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The analog of Komar’s identically conserved vector density in general relativity is found for the
Brans-Dicke theory. The relation of such unigue expressions to given Lagrangians is described, thereby
exhibiting the reason for the physical consequences of the identities.

Some years ago Komar! found that conservation
laws for general relativity may be obtained from
the tensor identity for covariant divergences,

(Eilj—gj‘i)quoy (1)

where £ is an arbitrary vector field. For suitable
choices of this vector the expression reduces to the
various suggested conservation laws.? For in-
stance, Moss® has recently shown that if one
chooses the vector to be a Killing vector field,

then (1) becomes Trautman’s conservation law.*
Also, for an asymptotically Schwarzschild universe
Komar showed' that the energy content of the mani-
fold given by (1) is mc?.

Since identity (1) is a mathematical triviality it
seems strange that physical consequences should
follow from it. However, it is not generally real-
ized that every invariant has associated with it an
identically conserved vector (density),’ or, to be
more specific, a skew-symmetric second-rank
tensor which is a functional of the field variables
as well as an arbitrary vector field.®*? Since the
double covariant divergence of any skew-symme-
tric second-rank tensor vanishes identically by
Ricci’s lemma, this accounts for the conserved
quantity above. In the case of the scalar curvature
the associated skew-symmetric tensor is found in
(1). This property of the scalar curvature was
first pointed out by Davis and Moss® in a different
context.

In view of the current interest in the Brans-Dicke
theory it is useful to present the counterpart of
(1) associated with this theory.® The term of in-
terest in their Lagrangian is £ =¢R(g)'/? and one
considers the Lie derivative'® of £ in the direction
of an arbitrary vector field &. One can show that
the scalar ¢R satisfies the identity™
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Using standard techniques'? one then argues that
the coefficient of ¢! in the final term of (2) van-
ishes identically. This is the “compatibility
identity” involving the two variational derivatives
of £ (which reduces to the identical vanishing of
the divergence of the Einstein tensor if ¢ is con-
stant). For this reason (2) yields the conserved
vector

Vi=- 3 oRE +EV g,
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We shall now rewrite this in the form of Komar’s
expression. It is easily seen'! that

Zabchgabgcd - %gacgbd _%gadgbc

and hence that Z®°*® is cyclic on any three indices
and possesses the additional symmetries Z®°*

= Z%des ghade 2 Zodtb  \ye may then write!®

Zabci E_g VA [bcli +%Zc [ab]i (5)
to find
z% §a|bcER“§j+% ze okt Ealbe (6)

which follows from the commutation relations. This
reduces (4) to
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From here, with a direct but rather long calcu-
lations, we find

ViE%[(¢€a|b‘2¢lbga)Za[c”b][c . (8)
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This is the conserved vector'* associated with the
Brans-Dicke theory. Note that it reduces to
Komar’s expression if ¢ is taken to be constant.
This is consistent with the reduction of the Brans-
Dicke Lagrangian to the Lagrangian of general
relativity for constant ¢.

The physical consequences of (8) for the Brans-
Dicke analog of the Schwarzschild solution'® are
under investigation at the present time. A general

consideration of invariants, their compatibility
identities, and Komar-type expressions, will be
discussed in a forthcoming paper.
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We treat a Lorentz-covariant two-body problem due to Fokker: One electric charge experiences the
retarded field of a second, while the second experiences the advanced field of the first; this is pure action at
a distance, with no self-action; conservation principles exist. We show that this (apparently generally soluble)
time-asymmetric problem is exactly soluble for straight-line motion and admits solutions in which the
charges move in circles about a common center. We briefly consider nonelectrodynamic time-asymmetric

interactions and aspects of quantizing the motions.

We begin a study here of the following Lorentz-
covariant two-body problem, originally posed by
Fokker': One electric charge is acted upon by
the retarded electromagnetic field of a second
charge, while the second charge is acted upon by
the advanced field of the first; the interaction is
pure “action at a distance,” with the fields treated
merely as convenient tools for describing the in-
teraction; there is no self-action. This problemis
time-asymmetric, in contrast to the time-sym-
metric two-body problem in the Wheeler-Feyn-
man® formulation of electrodynamics, in which

each charge is acted upon by half the advanced
plus half the retarded field of the other.

The symmetric problem has so far defied gen-
eral analysis, since its solution apparently re-
quires knowledge of an infinite set of position-
velocity data for each charge. Attempts®:? have
been made to reduce the Wheeler-Feynman two-
body problem to Newtonian-type equations re-
quiring only an ordinary set of initial conditions,
but various mathematical questions arise,® e.g.,
whether the series expansions used converge.
Only one class of rigorous solutions of the time-



