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The time development of a thin charged shell is studied and it is shown that it can collapse to form a

naked singularity if, and only if, the matter energy density of the shell is negative,

I. INTRODUCTION

The metric on the inside and outside of a thin
shell of charged dust can be solved explicitly; the
result, in Schwarschild coordinates, is just the
Reissner-Nordstrom metric of total mass M and
cha.rge Q on the outside of the shell and the flat-
(Minkowski) space metric on the inside. The
metric can then be related to the stress-energy
tensor of the shell by the discontinuity equations
first derived by Israel' and Kuchar". ' The stress-
energy can be expressed in terms of the proper
mass of the shell —the mass of each particle
times the number of particles. The relation be-
tween the total'mass and the proper mass may be
written as the sum of kinetic- and potential-
energy terms; this relation provides a means of
solving for the motion of the shell in Schwarz-
child coordinates. These results are summar-
ized in Sec. II.

In order to interpret the results, the complete
extension of the Reissner-Nordstrom metric
must be used because, in the course of the time
development, the world line of the shell will, in
general, not remain within the region of space-
time covered by the original coordinate patch.
Section III is devoted to presenting the extension
due to Carter."

There are several possible motions of the shell
for various proper mass, charge, and starting
conditions; these are discussed in detail in Sec.
IV. As long as the proper mass is positive and an
asymptotically flat region of space-time exists,
the total mass is always positive and no naked
singularity can develop as seen by an observer in
the asymptotically Qat space. However, if the
proper mass is taken to be negative (the matter
stress-energy tensor has a negative energy den-
sity) then solutions exist in which the total mass
is positive, there is an asymptotically flat space,
and the shell collapses to a naked singularity.

II. THIN-SHELL EQUATIONS

The basic equations describing the time develop-
ment of a thin shell have been derived by Israel'

R =M+(M -q2)'~2 (2)

and there are two pseudosingularities. The outer
zero is the event horizon as seen from the ex-
terior region.

The parametersM, Q, and R(v.), the radius of
the shell at its proper time, ~, must now be re-
lated to the matter energy density. The shell is
at r R(r) at the time t = T(r), hence its four-
velocity must be

dg~u" = ~ =(u', R, 0, 0) (3)

and

u' = -1= -[1 -2C'(R)] (u )'+R'/[I-24(R)]. (4)

The metric (C ) is discontinuous across the shell;
thus, the four-velocity will be different as seen

and Kuchar", ' who have shown how to relate the
matter stress-energy tensor to the discontinuity
of the extrinsic curvature of the three-dimensional
timelike hypersurface swept out by the shell in the
course of time. This work is relat to those of
Arnowitt, Deser, and Misner ' ho solved ano-
logous equations for the initial-value problem, and
Siegel, ' who has studied the time development of
the system in coordinates in which ~* measures
the distance from the center of the shell.

It is convenient to use Schwarzschild coordinates
in which the Reissner-Nordstrom metric takes the
form

ds' = -[1-24(r)] dt '+ dr'[1 -24 (r)]

+r'(de'+ sin2& dP'),

where, in units with 6=l=c,
C (r) =-M/r-Q'/2r' outside the shell

and

4(r) —=0 inside the shell.

The total mass of the shell is M and its total
charge is Q. If the shell collapses to the origin,
an event horizon is well known to develop pro-
vided that M& I QI; in that case I-24(r) possesses
zeros at

2363



2364 DA VID G. BOUI WARE

from the two sides. However, in Schwarzschild
coordinates, A is the same, being a measure of
the (invariant) area of the shell. Thus, or

-3|I/R' =( n'(R+) -n'(R -)) /R

3tI=R(n'(R-) -n'(R+)} . (14)
[1-2e(R)+R']'".

and the three e," are an orthonormal triad lying in
the surface,

n„e",=0,

and

v 3eeJ"pve~ = a~ ~

'g" 8."e»'=[g"' -n" n'/n'],

with g, , being the metric in the timelike hyper-
surface. Rather than the extrinsic curvature, it
is convenient to use

rr' =-e'~e'Z -O'Z'
b 5 Pv 5 c~

where

ee sg»e

The discontinuity of m„' is then given by the
surface matter stress-energy density, '' 8;:

[11;] =II; (R+) —II; (R-) =-4wS; = -4wou'u» . (10)

In particular, if e", =u"=e,", Eg. (10) reads,
using Egs. (9) and (7),

[u"n„.„u'+n" .„—n" n'n„,„]= -4',
where o is the surface energy density of the shell
in the comoving frame; the total proper mass of
the shell, NI, is the surface density times the area
of the shell, 4'' or 4zo =3tI/R', and, since S'»

is covariantly conserved in the hypersurface, SR'
is a constant. Using the metric, Eq. (11), the
identity

PP

and the equatio'ns for the affinity

The normal to the hypersurface, g„, must be
orthogonal to u" and e„,the spatial vectors tan-
gent to the surface; hence

n„=+(-R,u') . (6)

As has been shown by Israel' and Kuchar", ' the
discontinuity of the extrinsic curvature is re-
lated to the surface stress-energy tensor of the
shell. The extrinsic curvature, E„,is given by
K,~ =e",K„,e~v, where

Kpv Pl/ e v

0

The normal on the inside is just (1+R')"',
corresponding to the flat space inside the shell
and the fact that the invariant radius decreases
in the direction of the center of the shell.

The outward normal may have either sign; this
is discussed in more detail below. Hence

n'(R+)= + [I-2y(R)+ 8']'"=-n

and Eg. (14) may be solved for n'(R+), squared,
and rewritten as

It is now trivial to show that the shell cannot
collapse to a naked singularity if 9@is positive. If
the shell is in an asymptotically flat region,
n'(R+) must be positive, because the Schwarz-
schild radius increases as one moves away from
the shell. They the sign of the normal must re-
main positive until the shell passes an event hori-
zon since

n = [1-2C,(R+) +R2]u2 (18)

and the argument of the square root is positive as
long as 1-24 is positive. But, by Eq. (17), R can-
not go to zero unless either le&0 or n'(R+) changes
sign. Thus, for 3g&0, the shell can collapse to a
point only if an event horizon forms. However, if
Qg&0, then collapse to A=O may occur without the
formation of an event horizon; an example of
appropriate starting conditions is given below.

There is a geometrical reason why n' can only
change sign if there is an event horizon: The
normal to the surface of the shell must be a space-
like vector, hence

n" n„=(n')'/[1-2C (R+)] -(no)'[1-24 (8+)]= 1. (19)

(16)

Here, the total mass (energy) has been written as
the kinetic plus rest-mass energy of the shell,
K(1+R')"', plus the potential-energy term, which
is exactly the same as the classical potential
energy. The factor of 2 reflects the fact that the
shell responds to the average field, not the field
on either side, and that this holds both for the
gravitational and electric fields.

This result for (I+R')'~'=n'(R-) as a function
of R may be reinserted in Eq. (14) to give an
explicit result for n'(R+):

I' =I"' =V/r02 c3 tx

it follows that

(13) If there is no event horizon, (1-24) is positive
and, at the radius where n' changes sign, the
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normal must be timelike. This contradiction
implies that n' can change sign only where
(1-24 ) &0, i.e., inside the event horizon.

III. KRUSKAL DIAGRAM

In order to understand the changing sign of the
outward normal of the shell it is necessary to
look at a diagram of the maximal analytic ex-

tension of the Reissner-Nordstrom metric. This
extension has been given by Graves and Brill and

by Carter. 4 For M&l Q I, the maximal extension
by Carter is shown in Fig. 1. The light cones are
45' lines on the diagram. The 45 lines shown
correspond to spatial infinity, R, or R as in-
dicated, and to the coordinate t equal to plus or
minus infinity. The dashed lines indicate lines
of constant r and the arrowheads indicate the
direction of increasing t. For M iQ l, the max-
imal extension is shown in Fig. 2, where a simi-
lar notation is used. ' For M& IQ I, there are no
event horizons and the metric does not need to be
extended-the space 0&x&~ and -~& I;&~ is geo-
desically complete.

The world line of the shell may now be plotted
on the appropriate diagram (two possible lines
are shown in Fig. 1). This must be a timelike
line (slope greater than 45'). The I, regions are
taken to be the normal regions outside the shell,

PIG. 2. Maximal analytic extension of the Heissner-
Nordstrom metric for M =~@~.

or (if that is appropriate) the event horizon shield-
ing the shell. The region to the left of the world
line of the shell is the interior of shell —a Qat-
space region of radius R. If the world line of the
shell passes through regions I, and III, the out-
ward normal to the shell is positive; it points
toward larger values of x. In regions I and III
the outward normal is negative, pointing toward
smaller values of ~. In regions II„the radial
component of the outward normal may have either
sign; however, n' must be positive (negative} in
II+ (II ). The points on the diagram where regions
I, II„andIII meet are singular points of the co-
ordinates; they represent temporal infinity for
all timelike geodesics in region I, spatial infin-
ity for all spacelike geodesics in region II, and
temporal infinity B&R-for region III. The three
infinite regions are disjoint and cannot be identi-
fied.

In the next section, the world line of the shell
will be plotted on the appropriate Kruskal dia-
gram for each of the possible starting conditions
for a shell of proper mass 9Rand charge Q. It is
then trivial to read off the properties of the solu-
tions. A discussion of some of the properties of
thin charged shells is given by de la Cruz and
Israel, ' who explain many of the properties in
more detail, and by Bekenstein' and Chase. '

FIG. 1, Maximal analytic extension of the Reissner-
Nordstr'om metric for M & )Q~.

IV. BEHAVIOR OF THE SHELL

The energy equation, Eq. (16}, and the equation
for n'(R+}, Eq. (17}, combined with the Kruskal
diagrams, provide the basis for a discussion of
the time development of the shell.
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The equation for R(r), Eq. (17), can be in-
tegrated directly, yielding R as a function of w as
long as R is greater than zero. For M&5g

)]», (r +x )—,'cosh '(2R —r, -x )

=[(M/)'-I]"' I &-7al,

i, -=-(IIa -Q')/2(M+ IO

R&~, .
For M&% and K'&Q'

[( )g )]», (l;+r )acos '(2R-r, r)-
y~ y'-

with

= [I-(M/Sg}']»' I ~-~,I,

R„=(II'+Q')/2M. (20)

By the argument given above, this point must lie
between the two event horizons; it is a straight-
forward exercise to verify that, if the shell can in
fact reach R„,then R„doeslie between R+ and R,
i.e., in a type-II, region where t is a spacelike
coordinate.

The energy equation, Eq. (16), requires that R
be equal to zero at no more than one radius, R~,
where

R,= -(31I' -Q')/2(M -3}I);
hence R may change sign only if the right-hand
side is greater than zero; if it is less than zero
the shell must proceed inexorably from R = ~ in a
I+ region since n'(~)&0 to R=O in a III region
since n'(0) & 0.

The various possibilities are now spelled out in
detail.

(1)M&3}I&jQ~. From the equation for (1+R')"',
Eq. (17), it is apparent that R cannot be zero at

(21)

r, &R.

These equations cease to be applicable when the
shell reaches the origin, R =0.

The behavior is just what one would expect from
studying the turning points (points where R = 0) of
Eq. (16). The qualitative nature of the solutions
may, then, be read off from that equation, except
that R does not completely specify the point;
R &R+ may imply that the surface of the shell lies
in either region I+ or I of Fig. 1. In order to
complete the analysis the behavior of the outward
normal n'(R+) must be followed also. This in-
formation is provided by Eq. (17) and, given M,

II, and Q, n changes sign at

any time; the shell either explodes or collapses
to zero radius depending on the sign of R. Since
W& Q, an event horizon develops and, since the
shell reaches zero radius, n must change sign;
hence, the shell must pass through region III .
Thus, the shell follows one of the paths in Fig. 3.
Note that a spacelike surface passing through the
world line of th shell in region III or III, is
closed and that there is a singularity in the metric
on the outside (non-flat-space side) of the shell.
This is a charged singularity since the flux through
an enclosing surface is -Q (the total charge in any
compact space must be zero). The 3-space topol-
ogy has changed from that of a Euclidean 3-space
to that of a closed universe. The interior of the
sphere is a Euclidean sphere of radius R; the
other side has a point charge -Q at the origin of
a sphere of radius R with the H, eissner-Nordstrorn
geometry. There is no space, at this time, which
is asymptotically flat. To the extent that the
equations can be believed, as the singularity de-
velops and the shell collapses to a point the uni-
verse does so also, and after R(~)=0 the universe
consists of an uncharged point.

(2) M&3II; [Q I &31I. There is now a turning point
at R~, the minimum radius of the shell. It is
convenient to characterize the shell by the turn-
ing radius rather than M,

(
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FIG. 3. (a) Space-time for a collapsing charged shell
with M &'lK &~ QI; (h} space time for an e-zploding charged
shell with M & K &

I Q~ .



NAKED SINGULARITIES, THIN SHELLS, AND TH E. . .

M =II+ (Q2-II')/2R, & 0. (22)

There are now three subcases:
(a) Rr&-', (ll+ IQI); then, M& IQI and no event

horizon can form in any case; the shell simply
contracts to R&, then reexpands to infinity. As
Rr approaches 2(II+ I Q I), the coordinate time
required for the shell to bounce a finite distance
from R ~ diverges, providing physical continuity
between this case and the next.

(b) Rr= ~(SR+ IQI). Now M= IQ I, Rr&R, =M,
and n(Rr)= ( I Q I -3R)/( I Q I+ I()& 0. The shell passes
through the single event horizon, region III, and

emerges in a different space. This is depicted in
Fig. 4.

(c) 0&R,&-,'(II+ IQI). If Rr&SR, R &R„and
n(Rr) & 0, the shell passes the event horizons and

through region III, and reemerges in I, . If
0&Rr&%5, everything is the same except that
n(Rr)& 0 and the shell passes through III . Both
cases are shown in Fig. 5; if R&= 3K, the curve
passes directly through the point where regions
III and III, meet.

(3) 3R&M. There must again be a turning point
and 3R' & Q'; the turning point is now a maximum
radius. As in the previous case, it is convenient
to express M in terms of the turning radius R~.
There are now two cases:

(a) R, &-.'(m+ IQI) lf R,&II, R, &R„and
n(Rr)&0, the turning point is in a I, region, and
n changes sign as the shell collapses into or
emerges from the III regions. The shell has
expanded from a point, producing a finite space
with a singularity on the outside at R =0; it con-
tinues expanding until an exterior is formed into
which it briefly emerges only to collapse along
with the space.

lf M&Rr&a(SR+ IQI), Rr&R„and n(Rr)&0, the
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PIG. 5. Space time -for lql&II, Rr & —,'(+lql). The
left curve corresponds to R&&%; the right curve to
0& R~('K.

turning paint is in a I region and n does not
change sign during the collapse. In this case, the
shell never emerges from its hole into the normal
space, The shell is observable from outside in the
infinite past as it traverses the III and II regions,
but not afterward.

If R~= , the shell passes through the point
where regions I+ and I touch. The space-time is
depicted for R~~SKin Fig. 6; if R&&N, the world

I

I

l

I

I

l r

I
x

I E

r

I

I

I r

I

I
j'

I

Y.
I
x

l

I ~ ~i I

FIG. 4. Space time for I =I@I-&%. FiG. S. Sp«e-«me f»&lql, R,&k(SR+IQI).
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line should be moved into the I region. The total
mass, M, is equal to 9R-(5R'-Q')/2Rr &

I Q I and is
positive, as it must be if the space is asymptot-
ically Gat. '

(b) 0&R &-'(all+ I@I). For R &—,'(SIT-IqI), the
extended metric contains no event horizons. The
outside of the shell is finite, x decreases going
away from the shell, and there is a singularity
with charge -Q outside the shell.

For Rr&-,'(Sf' —IQ I), the extended metric contains
event horizons but they are never realized since
they are always to the left of the shell.

In neither case is there ever an exterior asymp-
totically flat space of the region-I type; such
conditions have (presumably) nothing to do with
our universe.

No naked singularities have appeared for any
positive values of 5g. Although negative values of
It;are unphysical, it is of interest to consider the
case because collapse to a naked singularity may
then appear.

(4) 0&K, Q'&K', —,'(IQ I-IMARI)&R, & (Q'-K')/2 I%I.

The shell now collapses from its turning point-
the total force is outward but the shell has nega-
tive inertia. From the equation for M in terms
of Rr, Eq. (22), M lies between 0 and (Q ~, hence
IQ I&M o0 and no ~vent horizon appears. That is,
the shell has collapsed to the origin, without the
appearance of an event horizon —a naked singular-
ity has appeared.

To conclude: Collapse to a naked singularity is
possible (though not required) if the proper mass
of the shell is negative; hence any proof of the
impossibility of the appearance of such a singu-
larity Inust include some assumption equivalent
to a positive definite matter energy density.
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