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This may be recombined to give the analytic func-
tion

F(0) ==2T(= a)T(~ ag)(~ 0%

XU(=a;, —ay,+ay+1, —k). (5.6)

The same result is obtained by performing the
Cauchy integral,'? and is unique up to an arbitrary
polynomial in k.

Including (5.6) with the remainder of (4.11) gives
the analytic extension in M? or k. The signature
structure of the Regge exchanges ¢, and a, can be
found by adding diagrams like Fig. 2 but with ex-

changes (a—a'), (b—"5'), and (a— @, b~ b").
Care must be taken to establish that the diagram
of Fig. 2 and the exchanged diagrams from (g~ a@’)
and (b — b') are evaluated above the k cut, but the
diagram from the exchange (a— @, b b’) is eval-
uated below the k cut. This has been carried out
in Ref. 3.
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A statistical theory of particle production is formulated in analogy with the generalized
Ginzburg-Landau theory of phase transitions in superconductors and intensity fluctuations in lasers.

I. INTRODUCTION

At present accelerator energies the number of
secondaries produced in hadron-hadron collisions
is large enough so that one can consider statistical
theories of particle production. In this paper we
shall present such a theory.!

Our basic approach is as follows: We do not at-
tempt to treat in detail the fundamental dynamics
underlying particle production. Instead, we imag-
ine integrating out the microscopic degrees of
freedom and representing them in terms of a

small number of phenomenological parameters.
We are then left with a statistical theory of the
macroscopic observables.

A well-known example of this approach is the
Ginzburg-Landau theory of superconductivity.?
In its generalized form? it provides a statistical
theory of the superconducting order parameter
which depends upon a small set of experimentally
determined parameters. Once a microscopic theo-
ry of superconductivity was formulated by BCS,*
it was possible to derive the Ginzburg-Landau the-
ory from it and to obtain expressions for the phe-
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nomenological parameters in terms of the micro-
scopic properties of the electron-phonon system.®
Another example of this type of theory is the re-
cent treatment of the correlations in a laser field
near threshold.® In this case, after the atomic
degrees of freedom are integrated out, one ob-
tains a statistical theory for the macroscopic E
field. It should be emphasized that the laser is

far from thermal equilibrium; nevertheless, this
problem can be formulated in essentially the same
manner as the generalized Ginzburg-Landau theo-
ry. This is important since we do not envision the
hadronic matter reaching thermal equilibrium dur-
ing a high-energy collision. The generalized Ginz-
burg-Landau formalism provides a particularly
simple parametrization of the statistical proper-
ties of the superconducting pair field near the crit-
ical point and the laser field near threshold. In
this paper we seek to develop this type of phenom-
enological theory for multiparticle production in
high-energy hadron-hadron collisions.

In the particle production problem the relevant
variable is the probability amplitude, II(y), for
the production of a secondary with rapidity y.”
II(y) will be treated as a random variable. We
again emphasize that the hadronic matter is not
pictured as reaching thermal equilibrium during
the collision process. Nevertheless, it is possi-
ble to introduce a functional of II, F[II], which
plays a role analogous to the free energy in equi-
librium statistical mechanics. Namely, all the
quantities of physical interest such as the inclu-
sive and exclusive cross sections can be calculat-
ed by taking ensemble average suitably weighted
by F[II]. In principle F[II] could be calculated
from a knowledge of the underlying dynamics. In-
stead, following Ginzburg and Landau, we express
F[11] in terms of a small number of phenomenolog-
ical parameters.

Our approach makes contact with more familiar
models of particle production at two points. First,
several authors have pointed out the formal anal-
ogy between the problem of particle production
and the statistical mechanics of a one-dimensional
fluid.®~1° The techniques employed here have been
used to treat the statistical mechanics of such one-
dimensional systems as superconducting wires®-!
and lasers operating near threshold.® Second, the
types of interactions considered here lead only to
short-range intensity correlations among the pro-
duced particles. As a result, it is hardly surpris-
ing that the inclusive cross sections have the same
form as is obtained in the Mueller-Regge formal-
ism'® when Regge poles, but not Regge cuts, are
included. In the present model there are always
an infinite number of Regge poles, but the posi-
tions of the poles and their coupling constants are

given in terms of a small number of input param-
eters.

The outline of the rest of the paper is as follows:
In Sec. II a general formulation of the theory is
given, and techniques are developed for calculat-
ing the inclusive and exclusive cross sections and
the factorial moments of the multiplicity distribu-
tion. In Sec. III two limiting cases are considered
which can be solved analytically. In Sec. IV the
exact solution of the model is discussed. Finally,
in Sec. V, generalizations of the theory are con-
sidered as well as possible physical implications
of our results.

II. FORMULATION OF THE THEORY

Let us focus our attention on a single type of
secondary that is produced in a high-energy had-
ron-hadron collision. We shall refer to this par-
ticle as a pion although we shall ignore quantum
numbers. The probability amplitude for the pro-
duction of a pion with rapidity y is denoted by
II(y).” In the laboratory system y has the approx-
imate range 0 <y <Y, where Y is the rapidity of
the incident hadron. In our work II(y) will be
treated as a random variable.

In order to proceed it is necessary to know how
to weight the various configurations of the random
field variable II(y). We therefore introduce a func-
tional of II, F[II], which plays a role analogous to
the free energy for a system in thermal equilib-
rium. All quantities of interest can be calculated
in terms of ensemble averages appropriately
weighted by F[II]. For example, the inclusive
cross section for the production of a single pion
with rapidity, v, do/dy, is given by

1do

p d—;=<ﬂz(y))

=%f 811 e FII 1%(y) (1)

o is the total cross section, and [ 61l indicates a
functional integration over all possible forms for
the function II(y). The normalization factor Z is
given by

Z=f 511 ¢ FLT, (2)

More generally

1 do

;mgp(h;yz, e V)

=(IB(y)IP( ) - - - I1%(y,))
____Zl_fan e-FEn]

XIP(y I (y,) - - T3(y,) . (3)



2286 D. J. SCALAPINO AND R. L. SUGAR 8

The factorial moments of the multiplicity distri-
bution are given by

S;=(N(N=-1)---(N=-g+1)),

1 do
"afdy.l dyqdyl...dy ) (4)

q

Following Mueller® we introduce a generating func-
tion Q(z).

Q)= Eiz;—!l)isq

q=0
= Zm: z"P,, (5)
n=0

where P,=0,/0, and o, is the semi-inclusive cross
section for the production of » pions plus any num-
ber of other secondaries. In a world containing
only pions, o, would of course be the exclusive
cross section. Making use of Egs. (4) and (5) one
sees that

2 = (exp[ (e - 1) [ aymi(»)]). (®)

So far we have done nothing more than state the
consequences of treating II(y) as a random vari-
able. The real physics enters the problem when
we specify the form of F[II]. Ideally one would like
to derive F[II] from a knowledge of the underlying
dynamics. Lacking such knowledge we follow Ginz-
burg and Landau® in retaining the first few terms
in a series expansion of F[II] in powers of II and
its derivatives.

F[H]=foydy [al’[z(y) +bI%(y) +c<§-;l>2:]. )

A constant term in F[II] would not have any phys-
—

Z(a) = f 511 ¢~FLI

y >0

ical effect, and terms linear in II are forbidden by
symmetry considerations. One could easily extend
our technique to more general forms for F[II], but
in the present work we shall restrict ourselves to
the form given in Eq. (7). The chief justification
for the use of the form for F given in Eq. (7) is its
flexibility. By choosing different values of the pa-
rameters a, b,and c, one is able to sweep over a
wide class of random fields, ranging from Gaus-
sian random fields (b=0) to highly coherent fields
(@<0, >0, c>1).

The next step is to evaluate the functional inte-
grals. In the original Ginzburg-Landau theory? no
functional integrals were performed. Instead InZ
was taken as proportional to F[II,], where II, was
determined from the Ginzburg-Landau equation
6F/8I1,=0. This corresponds to taking a saddle-
point integration in II. By the generalized Ginz-
burg-Landau theory,® we mean that a functional
integration over all forms for the field II(y) is to
be taken. For a field which depends on only one
variable, the method for carrying this out is well
known.'® We review it here.

It is convenient to break up the region 0 <y <Y
into N equal intervals of length Ay so that AyN=Y.
Then

N
. I, -1 2
FlIl] = lim E A [aH2+bH“+c<—‘ "1>],
Ay=o [T Y ! ! Ay
(8)
with
1, =I(ay), 1=0,1,2,...,N. @)

Since functional integration means a sum over all
possible forms for the function II(y), we can write

w N N 2
= lim (c/Ayﬂ)”/zf Hdl'[, exp{—Ay Z [an,2+b1'[,‘*+c<-r—l‘—?%> }} (10)
B % 1=0 1=1

The factor (c/Ayw)”/ % defines the measure of the functional integration. Notice that in allowing II, and II,,
to take on all values with equal weight we are making a definite choice of boundary conditions. It seems
most natural to allow II(y) to be free on the boundaries; that is certainly what one would do in the case of
the analogous Feynman fluid. In any case, other choices of boundary conditions will not change the qualita-

tive features of our models.
Equation (10) can be rewritten in the form

o N
Z(a) = lim (c/aym™'2 % f dtldly, [T an,,(1o)y ,(T6)9, (1) 1,(II,)
y—=>0 mon -0 I=0

Xexp{—Ay ZN: [aH,2+bH,4+c<l—1’—i—;}l';l>2}}, (1)

where the ¢, are a complete set of real functions normalized so that
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D Vo), (To) = 8(M, - TI,) . (12)

Let us first consider the II, integration. Working to leading order in Ay we find

w 2
(C/Ayw)”zf dll, expl —c(I1, — )2 /Ay ], (ITy) = (1 +%3Ci a; z
- 00 1

\INUSE (13)

We now choose the y,(II) to be eigenstates of the Hamiltonian

1 2
H() == 7= ~y+all? + b1, (14)
such that
Hlpm:gmwm' (15)

Since we need only work to leading order in Ay, we can write
exp[-Ay(all? +b11,*) ]~ 1 - Ay(all,® +bI1,%) .
The II, dependence of the integrand then becomes
exp[—c(Il; - 11,)*/Ay ] [1 - AyH (I1,) ] ,(I1,) ~ exp(-Ay 8 ) exp[ —c (11, - 1T,)*/Ay ]y (1T, . (16)

Now the II, integration can be performed in the same way as the II,. One finally obtains

2@ =3 [ dllllantye= 0y, 00,8, 0,0, (0,)

=Y e fn'G,?, an
with
G,,,sf dn y,(1). (18)

The other integrals of interest can be evaluated by the same technique. For example, writing y =N'Ay,

o N
f Sl e "M %(y) = lim Y G,Glc/Aym)¥? f T am,e "™y, (11,)¢ (1)1 2

Ly=0 n,m 1=0

w N
=lim 3 G,Gule/aym™ ¥ [ T ang,(y)

by=>0 I,m,n 1=N'

5 Y 2 4 o, -1,. 2
xexpl—Ay Z |:aH, +bII, +c(_l_A?l_x>]

1=N'+1
<Myl [ iy, (my,m
= Z Gue 6n¥Vg e fm'G,, (19)
where "
&nm= f_ : il ,(M1y,,(m) . (20)

Referring to Eq. (2) we see that the inclusive cross section for the production of » pions with rapidities
0O<y,<y,<---<y,<Y is given by

P(Y1:¥zs v sy =Z@7 Y G, expl-(Y -8, ]

Mlyeeey Mpypl

X & rumy " €XD[=(¥2 =918 1, ) &y my €XP(=918 )G, - (21)



2288 D. J. SCALAPINO AND R. L. SUGAR 8

This is precisely the form one would obtain in

the Mueller-Regge formalism when there are Regge
poles, but no cuts.’? In the present case there are
an infinite number of Regge poles, one associated
with each energy level of the Hamiltonian defined
in Eq. (14). g, ,gives the coupling of the » and

m trajectories to two pions, and G,, the coupling

of the m trajectory to the external particles.

In our framework it is only possible to calculate
the ratio of a given cross section to the total cross
section. Nevertheless, it is clear that ¢ is pro-
portional to Z(a). We are free to adjust the leading
Regge trajectory to have any intercept. If, for
example, we wish to have ¢ approach a finite limit,
0., at high energies, then we can write

0=0.e%YG,"%Z(a)
0. 3 expl= (8, 8)Y1(C,/Go) . (22)
m=0

In this case the intercept of the mth trajectory is
given by

0p=1-(8,-8,). (23)

From Eq. (6) we see that the generating function
is given by

Q2)=Zz(1+a-2)/Z(a). (24)

The Py and S, can now be obtained by taking ap-
propriate derivatives of Q(z). In most cases one
is interested in calculating P, and S, to leading
power in s~e¥. In that case it is sufficient to only
retain the contribution to Q(z) associated with the
lowest-energy level

Q(2) = exp{- Y[8,(a+1-2) - §,(a)]}
XGa+1-2)/Gia). (25)

The generating function given in Eq. (25) has the
form of a compound Poisson distribution. It can
be interpreted in terms of a microscopic theory
in which pions are produced in clusters. All the
pions in a cluster have small rapidity differences
and tend to be correlated, while the clusters them-
selves are well separated in rapidity and are un-
correlated. The probability for a cluster to decay
into a given number of pions is determined by the
functional form of §,(a).’* Each of the nonleading
terms in the expansion of Q(z) in powers of s can
be given a similar interpretation.

III. EXAMPLES

In order to illustrate our formalism, we begin by
considering two limiting cases. The first of these,
appropriate when a> b(I1%), is analogous to the
case of a superconductor well above T, or a laser
which is being pumped well below its operation

threshold. In this case, the quartic term is un-
important, and the functional is quadratic in II
leading to simple Gaussian averages. In our sec-
ond example, we consider the mean field limit
where a<0 and the gradient term is small. This
corresponds to a superconductor which is at a
temperature well below T, or a laser which is
pumped well above its operation threshold. For
one-dimensional systems there is, of course, no
sharp phase transition. The order becomes very
long range but not infinite. We will return to a
discussion of the nature of this long-range order
of the pion field in the conclusion, Sec. V. In this
section we also obtain estimates of the phenomeno-
logical parameters a, b, and ¢. We will find that
the results favor the mean field limit but are suf-
ficiently close to the critical or threshold region
that an exact solution is necessary. This is carried
out in the next section, IV.

Case 1: =0, a,c>0

In this case the Hamiltonian defined in Eq. (14)
is just that of the simple harmonic oscillator, so
all quantities of interest can be obtained in closed
form. For example,

8 =(a/c)*m +3),

1/41/2
5l = [355 = i (400

x exp| ~ (ac)'/?11%],

m=0,1,2,...,

(26)

where H,, is the Hermite polynomial of order m.
Referring to Egs. (18) and (20) one sees that

Gam=[(4/ac)*T(m +%)/m! V2,
GZm+ 1 =0 H

1
Znm= W{ﬁn,m-z[m(m - 1)z (27)

+5n,m+2[(m +1)(m +2) 172

+6, n(2m +1)}.

Notice that the only energy levels that contribute
to the inclusive cross sections are those for which
¥,(I) is an even function of II. This is a general
result which depends only on our choice of boundary
conditions for II(y).

From Egs. (17) and (27) one sees that

4 1/4
Z(a) = <_> e—KY/z
ac

X 2 e 2™ YT (m + 3)/m!
m=0

T 1/2
= <sinhKY> (ac)™*, (28)



8 A STATISTICAL THEORY OF PARTICLE PRODUCTION 2289

with k= (a/c)'®. As a result, the generating func-
tion is given by

- sinh(xY) 1/2
Q(z) = I:sinh[ kY(1+(1- Z)/a)"/fﬂ

x[1+(1=2)/a] ¥4
~exp{- 3xk¥[(1 +(1 - 2)/a)** - 1]}
x[1+(1=2)/a] 4. (29)

The multiplicity moments f, are defined by
0 - 1 n
2 =exp 3 LTI, (30)

so working to leading power in s~e¥ we have

— 1 a¥
Py= T 7z NQ(z)

exp{- EKY[(I +1/a)? -

=0

-n F(n - %)

=1
R 0t

+3a " (n-1) . (31)
In particular
fi=(N), =(kY +1)/4a,
=(N(N - 1)), = (N),)? (32)
=xY/8a% +1/4a®.

In order to calculat2 the partial cross sections
P,, it is convenient to introduce an auxiliary gen-
erating function

Q(z)=exp {— %KY‘:( 1+ 1 ;z) Y ]} . (33)

Then for N>1

22N N! (1 +a)N-!/2

_ eKY/2(1+a)1/2[ kY
TN 2N | a(1 +a)]M?

and
B, =exp{- 4kv[(1 +1/a)2 - 1]}.

1]} «y &2 @N -k 21 [kY(1 +1/a)* 2]
a'* Zo B (N-%-1)!

N+1/2
] KN-l/z(%KY(l +1/a)*’?), (34)

(35)

Here Ky_,,, is the modified Bessel function of order N- 3. The partial cross sections are given to leading

power in s by

1 -1/4 _ I‘(l'*‘i)
= - 1+q)~! = 3
P, <1+a> z;( +a) By TS (36)
Writing out the first few terms
P, =exp{- $k¥[(1 +1/a)"? - 1]H(1 +1/a)~V*,
P, =P{ixvla(l +a)] 2 +5(1 +a) ™%}, (37)
, = Pl (k1) [a(l +@)] ™t +i5kYa 2 (1 +a) 32 + & (1 +a)"}.
For N and Y both large it is convenient to introduce the variable x=3«Y(1 +1/a)"/2. Then making use of
the asymptotic form for the K function for large index and argument one finds that for N< x
2 2\1/27|N
anﬁﬂ [N+(1271 :ax) ) ] 1 x{(Nz +x2)”2[N+(Na +x )2 }'Uzexp[x(l +1/a)'”z]exp[ (N2 +xa)1/2]
- (N—yx)? A +y%)' 2 —y
= {2779‘7(1 +y3) 2y + (1 +92) 2]} 2exp [— %y Yy +75)7% |’ (38)
where y = [ a(1 +a)]"*"2. On the other hand, for N> yx one finds
Tl +D)(1+1/a) V4 4ny (1 +y7)H37H/2 _
Py~ r({, FENE)) L(l +72)1/2 j] exP[ (N - yx) In(1 +a)]9 (39)
|
with For negatively charged particles the coefficient of
2y (1 +y%)V2 Y in the average multiplicity is approximately
L=N-yx-— (—l—z’w);——ln(l +a). (40) 1.15,1%% Using this value gives
In order to estimate the parameters a and ¢ we @=~0.055, c=~0.87. (42)

take the correlation length &, =2, so that
5 -1_82_go_z(a/c)1/2__ (41)

This low a value for a indicates that the bI1* term
in F[II] ought not be neglected.
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Case 2: a<0, b,c>0

For a<0 and b >0 the potential
V(I1) = all® + bIT* (43)
has a minimum at
,=x(-a/2b)" 2, (44)

In order to orient our thinking, let us first expand
the potential about the minima. Retaining only
quadratic terms we have

V(IT) =~ —a?/4b +2a(AIL,)26(I1) + 2a(AIl _)*6(-I1) ,
(45)

where AIl,=II - II, and 6(x)=1 for x>0 and vanishes
for x<0. We shall see below the data indicates
that ¢ >> b, |a|, so there is little tunneling between
the two minima. As a result, the energy levels
whose wave functions are even in II are to lowest
order

8, —a%/4b + (n+ 3)(-2a/c) 2,
n=0,1,2,... (46)
and the ground-state wave function is given by
W= 27V 2y (AIL) + Po(ATT)] . (47)

Here ¢, is given by Eq. (26) with a replaced by
(—2a). Again working to leading order in s we find

1—z>'1/‘*

Q(z) ~ (1 N

X exp(Y{- % (z-1)+ (2 ;bl)z

() To-t52) 1)
(48)

The moments of the multiplicity distribution are

. a (-a/20)27 1
5= -5 T g

I (—a/20)1/2] 1
fz‘Y[z—b+—’——4az rvE
_1 a\2 _Tm-3) , |
f"-2Y<-20> a —?(—%)—-+4a (n—l).,
n=2,3,4,... .

(49)

In order to estimate the parameters a, b, and ¢
we once more take the correlation length £,
=(8,- 8,)"'=2. For negatively charged particles,
the coefficients of Y in f, and f, are approximately
1.15 and 0.69, respectively.!® Using these num-
bers we find

a~-1.87,
b=~0.77, (50)
c~15.0.

For these parameters, it follows that a reason-
able approximation for the generating function
f(z) can be obtained by neglecting the zero-point
contribution —3v—=2a/c. The generating function
can then be simply expressed as

_exp[(N),(z = 1) + 3£,(z = 1)?]
Q(Z)“ Ti'+(1_z)/a]l/4 . (51)

This numerator is just the generating function
derived by Mueller for a two trajectory model and
leads to a set of N pion cross sections Py, =06,/5
which are Hermite polynomials of imaginary argu-
ment. As previously noted, Eq. (36), the denomi-
nator of Eq. (51) mixes these to give the final P, .

Although the parameters given by Eq. (50) sug-
gest that this mean field limit is a useful approxi-
mation, it is important to remember that the par-
tial cross sections are obtained by expanding Q(z)
about z=0. This means that the effective value
for a which enters in determining  is a+1. Thus
we are again pushed towards the critical region
which lies between the two limiting cases we have
discussed. We therefore consider next the form
of the exact solution.

IV. NUMERICAL SOLUTION

An exact solution of our statistical theory of
pion production can be obtained from the eigen-
energies and eigenstates of the anharmonic-oscil-
lator Hamiltonian, Eq. (14). There exist a variety
of methods for obtaining such solutions. Here we
have used the results obtained from a truncated
matrix representation. H is represented in terms
of a basis of » harmonic-oscillator states with
the scale length of the basis states set by minimiz-
ing the harmonic-oscillator—ground-state expecta-
tion value of H for a=0. The matrix is then diag-
onalized numerically, and the resultant eigenvalues
and eigenvectors determined. The number of basis
states n was varied to obtain numerical conver-
gence.

In order to deal with three parameters, we re-
scale the problem by setting

x=(8bc)Y °11 . (52)

Then the Hamiltonian becomes

Y3/ 1 8% , .,
:-557-3- —58—56—2'+7{x + ax (53)

with
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1 ac/3
=5 T (54)
The energy eigenvalues and eigenstates of the re-
duced Hamiltonian

1 92
(-3 o + 42+ 0 )00 - Eron, (55)
depend only on one parameter, a. From E,(a) we
can obtain the desired eigenenergies §,(a, b, c).

1 acl/3>

8n(a, b, c) = —27—3— <§?73— (56)

The parameters a, b, and ¢ are now obtained
by fitting the data. The correlation length, &,,
which appears in the inclusive cross sections is
given by

1 _bY3
E=073—[Ez(01)*750(0‘)]- (57)

Next, notice that to leading order in s, the f, coef-
ficients have the form

fr=a,Y+b,. (58)

The a, coefficients can be related to derivatives
of §,. From Egs. (25) and (30) one sees that

8la+1-2) -8, (a)= Z Gt Vil

2 a1 s (59)

SO

an= (0"t 2 6,(a). (60)

Finally, using the scaled form of E,, Eq. (56), the
a, can be related to the a derivatives of the re-

duced ground -state eigenvalue E (o).

ne b1/3 1 1/3\n gn
=(-1) 1??(222 > Efa@). (g1

The first two coefficients are

FIG. 1. The solid line is the ground-state energy
E, plotted versus a for the anharmonic oscillator.
The dashed line for a >0 is the harmonic approximation
b=0, and the dashed line for a <0 is the mean-field
approximation including the zero-point energy.

1

PICHIE E) (a), (62)

a,;=

az__i B/ (a). (63)

Equations (62) and (63) combined with the cor -
relation length condition, Eq. (57), can be used to
determine the parameters a, b, and c in terms
of the experimental values of £,, a,, and a,.
Multiplying Eq. (57) times Eq. (62) gives

c=522 B, (a)[Ey(a) - Ef)] (64)
1
and solving Eq. (63) for b gives
E." ( a)
Lo \¥)
b 4a, . (65)

Combining these to obtain an expression for (bc)t/3
and substituting this into Eq. (62), we obtain an
implicit equation relating « to &,, @, and a,.

Ey (a)
(%%/52)“3 {—E "(a)E '(a)[Ez(a) EO(OZ) }1/30

(66)

Once « is determined, b and c¢ are obtained from
Eqgs. (65) and (66). Then a can be found from q,
b, and ¢ using Eq. (54).

The reduced ground-state eigenvalue E (a) and
the energy difference E,(a) — E,(a) which sets the
inverse correlation length are plotted in Figs. 1
and 2, respectively. The dashed curve for a>0
shows the b =0 behavior calculated as Case 1 in
Sec. III, and the dashed line for @<0 is the mean
field result, Case 2, including the zero-point con-
tribution. The correlation length diverges for
=0 in the two limiting cases. However, for >0,
the exact calculation shows that the correlation
length reaches a maximum for a=-1.25.

FIG. 2. The energy splitting between the first two
even states of the anharmonic oscillator is plotted
versus a (solid line). The dashed lines give the harmonic
(b=0) approximation for this splitting for a >0 and the
mean-field zero-point approximation for o <0.
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Solving Eq. (66) when &,=2, a, =1.15, and a,
=0.69 we find a=-2.6 and

a=-1.91, $=0.76, c=11.7. (87)
These are in reasonable agreement with the simple
mean field results, Eq. (50). Using these param-
eters the coefficients a;, a,, and a; have been de-
termined from Eq. (61). These are listed in Ta-
ble I in the second column labeled o =-2.6. The
third column labeled o =~ 2.0 corresponds to taking
£,=2, a,=0.93, and a,=0.69. The last column
shows that a, obtained when £,=2, q,=0.8, and

a, =0.69. In the first column is shown estimates
of the experimental coefficients for the production
of negatively charged particles taken from a data
analysis by Frazer.' In view of the fact that aj,
a,, and a; are not accurately determined by the
present experimental data' and the fact that we
have not included isospin effects which are expect-
ed to make quantitative changes in our results, we
have not attempted to obtain a best fit to the data.
Notice, however, the over-all agreement with
respect to sign and magnitude of the g, in the last
column. The point we wish to emphasize is that
we are operating in a region where our results

are very sensitive to changes in «.

Perhaps the best way to illustrate the structure
of this type of theory is to plot the derivatives of
Ey(a). These are shown in Figs. 3 and 4. Notice
that as o goes from -2.6 towards —1.7 one is ap-
proaching the maximum value of —~E,’’ which oc-
curs at @ =-1.56. This value of o corresponds to
maximum intensity fluctuations of M(y). From
Fig. 2 one sees that the point at which the reduced
correlation length (E, - E,)™* becomes a maximum
is still further towards zero at o =-1.24,

As we have noted, the formalism presented here
has also been used to study lasers near threshold
and “one-dimensional” superconducting wires near
the critical point. For the laser the present pa-
rameters correspond to a region just above the

TABLE I. Calculation of the coefficients a, for vari-
ous values of the input parameters, The column labeled
exp is taken from an analysis of the negatively charged
particle data by Frazer.!® He calculates the a, under
the assumption that the f,, have the form f, =a,Y +b,,.
The value gy =1.15 arises when s7/2 corrections are
included in fy.

exp a==2.6 a=-=2.0 a=-1."7
a; 0,93 (1.15) 1.15 0.93 0.80
ay; 0,69 0.69 0.69 0.69
a3 —0.405 —0.058 -0.26 -0.15
a; —1.7 0.247 0.45 -1.34
as 4.2 ~1.2 4.5 6.0
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FIG. 3. The first and second derivatives of E ()

are plotted versus «. These derivatives are related to
the a, coefficients as follows: a;~Ey, a,~—-E{’.

FIG. 4. Further derivatives of E (o) versus «. These
derivatives are related to the a, coefficients as follows:
ag~Ey", ay~—EV, ag~E,".
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laser threshold, and for the superconductor they
correspond to the region of T just below T,. The
possible physical significance of these features
“will be discussed in the next section.

V. DISCUSSION

The qualitative features of our theory have a
familiar interpretation. The inclusive cross sec-
tions have the form that one would obtain in a
Mueller-Regge model in which there were an in-
finite number of factorizable Regge poles but no
Regge cuts. In our case the positions of all of the
poles and the values of all of their coupling con-
stants are determined in terms of three phenom-
enological parameters. Our generating function
corresponds to a production mechanism in which
the particles come off in clusters. All particles
in the same cluster have small relative rapidities,
while the clusters themselves are well separated
in rapidity space and are uncorrelated.

We have presented our theory in its simplest
possible form. There are several generalizations
which should be mentioned. First, it is possible to
take into account the quantum numbers of the pro-
duced particles. For example, the isospin of the
pions could be included by treating II(y) as a
three component field. Although this would not
change the qualitative features mentioned above,
it is expected to make a quantitative difference.
This is because we are operating in a region where
the I1* term in F[I1] is important, and as a resuit,
there will be significant interactions among the
various components of II(y). For this reason we
have postponed making a detailed comparison of
our theory with experiment until isospin effects
have been included.

A second possible generalization has to do with
the boundary conditions on II(y). Although it seems
natural to take II(y) to be free on the boundaries,
it should be pointed out that any choice of boundary
conditions implies a definite form for the coupling
of II(y) to the incident hadrons. More generally
one could introduce a form factor, N(II), which
describes how the incident hadron couples to the
pion field. The only change in our formalism
would be to replace the coupling constant G, de-
fined in Eq. (18) by

G,= [ : dn 3, (mN() . (68)

As a result, there would be no qualitative changes
so long as N(IT) is an even function of II. We ex-
pected our statistical theory to work best in the
central region of the rapidity plot where most of

the particles are produced. Certainly some edge
effects, such as the diffractive excitation of res-
onances which then decay into a small number of
pions, are not expected to be well described. One
might hope to include such effects in the form
factor N(II).

It is possible to consider more general forms
for the functional F[II] within the framework pre-
sented here. One could, for example, replace the
potential

V(1) =a 1% +p11*

by a general even function of II. So long as the
Hamiltonian,

1 52
H(n)=-§5ﬁ—z + v,

has a discrete spectrum, the qualitative features
of the theory will not be changed. A continuous
spectrum for H(II) would give rise to Regge-cut
terms in the inclusive cross sections. However,
these enter in a more natural manner when the
dependence of the II field on the impact param-
eter b as well as y is included. This increase
in dimension of the IT field variables to three
dimensions leads to a I1* field theory rather than
the simple anharmonic Hamiltonian of Eq. (14).
However, various methods have recently been
developed for treating such systems near critical
points.'®

Turning next to the physical implications of our
formalism, the most important is not readily vis-
ible in what we have calculated in the preceding
sections. The II field has long-range phase order
over the rapidity space. We have concentrated on
the intensity correlation functions since they de-
termine the inclusive cross sections and the gen-
erating function. The intensity correlations are
short range having £, ~2 < Y at high energies.
However, the II field correlation function

(MM, ~| (1)1 | 0>t2exp(- —y—gi—'> (69)

has & =2 Y with

£ =2 (&, ~E,) (70)
1 02/3 1 “0/

Here E, is the eigenvalue of the first excited state
|1) of the anharmonic oscillator. We have not
needed this state previously because the intensity
fluctuations only coupled the even states. As «
decreases below zero, the splitting between E,
and E, decreases rapidly. It is related to the in-
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verse time for a particle of mass 2¢ to tunnel be-
tween the potential minima of aIl*+4II*. Figure
5 shows a combined plot of £ and &, versus a.
For all the cases listed in Table I, & >10.

As we have noted, our theory is similar to both
the theory of a superconducting wire near 7, and
a laser near threshold. This naturally leads to
the question of whether this is simply a formal
similarity and our F[II] just one more way to
parametrize the data, or whether there is a
physical basis for the similarity. We would like
to suggest that in fact there may be a physical
basis for the similarity.

Consider two protons approaching each other in
the center-of-mass system. At high energies
their matter distributions will be in the shape of
Lorentz-contracted disks. Just after the collision
we have a highly excited system localized in a
region whose dimension along the beam is of or-
der Rs ~'/? and perpendicular to the beam is R.
The most important mode of energy radiation is
pion emission. Now, just as it is possible to con-
struct a single pass laser, it should be possible
for coherent emission of pions to occur from the
excited region of the disk. This type of coherent
production should saturate very near threshold
conditions since once it starts the resulting pion
emission, in the absence of a “resonance cavity,”
prevents the further buildup of the pion fields.
Furthermore, the coherence of the pion field over
the emission region of the disk leads naturally to
long-range phase order of II over a region of or-
der Y.

Note added in proof. Here we have treated II(y)
as a statistical variable. An alternative approach®
would be to start from the pion-field density ma-
trix. Then, using a coherent state representation,
one can obtain all of the results of Sec. II. In this
framework, II(y) is the eigenvalue of the pion-
field annihilation operator, which in general can
be complex.

FIG. 5. The reduced correlation lengths £, = E,(a)
—Ey(@) and £,71 =E, (@) ~E (@) are plotted versus .
Note that while the intensity-intensity correlation length
£, reaches a maximum at @ ~—1.5, the field-field
correlation length £, increases indefinitely as o de-
creases.
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