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The forward absorptive part in M2 of a +b +C elastic scattering has been related by
Mueller to the inclusive single-particle spectrum for a +b —~c +X. The nonforward a +b +¢
3-3 M % absorptive part in the double-Regge region also has several physical applications.
The M? absorptive part of this amplitude is calculated in the region of double-Regge ex-
change using a multiperipheral model with exponential damping in momentum transfer and
Regge behavior in inclusive subenergies. The absorptive part is then extended to an analyt-

ic function in M2,

I. INTRODUCTION

Recent investigations of inclusive spectra have
given importance to the three-particle to three-
particle (3-3) amplitude. This is due to the opti-
cal theorem of Mueller® which relates the M?
=(p,+ by +P;)? absorptive part of the forward 3-3
amplitude for a+b+¢—a +b +¢ to the single-par-
ticle inclusive cross section for a+b—-c+X. The
nonforward 3-3 amplitude also plays an important
role in the analysis of inclusive reactions. In
order to fully study the analytic properties of the
forward 3-3 absorptive part it is necessary to
examine analytic continuations in two-particle
subenergies and in the trajectories by using the
nonforward 3-3 amplitude. This was first done by
Halliday and Parry in ¢® theory to demonstrate
the factorization of the M? discontinuity.?

The nonforward multiperipheral amplitude that
we calculate here is used to study the relation
between Pomeranchukon coupling strengths in
inclusive and exclusive experiments.® The six-
point amplitude with double Pomeranchukon ex-
change was fitted to the pionization spectra in the
3-3 region to determine the double Pomeranchukon
coupling strength. The nonforward six-point am-
plitude was then analytically continued to the for-
ward 2~ 4 double Pomeranchukon exchange pro-
duction region and compared with experimental
data to demonstrate the need for Pomeranchukon
decoupling.®

Another application of the nonforward 3-3 ab-
sorptive part is to inclusive experiments on nu-
clei as studied by Bander® using the eikonal ap-
proach. In the usual eikonal computation of a total
cross section on a nucleus from the optical theo-
rem, one uses the amplitude S(b) for nucleon-
nucleon elastic scattering at an impact parameter
b, which requires a full knowledge of its nonfor-

ward transform S(g2). In the eikonal treatment of
the inclusive 3-3 amplitude® it is similarly neces-
sary to know it at nonforward momentum trans-
fers and energies in order to compute the scatter-
ings with the nucleons located at various impact
parameters and parallel displacements.

The 3-3 absorptive part calculated in this paper
is also evaluated at the forward point to give the
pionization spectrum. The method given here is
a simpler and more direct way to get this pioniza-
tion spectrum for the exponentially damped multi-
peripheral models. This result has recently been
used in generalizing to arbitrary forms of damping
in momentum transfer, thereby allowing fits to
be obtained for pionization spectra over all g,2.°

In this paper we compute the M? absorptive part
of the nonforward 3-3 amplitude in the double-
Regge region for a simple multiperipheral model
with Regge behavior and exponential damping in
momentum transfer. After computing the M? ab-
sorptive part we then extend it to an analytic func-
tion.

The model for the absorptive part in the inclu-
sive central plateau region consists of the produc-
tion of the observed particle ¢ with a summation
over numbers of particles emitted faster or slower
than ¢, Fig. 1. The summation over both of these
sets of particles is similar to the summation in
a total cross section and is assumed to produce a
Regge behavior, s,*1, s,%2 as in the multiperipher-
al model.® In order to get the observed exponen-
tial falloff in (p$)? in the central region, we include
factors for exponential damping in the internal
momentum transfers e®?%, ¢%t, This model has
been formulated by Caneschi and Pignotti’ and
analytically computed by Silverman and Tan® and
others.®

By squaring this amplitude and integrating over
the inclusive phase space, we get a form for the
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single-particle spectrum or equivalently the M?
absorptive part of the forward 3-3 amplitude in
the central inclusive region.® In this paper we use
this model to compute the nonforward 3-3 M* ab-
sorptive part in the double-Regge region, Fig. 2.

By the double-Regge region we mean that subener-

gies s;, s}, s;, and s, are large enough to be in
the Regge region, Fig. 3. The calculations are
carried out in the nonforward region adjacent to
the forward central plateau region so that p;=-p,
has negative energy p% < —m,. The absorptive
part is then used to construct the analytic non-
forward 3-3 amplitude in the double-Regge region.

As a special point we will present the forward
3-3 M? absorptive part for double Pomeranchukon
exchange @, =1, a,=1, which agrees with the pre-
viously calculated single-particle spectrum in
this model.? The method employed in this paper
gives a simpler and more direct calculation, how-
ever, as well as extending the calculation to tra-
jectories of arbitrary intercept.

In Sec. II we formulate the model and calculate
part of the intermediate-state integration as the
quasi-two-body phase space for producing quasi-
particles of intermediate masses squared s, and
Sy, Fig. 2. The integration over the quasiparticle
masses squared s; and s, is carried out in Sec. III
in the double-Regge region. The results are pre-
sented in terms of the external invariants in Sec.
IV. In Sec. V, we extend the absorptive part to

]

FIG. 1. Multiperipheral diagram for a +b—c¢ +X in
the central region.

an analytic function for the nonforward 3-3 am-
plitude in the double-Regge region.

II. CALCULATION OF M? ABSORPTIVE PART

The M? absorptive part for Fig. 2 can be com-
puted by first performing the phase-space integra-
tions over all of the particles in the sets labeled
by momenta p; and p,. We assume this is done
(Ref. 8, Appendix) and produces Regge behavior
in the momenta squared s, =p,%, s, =p,%. The re-
maining integrations over p, and p, can be per-
formed by considering these sets as intermediate
particles of masses squared s,, s,, and then doing
the simple two-body phase-space integral to get
a function A’. Finally, the intermediate particle
masses squared s,, S,, are integrated over their
allowed values to get the absorptive part A.

The two-body phase-space integral over the ex-
ponentially damped momentum transfers for inter-
mediate-particle-masses squared s,, s,, is (Fig. 2)

A= f d4p15+ (p12 - 31) fd4p26+ (1722 - 32)54(171 +02—~Da—Dp— pc')
x exp{Q,[ (b} = )% + (b — 61?1 +Q,[(B} - 1:)* + (P, - P2)?]} (2.1)

To compute the two-body phase space we work in the c.m. frame of p, and p, where the kinematics are:

51 +52 =0 =5a +ﬁb +Z7-E =5; +5£ +1—)£T ’
M2 =(p, +py +15)2 =Dy +12)°,
M+3=M, M=VM?,

_ _ A1/2M2’ s
P= 5= |5yl = AWt )

A(x,y,z) =x2 +y2 +22 - ny —2yz - 2Zx,

_MPts s,
2M

po=M2+sz;s1
» P 2M

f21

(2.2)

The integrals give the usual two-body phase-space result of an integral over the angles of p,

P

A= fdQl exp{Q,[2m, 2 +2s | = 2(p° + P13 + 2B, +B) Pyl +Q,[2m, 2 +2s, — 2(04° + P} - 2B} + 5, ) Dol -

We define a vector which is fixed by external momenta

§=91(§;+5a)—97(ﬁf,+m)y Q= lé—?l,

(2.3)

(2.4)
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and choose the z axis along this vector. The angular integrals are then easily done. The result for the
two-body phase space is

A= ﬁﬂ'@ sinh(2Q P) exp{Q,[2m,® +2s, - 2(p;° +pp3] +Q,[2m,? +2s, - 2(p;° AV A (2.5)

III. INTEGRATION OVER SUBENERGIES

We now integrate over the subenergies s,, s, to get the nonforward M? absorptive part A. We assume
Regge behavior for the absorptive parts of p, +Q,—~ p; +@Q} and p, +Q, — p, +Qz and include dependence on the
external momentum transfers t, = (p} — p,)%, =0}~ Pp).

A =cB,(t)B,(t) f ds,ds,(s,) 10 (s5,)% 2 A", (3.1

Since the over-all factors c, B,, B, do not enter into the integrals we neglect them for now.
The dependence on s, and s, enters explicitly and through P, p3, p7 in Eq. (2.5). Defining

=, +) -Q,(6;° +19) , (3.2)

we have explicitly

A= 'Z—J—‘Z—Q—exr){ﬂl[zmaz "M(p;() +P2)] +Qr[2mbz —M(pgo +pg)]}
0
X fd31 fdsz sinh(%A”z(Mz, S1» s,)) 5,%15,% exp[2Q, s, + 20, 5, — 1?7(31 - 5,)]. (3.3)

The boundary is given by the condition that the c.m. momentum be positive, and that the subenergies be
above threshold

AME, s,,8,)20, 5,287, s,=5). (3.4)

To do the integration we substitute

1
x= 7 01-P), y=i—(p2—P) (3.5)

which gives

S S

11712 =x(1-7v), }1—4-22— =y(1-x), ds,ds,=(M?)?(1-x~y)dxdy (3.6)
and simplifies

AM2(M?, sy, S,) =M*(1-x-9).
We then split up sinh[@M (1 - x - v)] into its two exponentials. In the second exponential we substitute

x=1-y', y=l-x', l-x-y=-(1-x"-y7). 3.7

Then both exponentials are identical and can be combined to give

B sp P s Pp
i 2 ’ 7. "2
a az ~  s=pa*pp)” s=(pa*Pb)

2 2
t=(pg=Pa)”  t2=(Pp=Pp)

N———
AR

Pa Pg Pp

FIG. 2. Multiperipheral diagram for the M? absorptive FIG. 3. External invariants for the nonforward abc
part of nonforward ab¢ scattering. scattex;/ﬁlg.
Ve
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v

Q
x [ ax [ ay(1 - x - plxt -yt - 21

A = (M2)2+0(1+c(2

exp{Q,[2m 2 - M +p9)] +9,[2m, ~ M(p;° + 1Y) ] +MQ}

x exp{ - dM(Q +Q°) - 2@,M?] - y[M(Q - Q°) - 2Q,M?] - 2xy(Q, +Q,)M?}. (3.8)

We have taken the limit M?~« here and s;, s,, s}, s.- in order to make the thresholds reduce to the

limits 0 to 1.

In Sec. IV, Eq. (4.9), we show that the coefficients of x and y in the exponential are proportional to
—|s;+s}| and —|s, +s.|, respectively. We evaluate the integral for very large magnitudes of these external
subenergies, that is, the double-Regge region. Then x and y terms may be dropped with respect to 1 in
the factors, and the limits of x and y extended to infinity. Defining

=M@ +Q) -29.M%), vy =y[M(Q-Q") -20,M*], (3.9)
the integration becomes
'£ dx' _/(; dy'(x")%(y")%2e™ =Y "¥Y/K =D (a, + DT (ap + 1) k2" W(ay +1, - a,+ 0y +1, 1), (3.10)
where U is the confluent hypergeometric function® (also called ¥)*! and
0} _ 2 — 0% 2
o = [MQ+Q") - 20, M*IM(Q - Q°) - 22,M”] (3.11)

2M3(Q, +9,) :

The result of the phase-space integrations in the double-Regge region is

A =(M2)2+°‘1+°‘274‘Aﬂ7é-[M(Q +Q°% — znle]—dl-l[M(Q -Q% - 2QM2]-a2-1

x exp{Q;[2m, 2 - M(p.° +pD ] +Q,[2m 2 = M(D}° + )] +MQIT(ar, +1)T (0 +1)k%2* U (aty +1, — @y + @z +15 k) .

IV. KINEMATICS AND THE DOUBLE-REGGE RESULT

It remains to express the c.m. momentum com-
ponents in terms of the invariants, Fig. 2,

s;=(pa+05)%, s;=(pL+pL)?,
s, =(py+0:)%, sp=(ph+pL)?, (4.1)
s=(p+pp)%, s =(p,+p})?.

In the nonforward ab¢ region, p; =-p,, and p}
<-m,, so that the subenergies s,;, sj, s,, s; are
negative. The time components in the c.m. system
are found by scalar products with the vector p,+p,
+pz =(M,0). This gives

2MpL=s+s,~my: -mS2,

2MPY =5 +5s] —~my -mS?,

2MpPy=s+s, ~mg —-m’,

2MpY =s'+sl-mz2-mS2, (4.2)

2MQ° =2M*(Q, - Q,) - (s, +s.)
+8,(s; +85) +2(Q,m 2 - Q,m,?).

In the last equation we have used

(3.12)

MP=s+s;+s,~mg —m,’ —m.2,
4.3
MP=g' +sj+sl—mz2-m?2-mS2. (4.3)

To calculate @ = [@], we first calculate Q,Q",
and then

=@V -QQ". (4.4)
Using (3.2) and (2.4) along with
p;-pu+p;}—pb= c_-ptl?y

7= (ps - P5)*, ®2)
we find
-Q,Q"=22,Q,(2M® -5, - s} -5, - s})
+(Q,1,+9,1,)Q, +Q,) -Q,Q,7
-49.°m 2 - Q. m,2 +4Q,Q,m 2. (4.6)

Now using (4.4), (4.2), and (4.6) we compute @ in
the double-Regge limit

Mz”wa |S,+S’,|-’°°, ’S,+S;|-’°°, .
(4.7)
’ ’

tyy ta T iﬁiﬁ%ﬁi—%—) all fixed.

The result including terms of O(n:?) is
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2MQ =2M*(Q, +R,) —Q,(s, + s. —t, +2m 2?)
=Q,(s; +5] — 13 +2m,”)

Q,9, [(s, +57)(s, +s.) .{l
Q,+q, e +7 —4m 2| .

(4.8)

For the coefficients of x and y in the exponent
of (3.8) and in the powers of (3.12) we have

l(a, + DI (e, +1)
8(9, +Qr)ot1+o¢2+2

A = (t,)By(ts)

2
Xexp[— —mL(i‘r -m,%) +%(Sz,),‘1+Qrt.‘,)]e"‘K""lU(oz2 +1, —a;+a, +1; k),

Q,+Q,

where o, =a,(t,), a,=a,(l).
The result (4.11) also holds in the forward direc-
tion, where

pazp:’z’ pb=p;;’ pc‘ =P:_T=—Pc,

$;=S8;, S, =s;, s=s', (4.12)
t,=0, =0, 7=0,
and
2.9, sis,
Q,+Q, M?
L AR (4.13)

_Q,+Q,,

For the case of double Pomeranchukon exchange
a,(0)=1, «,(0)=1, we obtain for the single-parti-
cle spectrum or M? absorptive part in the central
plateau region

2
App= CBa(O)Bb(O) %

xexp<—2&&—mcz) e~ U(2,1,k). (4.14)

Q, +Q,
This is the same as the earlier result® if we note
that®

e U(2,1,k) =(1+K)E (k) —e™", (4.15)

where E,(k) is the exponential integral function.

V. EXTENSION TO ANALYTIC FUNCTION IN M?

The absorptive part in M2 calculated in (4.11) can
be extended to an analytic function by a procedure
equivalent to using a Cauchy integral or dispersion
relation in M2, Of course this does not give the
entire 3-3 amplitude but only that part arising
from the M? cut, or equivalently, from diagrams
like Fig. 2.

We note that the only occurrence of M? in the
result (4.11) is in the variable «® (4.10). Keeping
(s; +s}) and (s, +s;) fixed and negative, but very
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(M(Q +Q°) — 20,M?] = - Q,(s, +s}) +O(m?) ,

(M(Q - @) - 20,%] =~ 0, (s, + ) +Om?) . *9)
For k of Eq. (3.11) we then have
- 29197 (sl +s;)(sr +S,'.) . (4.10)

TQ,+Q, aM®

Our final result from (3.12) for the 3-3 nonfor-
ward absorptive part in the double-Regge region is

[ -39,(s,+sD]] - 30,(s, +5))]%

(4.11)

large in magnitude, the M? cut from threshold to
infinity is mapped into a cut in « for 0 < k s,
Therefore we make the analytic continuation in
the variable k. The function of « in (4.11) can be
written in terms of entire functions'® M (also
called &).!

Imf(k)= e k™ “1U(ay+1, — ay+ay+1, k)

—_ =K m
sinm( - o, + oy +1)

x[ o Moy +1, —a;+a,+1, k)
Mo, + 1T - a,+a, +1)

o M(a,+1, —a, +a, +1, K)]
T(a +1)T( =y +a; +1)

(5.1)

Since the M functions are entire, we can extend
Imf (k) to an analytic function with a 0 < k<= cut
by replacing k™% by (-«)~%1/sinna,:

— —— 7 o
Im[———-—( K = ie) ‘]=K'°‘1 (5.2)
sinma,
and similarly for k™ %2.

Using

m
== - 5.3
snra ~~ T +a)T(-a) (5.3)

and the Kummer transformation®
e *M(a,b,z)=M(b -a,b, —2), (5.4)
we have

m
sinm( - a, +a, +1)

F(0 =2 T(=- a)T(- ay)

L\ M(_aly“a1+a2+1”<)
X[( K (- )l (-a;+a,+1)

= (-K)""2

M(-a,, —a,+a;+1, —x)]
I(-a)(-a,+a,+1) :

(5.5)
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This may be recombined to give the analytic func-
tion

F(0) ==2T(= a)T(~ ag)(~ 0%

XU(=a;, —ay,+ay+1, —k). (5.6)

The same result is obtained by performing the
Cauchy integral,'? and is unique up to an arbitrary
polynomial in k.

Including (5.6) with the remainder of (4.11) gives
the analytic extension in M? or k. The signature
structure of the Regge exchanges ¢, and a, can be
found by adding diagrams like Fig. 2 but with ex-

changes (a—a'), (b—"5'), and (a— @, b~ b").
Care must be taken to establish that the diagram
of Fig. 2 and the exchanged diagrams from (g~ a@’)
and (b — b') are evaluated above the k cut, but the
diagram from the exchange (a— @, b b’) is eval-
uated below the k cut. This has been carried out
in Ref. 3.
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A statistical theory of particle production is formulated in analogy with the generalized
Ginzburg-Landau theory of phase transitions in superconductors and intensity fluctuations in lasers.

I. INTRODUCTION

At present accelerator energies the number of
secondaries produced in hadron-hadron collisions
is large enough so that one can consider statistical
theories of particle production. In this paper we
shall present such a theory.!

Our basic approach is as follows: We do not at-
tempt to treat in detail the fundamental dynamics
underlying particle production. Instead, we imag-
ine integrating out the microscopic degrees of
freedom and representing them in terms of a

small number of phenomenological parameters.
We are then left with a statistical theory of the
macroscopic observables.

A well-known example of this approach is the
Ginzburg-Landau theory of superconductivity.?
In its generalized form? it provides a statistical
theory of the superconducting order parameter
which depends upon a small set of experimentally
determined parameters. Once a microscopic theo-
ry of superconductivity was formulated by BCS,*
it was possible to derive the Ginzburg-Landau the-
ory from it and to obtain expressions for the phe-



