*On leave from the Department of Physics, University of Delhi, Delhi, India.

¹J. W. Chapman *et al.*, Phys. Rev. Lett. <u>29</u>, 1686 (1972).

²G. Charleton *et al.*, Phys. Rev. Lett. <u>29</u>, 515 (1972). ³For a compilation see E. Berger, Phys. Rev. Lett. 29, 887 (1972).

PHYSICAL REVIEW D

⁴A. H. Mueller, Phys. Rev. D 2, 2967 (1971).

⁵T. Ferbel, Phys. Rev. Lett. <u>29</u>, 448 (1972).

⁶F. Arbab and J. W. Dash, LBL Report No. UCRL-

17585, 1972 (unpublished).

⁷S. Rai Choudhury, Nuovo Cimento Lett. <u>5</u>, 7 (1972). ⁸T. Ferbel, Phys. Rev. D 7, 925 (1973).

VOLUME 8, NUMBER 7

1 OCTOBER 1973

Adjustment of the Crystal-Diffraction Measurement of the Pion Mass

Robert E. Shafer

National Accelerator Laboratory,* P. O. Box 500, Batavia, Illinois 60510 (Received 14 May 1973)

The measurement of the negative-pion mass by crystal diffraction of pionic x rays is adjusted for the revised fine-structure constant, improved radiative energy-level calculations, and more precise values of the calibration lines. We find that the result quoted earlier should be reduced by 80 ppm (parts per million) to 139.566 ± 0.010 MeV (\pm 73 ppm).

I. INTRODUCTION

In 1965 we reported^{1,2} an estimate of the negative-pion mass by measuring the Ca and Ti 4f-3d pionic x-ray energies with a 7.7-m bent crystal spectrometer.³ Since that time there has been considerable improvement in the accuracy of the fine-structure constant and the energies of the calibration γ rays. Also, recent interest in the radiative corrections to pionic and muonic atom energy levels, stimulated by discrepancies between additional precision x-ray measurements and theory, has allowed more precise energy-level calculations for pionic transitions. We therefore present a reevaluation of the pion mass measurement.

II. ENERGY-LEVEL CALCULATIONS

The original energy-level calculations for the Ca and Ti 4f-3d transitions were carried out by this author^{1, 2} in 1965 using perturbation-theory corrections to the unperturbed Klein-Gordon wave equation. In recent years calculational techniques have improved considerably, namely, by numerically integrating the Klein-Gordon equation after adding the finite-nuclear-size and vacuum-polar-ization corrections to the Coulomb field for a point nucleus. In 1969 Fricke⁴ published an extensive theoretical evaluation of radiative corrections in pionic and muonic atoms. Based on this paper, Backenstoss *et al.*⁵ observed that the original perturbation theory calculations did not include a

finite-size correction to the lowest-order vacuumpolarization term, and estimated the effect to cause a 200-ppm shift in the energy-level calculation. As perturbation theory indicated the effect to be approximately 5 ppm,⁶ the discrepancy was quickly traced to Fricke's paper. Also, the discrepancies between muonic atom measurements and theory^{7,8} lead to finding additional errors in the same reference.^{9,10}

Using numerical integration techniques and Blomqvist's results,¹⁰ Tauscher¹¹ has recently reevaluated the original perturbation theory calculation, and finds that the scale factors (the ratio of the pion mass to the transition energies) for the Ca and Ti 4f-3d transitions should be reduced by approximately 46 ppm (41 ppm of this is due to the 1969 reevaluation¹² of the fine structure constant). Tauscher's results, which reduce the theoretical uncertainties by about a factor of 4, are used in this reevaluation, and are presented in Table I.

III. BENT CRYSTAL SPECTROMETER CALIBRATION

The bent crystal spectrometer was calibrated with the 84-keV γ rays and the 52-keV Yb $K\alpha_1$ x rays emitted in the decay of Tm¹⁷⁰. Since the original calibration, additional measurements have been made on the energy of the 84 keV γ ray,¹³⁻¹⁷ resulting in a more accurate value. As these measurements were referenced to the energies of either the *W* or Yb $K\alpha$ x rays, which depend on the 1969 evaluation of the voltagewavelength conversion product,¹² the adjusted

	TABLE	I.	Revised	evaluation	of the	pion	mass	from	measurement	of t	he 4 <i>f</i> -3 <i>d</i>	transitions
in	pionic (Ca	and Ti.	All errors	are s	hown	in par	ts per	million.			

Quantity	π Ca $4f-3d$	πTi 4f-3d	Units
Diffraction angle ^a $(\sin \theta)$	0.072 612 0 (119 ppm)	0.0599388 (84 ppm)	
Wavelength	0.171 365 (121 ppm)	0.141456 (86 ppm)	Å*
Energy	72,350 (121 ppm)	87.648 (86 ppm)	keV
Scale factor ^b	1929.130 (14 ppm)	1592.299 (11 ppm)	•••
${M}_{\pi}c^{2}$	139.573 (122 ppm)	139.562 (87 ppm)	MeV

^a Table II of Ref. 2.

^b Reference 11.

values are shown. We include a measurement of the γ -ray energy carried out on the spectrometer used for the pion mass measurement.¹⁷ The weighted mean is found to be 84.258 ± 0.003 keV, the error representing external rather than internal consistency, as the distribution of measured values is somewhat larger than the quoted internal errors would seem to indicate.

Using a wavelength of 0.147 147 Å* (±39 ppm) (where 1 Å*=1.000 020 ű6 ppm) for the γ ray, a wavelength of 0.236 655 Å* (±13 ppm) for the Yb $K\alpha_1 x$ ray, ¹⁸ and the measured diffraction angles for these lines, we find a quartz (310) lattice spacing of d = 1.180 004 Å* (±15 ppm) for the spectrometer calibration. In addition, each measured wavelength should include an error of ±2×10⁻⁶ Å* to allow for possible nonlinearities in the sinescrew mechanism.

- *Operated by Universities Research Association, Inc. under Contract with the United States Atomic Energy Commission.
- ¹R. E. Shafer, K. M. Crowe, and D. A. Jenkins, Phys. Rev. Lett. 14, 923 (1965).
- ²R. E. Shafer, Phys. Rev. <u>163</u>, 1451 (1967).
- ³K. M. Crowe and R. E. Shafer, Rev. Sci. Instrum. 38, 1 (1967).
- ⁴B. Fricke, Z. Phys. <u>218</u>, 495 (1969).
- ⁵G. Backenstoss et al., Phys. Lett. 36B, 403 (1971).
- ⁶For $l \neq 0$ orbits, the energy level shift is approximately

$$\Delta E = -\frac{a^2\alpha}{9\pi} \left\langle R(r) \left| \frac{Ze^2}{r^3} \right| R(r) \right\rangle,$$

where a is the rms nuclear radius and R(r) is the radial wave function. Private communication, R. Shafer to G. Backenstoss (1971).

- ⁷M. S. Dixit et al., Phys. Rev. Lett. 27, 878 (1971).
- ⁸H. K. Walter et al., Phys. Lett. <u>40B</u>, 197 (1972).
- ⁹M. K. Sudaresan and P. J. S. Watson, Phys. Rev. Lett.

IV. RESULTS

Table I shows the revised evaluation of the pion mass measurement. The error matrix for the two measurements is

$$V_{\rm tot} = \begin{pmatrix} (122 \text{ ppm})^2 & (25 \text{ ppm})^2 \\ (25 \text{ ppm})^2 & (87 \text{ ppm})^2 \end{pmatrix},$$

where V_{11} and V_{22} represent the variance of the Ca and Ti measurements, respectively. The covariances are due entirely to spectrometer calibration and energy-level calculations.

The resulting revised estimate for the π^{\cdot} mass is

 $M_{\pi}c^2 = 139.566 \pm 0.010 \text{ MeV} (\pm 73 \text{ ppm}),$

in agreement with the recent revised results of Backenstoss $et \ al.$ ¹⁹

- 29, 15, 1122(E) (1972).
- ¹⁰J. Blomqvist, Nucl. Phys. <u>B48</u>, 95 (1972).
- ¹¹L. Tauscher, Nucl. Phys. (to be published).
- ¹²The 1969 adjusted values for α^{-1} and $V\lambda$ are
- 137.03602 (1.5 ppm) and 12 398.301 V Å* (5.9 ppm); B. N. Taylor, W. H. Parker, and D. N. Langenberg, Rev. Mod. Phys. 41, 375 (1969).
- ¹³I. Marklund and B. Lindstrom, 84.262±0.004 keV
 Nucl. Phys. 40, 329 (1963).
- ¹⁴F. Boehm, $\overline{84.262 \pm 0.003}$ keV, private communication (1964).
- ¹⁵R. K. Sheline *et al.*, 84.254±0.003 keV, Phys. Rev. 143, 857 (1966).
- $^{16}\overline{\rm D.}$ E. Raeside, 84.2572 ± 0.0026 keV, Nucl. Instrum. and Methods $\underline{87},~7$ (1970).
- $^{17}84.257 \pm 0.003$ keV, Ref. 3.
- ¹⁸J. A. Bearden, Rev. Mod. Phys. 39, 78 (1967).
- ¹⁹G. Backenstoss *et al.*, 139.569±0.008 MeV, Phys. Lett. 43B, 539 (1973).