The equation becomes
32
a—nx+v[ DA+ p2+LR-v"%"]x=0, (50)

where a prime indicates differentiation with re-
spect to . Writing in analogy to Eq. (12)

x(x, )= z-lfzz[Gk(t)wk(xHG,I(t)w (1,

(51)
we obtain in place of Eq. (14)
& Gk+ Z [(2%)4ar + Q0pe ] Gar =0, (52)
where (in notation adapted from Ref. 5)
Q2 =02(-Pa+p?), (53)

Q) =t R-v ™"

A[(L__JL>(LL_LL>
18L\z, "1, 1, 4
LL_Z_H
1y 1,
R o L 0 =32 12 1P
(54)

In the formulas of Sec. III, therefore, 3C,, is to
be replaced by (92%),. + @0rer, and E; by
(B2 +% L1 R)/2, Moreover, the factor V(t)/V(to)) 1/2
in Eqs (43) must be replaced by [V(¢)/V(t,)]*
The advantage of Egs. (52)~(54) is that @ does not
involve second-order 7 derivatives.

The first term in Eq. (54) (involving derivatives
of the I’s) matches the result of Zel’dovich and

Starobinsky for the Kasner universe.?® The second
term represents the effect of three-space curva-
ture. The primary sources of different behavior
of the system in the mixmaster case, as compared
with Kasner, will be the off-diagonal matrix ele-
ments of °, and the additional term in Q.

For completeness, we remark that an alternative
approach to the theory of minimal coupling is also
available. Let

F(8)=VY2C,() (55)

and retain the original time coordinate ¢. One ob-
tains as the analogue of Eq. (14)

d?F,
dt

+T)F,+ Z Moy Fpr =0, (56)

where the M,,, are matrix elements of —¥A + 2,
The R term could be added to this operator for
conformal coupling. In this case Sec. III is mod-
ified by replacing 3¢, with M,,, — (I2+I")6,,,, and
the factor [V(¢)/V(¢,)]*'? does not appear in Eqgs.
(43). We prefer the approach presented in Sec. I,
because (for minimal coupling) the operator 3¢
[Eq. (17)] has a simple form and is positive defi-
nite, a feature which simplifies asymptotic anal-
ysis.

V. DISCUSSION

In this paper we considered the quantum theory
of a scalar field in a mixmaster universe, as part
of an investigation of the question of anisotropy
damping caused by particle creation and mode
mixing. It is next necessary to construct the en-
ergy-momentum tensor, the expectation value of
which acts as the source of the gravitational field.?®
The energy-momentum tensor is thus the primary
physical quantity. The introduction of suitable
creation and annihilation operators is useful,
nevertheless, in renormalization of the energy-
momentum tensor and in the specification of state
vectors.

Instantaneous diagonalization of the Hamiltonian
was used here as the basis for defining creation
and annihilation operators. Recent work?’ on the
analogous theory of a quantized scalar field in a
Robertson-Walker universe suggests that a differ-
ent definition is more useful and natural in connec-
tion with renormalization of the energy-momentum
tensor and specification of state. The operators
so defined correspond to physical particles for
large momenta or slow expansion rates, in which
cases the concept of physical particle is meaning-
ful. The generalization of that approach to the
mixmaster geometry is under study. The tech-
niques of the present paper and the results re-
garding the existence of particle creation and
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mode mixing will almost certainly remain valid,
even though we anticipate that the definition of par-
ticle operators and the corresponding Bogolubov
transformation will be somewhat modified. To
complete the determination of the renormalized
energy-momentum tensor, furthermore, it is nec-
essary to analyze the asymptotic behavior at large
E; of the Bogolubov coefficients. While these
questions are under investigation, we plan to study
anisotropy damping in universes of the Kasner or

Taub type, for which the problem of coupled modes
does not arise. We intend then to continue with
the mixmaster problem.
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