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It is often said that the speed of a freely falling test particle in the Schwarzschild field approaches the
speed of light at the Schwarzschild radius. It is shown that this is not the case.

Many discussions of motion in the Schwarzschild
field say that the speed of a freely falling test par-
ticle approaches the speed of light as the particle
approaches the Schwarzschild radius; Refs. 1-5
indicate a sampling of such discussions. One
might infer from these sources that a test particle
does, in fact, cross the Schwarzschild radius with
the speed of light. It is the purpose of this note to
emphasize that this is not the case. (For simplic-
ity, only radial geodesics will be discussed. )

Before giving what I consider to be the correct
description, it may be instructive to examine
briefly two of the "standard" treatments; other
treatments may be analyzed in similar fashion.
Zel'dovich and Novikov say' that the velocity they
use "has direct physical significance. It is the
velocity measured by an observer who is at rest

(r, 8, P constant) at the point which the particie is
passing. " The coordinates referred to here are
the usual Schwarzschild coordinates; with a suit-
able choice of units, the line element may be writ-
ten as

ds' = (1 —2m/r)dt' —(1 —2m/r) 'dr'

—r'(de'+ sin'8dg') .

It is clear from Eq. (1) that an observer "at rest"
at the Schwarzschild radius, y =2', must move
with the speed of light. One might say, then, that
the reason a test particle's speed approaches the
speed of light is that it is measured by a family of
observers whose speeds approach the speed of
light. There is no reason to conclude from such
measurements that the particle actually reaches
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the speed of light at x = 2m.
Landau and Lifshitz say' that the velocity they

use "is measured in terms of the proper time, as
determined by clocks synchronized along the tra-
jectory of the particle. " It may seem at first sight
that conclusions based on a velocity thus defined
are independent of the choice of coordinates. How-
ever, the process of synchronizing clocks along
the particle's trajectory invol. ves the determination
of simultaneous events at different spatial loc3tions
on the trajectory, and this determination is cer-
tainly frame-dependent. In fact, in another of the
coordinate systems exhibited by Landau and
Lifshitz' (with no mention, though, of its rele-
vance to the present question), test particles at
rest relative to the reference system are freely
falling particles, and their velocity (calculated
from the Landau-Lifshitz prescription) is zero
everywhere, including at the Schwarzschild radius.
Thus again there is no reason to conclude that a
test particle reaches the speed of light at x = 2m.

How, then, should one find a physically reason-
able velocity for a test particle? It seems to me
that the best, most unambiguous way of doing so is
to introduce a locally Minkowskian frame at the
particle's instantaneous location. (Other veloc-
ities, including those I have criticized, may never-
theless be appropriate for particular purposes. )
One might expect that one would then find a speed
which does, of course, depend on the particular
Minkowski frame chosen, but which, in every such
frame, is less than the speed of light. It will be
shown in the following that this is the ease.

In the coordinate system of Eq. (1), with x'= t,
x ' = x, x' = 6), and x' = y, the tangent vector to
radially inward, timelike geodesics, expressed
with respect to an affine parameter, may be writ-
ten as

f." =a(1 —2m/r) '5O —[a —(1 —2m/r)] f 5~,

(2)

(4)

It is clear from Eq. (4) that V'- 1 as r - 2m.
The first suggestion that this result may be due

to the choice of coordinates comes from looking at
g, t"t', which is easily seen from Eqs. (1) and (2)
to have the value unity everywhere. Thus the tra-
jectory does not appear to become Iightlike in the
limit r-2m. (As the trajectory can, in fact, be
continued through the Schwarzschild radius, it
seems clear that it must remain timelike there. )
Since the coordinate system of Eq. (1) is not suit-
able for describing the manifold at r =2m, it is
natural to try a coordinate system that does not
have this defect. If we transform from the coordi-
nate system (t, r, 8, &j&) to the system (v, r, 8, P),
where

v = t+ r + 2m ln(r —2m ),
the line element of Eq. (1) takes the form

ds'= (1 —2m/r)dv' —2dvdr-r'(dg'+sin'8 dp') .

In this coordinate system (advanced Eddington-
Finkelstein coordinates'), there are no difficulties
at r =2m; although the transformation (5) is valid
only for r &2m, the line element (8) may be con-
sidered to describe the manifold for all y &O. The
tangent vector of Eq. (2) transforms into

t" = [a —[a' —(1 —2m/r)] 'f'j(1 —2m/r) '50

—[a' —(1 —2m/r)] "'5,",
with x'=v, x'=r, x'= 8, and x'=p. It may be
verified from Eq. (3) that, in this coordinate sys-
tern, it is still the case that P'-1 as y-2m. "
But consider the coordinate transformation from
(v, r, 8, p) to (x ', x', x', x'), defined by

1 vx'= —v 1+——(r-2m) 1 ——
v2 8m, 4m

where a is a positive constant. [If the particle
comes from infinite r with dr/dt = -v, at infinity,
then a = (1 —vo') 'f', if the particle starts at r =ro
with dr/dt=0 there, then, a=(l —2m/ro)' '. These
relations facilitate comparison of Eq. (2) with
other treatments. ] The Landau-Lifshitz prescrip-
tion for constructing the velocity' leads to the ex-
pression

—m (g - -,'m)' —my',
1 0 Vx =—v 1+ +(r —2m) 1 ——
2 8m 4m

m (g ——,'w)' —m y'

x'=r(8 --,'w),

x'=ry.

(8)

dx' 2 dx'&' =(a.,' r a)(r-.. ,ex dx' (3)

for the square of the velocity of a radially moving
particle. With the metric of Eq. (1) and the motion
specified by Eq. (2), Eq. (3) yields

Equations (8) transform the point with coordinates
v =0, r = 2m, g = —,'m, and p =0 into the origin of the
new coordinate system, and transform the metric
tensor at the origin of the new coordinate system
into the form g«= -g]J +22 +33 lp with g» —-0
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for p, gv, and with all first derivatives of the metric
tensor vanishing at that point; i.e. , in the new co-
ordinate system the metric is locally Minkowskian
at a point on the Schwarzschild surface. " The tan-
gent vector of Eq. (7), when transformed by Eqs.
(8) and evaluated at the origin of the new coordi-
nate system, becomes

2a' + l. 2a' —&

2&2a ' 2&2'

Equation (3) for the square of the velocity now

gives what one would expect from Ecl. (9) with a,

Minkowskian metric, namely

2 '+1
which is less than unity for every finite positive
value of a. Every other locally Minkowskian
frame would, of course, also lead to a speed less
than the speed of light for the test particle at this
point on the Schwarzschild surface.

It thus seems to me to be clear that freely falling
test particles in the Schwarzschild field cross
r = 2m with a speed less than the speed of light.
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