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From Eqs. (10) and (16) of the text, we find

G~= 1.2x10 '/m~'.

This value is tantalizingly close to the value of the
universal Fermi constant

G = 1.0 x 10 5/m 2

But it is difficult to see how one can attach much
meaning to it since in the Cabibbo current-current
theory the value of GNL should be G cos0sin9, rather
than G itself. In fact, the value of G~ obtained above
is rather disturbing.

'Equations (14a) and (14b) in the framework of the
current-current theory automatically lead to the result
that the vector and pseudoscalar meson pole diagrams
completely represent the amplitudes of the parity-
violating and of the parity-conserving weak decays,
respectively. Hence the name "extreme vector-meson
dominance" for it.
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The contribution of the xmy intermediate state to the absorptive part of theKL pP So
amplitude is reevaluated by allowing for more general dependence of the K& mxy invariant
amplitude on the relevant Mandelstam variables than that considered in previous work.
Allowance is also made for the corrections to theK& 7txy rate, which arise due to the de-
pendence of the experimental detection efficiency on the nature of the photon spectrum. For
a wide range of variation of the behavior of theE& m.y amplitude, it is found that the n. xy
contribution to the rate ofK& pp decay {relative to that of the 2y state) is less than 2—4%,
if the pion electromagnetic form factor may be represented by (1-s/m& ) ", n ~ 3. Some
pathological situations are also considered; in these cases the contribution can still be
bounded by ten or fifteen percent as overestimated upper bounds.

I. INTRODUCTION

Several estimates' ' have appeared in the liter-
ature on the possible upper limit of the rmy inter-
mediate-state contribution to the absorptive part
of the Kl. p p Sp amplitude relative to the 2y
intermediate-state contribution to the same. The
purpose' of this note is to correct an error' of a
factor of two in Ref. 2 and to improve the esti-
mate by allowing for more general dependence'
of the Kl, - ~~y invariant amplitude on the relevant
Mandelstam variables s, t, and u than considered
previously. ' ' We also consider corrections to
the K~ —mmy rate, which arise due to the depen-
dence of the experimental detection efficiency on
the nature of the photon spectrum. We of course

allow for the variation of the pion electromagnetic
form factor f„(s),which enters into the calcula-
tion. This is chosen to have the form (1 —s/m ~') ".
We find that the contribution of the wry state to the
sate of K~ - pP decay (relative to that of the 2y
state) is less than 2-4%, if the pion electromag-
netic form factor is no more singular than a triple
pole at the p mass. The ohly exception to the above
limit arises when the amplitude for K~ —~my has
a zero in the physical region; in this case the con-
tribution can still be bounded by ten or fifteen per-
cent. In obtaining the latter bound, the correction
due to nonuniformity of experimental efficiency
plays a major role. These limits are more gen-
eral than those previously obtained' '; they re-
affirm the previous conclusion regarding the un-
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importance of the 7t'my contribution to the KI - p, p,

decay compared to that of the 2y contribution.
They agree with the estimates of Refs. 4 and 5,
if we ignore the corrections involving experimental
efficiency and nonlinear terms in the EI.- wry

amplitude.

II. CONTRIBUTIONS OF m'my AND Zy STATES

G(s, t, u) =—G„„zy.(s), y(0) =1, (5)

where G„„&is a constant. Using Eqs. (1), (2),
and (5), the absorptive part of F, (due to the wwy

state) and the width of K~ - wwy are, respectively,
given by

2
may a' mu 2AbsE, = (, ,)„,(m»mp G, „q)

For the sake of completeness, we will define
the familiar amplitudes and give the expressions
for the relevant phase-space integrals, some of
which are given in Refs. 1-5. The CP-conserving'
El, - p. p, and EI.- ~'m y amplitudes are given by

~—ln I, ,
1 I+P

3 4 2em~ m„G~~yI'(K~ wwy) — I,
where

(6)

~(K - I"(P)l (P')) =ieF.u(-P'»p(P)

M(K - w'(P')w (P )y(u', e'))

ieG(-s, t, u)~„8„,e'k'BP„'Pg, (2)

I, = «1— & — Z, ~X~,
min

where

s=(P'+P )',
t = (P» —P')',
u=(P»-P )

s+ t+u =m~'+2m, '.
(3)

I = ', Go' 1—
mlII

(9)

m'-4m' '~' mg
2 y mjII 2 & IGX 2g . = 0'

mg P P

(10)
By CI' invariance,

G(s, t, u) = G(s, u, t) . (4)

Note that s =m»2, t =u =(m» -m, )'. There
are two remarks which are worth noting. (i) Under
the assumption that a dispersion representation
for G(s, t, u) is dominated by the vector mesons
(p and K*) and higher-mass intermediate states
in the s, t, and u channels, which seems reason-
able, the invariant amplitude G(s, t, u), to a good
approximation, may be treated as a linear func-
tion of s, t, and u. The error introduced (in the
amplitude) in neglecting quadratic and higher-
order terms is, in general, less than or of the
order of

(s /m, ')'
1 +(s,./m p')

(See also comments later. ) (ii) The quadratic
dependence (of G) on t and u should, in general,
be less important than that on s, since
(t. /s. )'=l.

Therefore, it appears reasonable to neglect the
quadratic dePendence of G at least on t and u. In
this case, because of the (t —u) symmetry [Eq.
(4)j, G can depend on t and u only through the
symmetric combination (t+u) = (m»'+2m„') —s.
Thus, to a very good appmximution, G may be
treated as a function of s alone. From now on,
we make this assumption and write

F„(a)is the pion electromagnetic form factor,
F,(0) =1, and o =s/m~'. The 2y intermediate-
state contribution to AbsE2 is given by'

m» m» P 1 —P

Thus the ratio of (wwy) and (2y) contributions
(through absorptive parts only) to the rate of K~
—p, p, decay is given by

R = 12 AbsF t/AbsF."l

n I"(K~-wwy) "' 2m» I,
6w I"(Ki - 2y) (m»' —4m „')"'vI,

R ~ (3.9+0.4) x 10 'i I, /v I, i . (13)

III. EVALUATiONS OF Il I2 AND R

To evaluate I, and I„wefirst choose a linear
representation for X(o) and a multipole form for

First let us assume (without worrying about the
experimental efficiency factor) that the true upper
limit on I'(K~ wwy)/I'(K~-all) is 4&10 ', as
quoted in Refs. 10 and 11, and I'(K~ - 2y)/
1(K„--all) =(5+1)x10 '. In this case, Eq. (12)
gives
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E, (v). We obtain later more general bounds allow-
ing for nonlinearity of y (o). Thus, we adopt

y (a) = (1 + lv),

E, (o) =(1 —o) " (n=1, 2, 3).
(14)

(15)

%e vary l over all possible values from +~ to -~.
[Note that for l-+~, G„-0, so that G„(1+l o')

= (finite constant) x o in this case.] Over the entire
range of variation of l, I, and I, individually vary
considerably; but the ratio (I,/VI, ) is found to re-
main remarkably constant (within 10%%uo) for a given
value of n. This leads to

G(s, t, u)= nomq'(m'-s) '

+Pm''[(mp'-t) '+(m'-u) '] (17.a)

= n, (1 +v) +p(g- v)

+ [quadratic terms + ]

=no(1 +yg) [1+ (1 —y)(1 +y$) 'v] .

(17.b)

n, and p are the residues of s- and t .-channel pole
terms at s =m ' and t =m~', respectively; y= P/n, —

and $
—= (mz'+2m, ')/m '+2=2.5. Comparing Eqs.

(5), (14), and (17), the slope parameter l =(1 —y)
x (1 +y$) '. One may expect y to be a number of
order unity, since it is the ratio of residues of
similar pole terms in s and t channels. Note that
for almost all values of y (except-1&y&0), l
varies slowly and lies between -1 and +1. In the
exceptional range, as y approaches -0.4 from
higher and lower values, l goes to +~ and -~,
respectively. In this case (as noted before), the
constant term in G vanishes due to a cancellation
between s- and t -channel poles and the quadratic
terms tend to be relatively more important. How-
ever, it is easy to estimate from Eq (17a) that.
even in this case, the correction to the amplitude
due to neglect of quadratic and higher terms is
less than 20%%uo. Furthermore, the error due to
neglect of such terms is considerably reduced in
any case in evaluating the ratio I,/vI, .

.5%, n=l
2%, n=2
3/o, n=3.

Note that the inequalities above would be replaced
by near equalities, if we knew the actual value of
1"(Kz wry) rather than its upper limit. For an
indication of the possible range of values of the
slope parameter l and also the effect of quadratic
terms in y(v), it is useful to represent G(s, t, u) by
the (p, K*) pole terms and set mr~ =m (for simplic-
ity), i.e.,

IV. MORE GENERAL BOUNDS

In order to obtain more general bounds, allowing
for the presence of higher-order terms, we also
made estimates as follows. The linear terms in
the decay distributions were calculated exactly.
The contributions of higher-order terms are then
bounded by us'ng inequalities of the type

(v)' & (v') & v ', etc. , (18)

where the mean value is taken with respect to the
relevant phase-space function (see I, and I,). If
we parametrize the form factors by X(a) =1+ lv
and E, (o) =1+na; we obtain

1.01+ (0.38)n, l & -3
R & 1.01+(0.47)n, l & -10

1.0+ (0.92)n, -3 & l & -10.
(19)

The region which leads to the largest bound, -3
& l & -10, corresponds to a zero in the K~ -@my

amplitude in the physical region. Using a linear
form for E, (o) underestimates the contribution
with respect to a multipole form. The correction
is between a factor 1.3 and 2 for n=3, 20/o and
50%%uo for n=2, and less than 20/o for n=1.

To take into account the fact that quadratic term
in X (o) may not be negligible if there is a zero in
the physical region, we considered the form

X(v) =1+n'v+p'[(1 —v)
' —1 —v] (20)

This is equivalent to (17a) plus a possible constant
(i.e., slowly varying) background, where the quad-
ratic dependence on (t, u) has been neglected.
Again using mean-value inequalities, the bounds
of Eq. (19) are obtained, provided that l is inter-
preted as an "effective" slope

l ff = n'+vip',

0.316 &g &O.V5.
(21)

1 8%%uo~ n=1
R& 3%%uo, n=2

5%, n=3

unless there is a zero inx(a), in which case

2.4%, n=1
R& 4.2%%uo,

7.4%, n =3 .

(22)

(23)

We should emphasize that the bounds (Zl), (22),
and (23) are indeed overestimates due to the use

Since the correction is dominated by the quadratic
term and it is unlikely that other forms for higher-
order terms would significantly increase the
bounds, these results appear to be fairly general.
Thus with E, (v) = (1 —o) ", we obtain
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of the inequalities Eq. (18), whereas the esti-
mates in Eq. (16) are exact for the correspond-
ing parametrization. Thus Eqs. (21), (22), and
(28) should be regarded as safe upper bounds.

Finally we consider the question of experimental
efficiency e (&r) Since the limit on I'(K~-wry)
quoted in Ref. 10 was extracted by assuming a con-
stant invariant amplitude G (s, t, u), the true value
is given by

Fquote (24)

where &f(v)) denotes the weighted average of f(o)
over the phase space for K~-may. Then the rela-
tive contribution of the (wvy) state must be correct-
ed by the factor X; R, =—XR. We parametrized
the published efficiency curve by two straight lines
such that (normalization is arbitrary)

e(k' =20) =0, e (k' =80) =4,

e (k' = 170.5) = 1,
where k' is the photon energy in 1VIe7 and o
= (M~~ —2m' k')/m '. Using the same procedure
as before, we find that X is close to unity except
for -10 &l,«& -3, wher its maximum value is
bounded by 2.9. Maximizing the product XR, we
find

8.6%, F, =1+no
R, A))& =))'~~ () ) „I,m&3. (25)

Again this is an overestimated upper bound.
To conclude, we agree with the numerical re-

sults of Refs. 4 and 5. We have improved these
results by taking into account the problem of non-
uniformity of experimental efficiency and the ef-
fect of quadratic terms. For reasonable form
factors [F, no more singular than a dipole, no
zero in y (o') in the physical region], the contribu-
tion of the may state to the absorptive amplitude
for K~ - p. P can be at most two or three percent.
Allowing for a more pathological behavior an up-
per limit of 10-15% for the contribution of the in-
terference term to the rate appears quite safe.
This result is more general than previous work,
but does not change the conclusion' ' that the wry
state cannot account for the discrepancy between
the Berkeley result" and the theoretical bound. "
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