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emerging leptons produced via an exchange of a
single photon (based on the parton model) is given
in the last paper [Eq. (35)] of Ref. 7 and may be of
some use.
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We attempt to modify the Kuti-Weisskopf quark-parton model so as to obtain agreement
with recent experimental and theoretical results. We find that, at the cost of sacrificing
some simplicity, reasonable phenomenological fits can be obtained.

I. INTRODUCTION

The parton model has been very useful in helping
us to guess at regularities in deep-inelastic lepton-
nucleon scattering. The interesting quantities
which we study are the deep-inelastic structure
functions which cannot be calculated without making
strong dynamical assumptions about the parton dis-
tribution functions. The SLAC data! require that
most of the charged partons have spin 3 so a rather
natural assumption is that the charged partons are
quarks.

Once this choice is made, one can derive, on
the basis of a few assumptions, the quark-parton
momentum distributions which, in turn, allow us
to predict all that can be measured about deep-
inelastic lepton processes.

Kuti and Weisskopf? proposed such a model
which, at the time, fit the available experimental
data. Recent data, however, have shown their ex-
plicit model to be incorrect, since it fails to cor-
rectly predict the observed behavior on the F°" -
F*°* ratio.® If we alter one of the quark-parton
probability distributions, according to a sugges-

tion of Friedman, and discussed briefly by Kuti
and Weisskopf, agreement with some of the data
is improved. We describe in this note the results
of our attempts to reconcile this simple quark-
parton model with all of the recent experimental
and theoretical results.

II. THE QUARK-PARTON MODEL

In a simple quark-parton model, the physical
nucleon is seen to be composed of three valence
quarks (ggq) which contribute all of the nucleon’s
quantum numbers, plus a “sea” of 7g pairs and
neutral gluons. The natural interpretation of such
an arrangement is to suppose that the valence
quarks contribute only toward peripheral scattering
off the nucleon, while the core contributes only to
the diffractive scattering. In Regge language, this
is equivalent to assuming that the valence contri-
butions correspond to normal Regge exchanges
(P, A,, etc.)while the “sea” of ggq’s correspond to
Pomeron exchange.

In such a model, the deep-inelastic structure
functions are described by six independent func-
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tions, u(x), u(x), d(x), d(x), s(x), and s(x), which
represent, respectively, the numbers of @, ®,n,
¢, A, and X quarks with momentum between x P and
P(x+dx) in a proton of momentum P.

If we separate the valence and core contribu-
tions, according to

u(x) =1, (x) + u,(x)
=u,(x) + c (x),

u(x) =7,(x) = c(x),

d(x)=d,(x)+ c(x),

d(x) = c(x),

s(x) =5(x) = c(v),

where the subscript v (¢) refers to the valence
(core) contribution, then besides positivity, the
conditions which these distribution functions must
satisfy are:

[ ) — 7)) = [ Cu,(0dx=2,
f[d(x)-ﬁ(x)] dx=f1 d,(x)dx=1, (1)

f *[5(x) =5()] dx=0.

In terms of these distributions, the deep-inelas-
tic structure functions have the following simple
forms:

W (x) = F(x)

=5 u,(¥)+3d,(x)+Fcx)],
W () = Fo(x) @)
=wFu, (%) +5d,(x) +5c(x)].

Present data suggest® that, as x—~ 1, the ratio
Fen/Fe approaches 3. Saturation of this limit
would imply, as seen from Eq. (2),* that the 9 -type
quark distribution function, d,(x), vanish as x-1;
i.e.,

s dv(x) _
,];1_13 m =0. (3)

We know of no detailed model study which ex-
plicitly satisfies this condition. Kuti and Weisskopf
did, however, propose a specific quark-parton
model, wherein they derived detailed distribution
functions for partons (quarks) within a proton,
which can easily be modified to meet this require-
ment. The authors themselves became aware that
a modification of the quark-parton distribution
functions would be necessary in order for their
model to possess the correct qualitative behavior
displayed in the newer data.

III. THE KUTI-WEISSKOPF MODEL

The Kuti-Weisskopf model was based upon a
relatively few reasonable assumptions. For the
probability distribution of the constituent partons
they assumed the following: The distribution for
core quarks and gluons is according to phase space

dP,(x) ~g(x2+ jzA;PZ)l 2 (4)

where u is an “average” parton mass (assumed to
be small compared to P, the proton momentum),
while the probability distribution of valence quarks
is determined by phase space and Regge asymptot-
ics for small x:

x1=H0 gy
2+ i2/P2) 72

where «(0) is the intercept of the leading (non-
Pomeron) trajectory. Using these analytical
forms, and certain simple assumptions, one can
derive the various valence and core quark momen-
tum distributions, ,(x), d,(x), and c(x).> Since
Kuti and Weisskopf explicitly assumed the equality
of the probability distributions of both the ®-

and JN-type valence quarks, the resulting deep-in-
elastic structure functions disagree with recent
experimental results. If we modify the JI-type
valence probability distribution, however, accord-
ing to

dP,(x) ~ (5)

(1 =x)x 1Oy
G TP ©

with no change in the corresponding ®-type valence
distribution, then we recover the behavior sug-
gested by experiment, and obtain what we shall re-
fer to as the “modified” Kuti-Weisskopf model. In
the next section we shall discuss, in some detail,
the results implied by this replacement.

IV. THE MODIFIED KUTI-WEISSKOPF MODEL

If we use the modified valence probability distri-
butions as the basis of our calculations, we obtain
the following quark number distributions®:

u,(x) =27 x~(0 (1 = x)?+2 [1-e(0)]
1- a(0) >
><<1 ~353-a()] ") ™

d,(x) Zx-a(o)(l _ x)3+2[1-ot(o)],

c(x) - %gx-l(l _ x)2+3[1—a(0)]’
where Z ~'=B(1 - a(0),4+2[1-a(0)]). B(a,bd) is
the beta function and g is an adjustable constant”
which is determined by fitting to the data. The

leading non-Pomeron trajectory is assumed to cor-
respond to the P’ or A,, which both have a(0)=3.
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In the original version of the model, the choice
g=1 gave the best agreement with the available
data.® The newer data, however, definitely favors
a smaller value of g and, hence, a smaller core
contribution than previously allowed. If we choose
g=1%, we are able to obtain a reasonable fit to the
data on the F°"-F® ratio (see Fig. 1). Figure 2
shows that, although the data on F°(x) is not de-
scribed extremely well in detail, the “modified”
Kuti-Weisskopf model does reproduce the qualita-
tive behavior of the data.’

We prefer to adopt a “realistic” point of view
with regard to the quality of the fit to the data on
F®(x). With such a one-parameter fit, and con-
sidering that our ignorance of this subject still
must be regarded as profound, one could not ex-
pect perfect, or even very close, agreement with
the data. This is not to say that good agreement
cannot be obtained, since many interesting pos-
sibilities are still available to the phenomenologist
who is intent upon fitting all of the available data.
In fact, in Sec. V we shall show the results of a
phenomenological fit based on the Kuti-Weisskopf
model, which led to excellent agreement with the
data. Such efforts, however, we regard as merely
refinements of a basic theoretical result, since
they rarely lead to any deep understanding beyond
the original.

After the constant g has been adjusted by fitting
to the data, the “modified” Kuti-Weisskopf model
makes unique predictions, some of which demon-
strate surprising agreement with the data.

The recent CERN data’® on total cross sections
suggest the following sum rule.

1
3 [ 1Py )+ By (9] dx=0.4720.07.
o
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FIG. 1. Description of the deep-inelastic electron
scattering structure-function ratio vW§"/vW$P by the
“modified” Kuti-Weisskopf model. The curve shown is
for g=3%.

Explicitly integrating the structure functions
formed from the quark number distributions [Eq.
(7], we find

1
%f [F2™(x)+ F¥? (x)] dx=0.5005
0

demonstrating remarkable agreement with experi-
ment.

An interesting consequence of the “modified”
Kuti-Weisskopf model concerns the ratio of total
cross sections, ¢v"/c"?. As a function of g, this
model requires that

g?"  2.25+0.593¢

o’? ~ 0.909+0.593g ’

where g (0 <g <3) determines the relative core
contribution to the structure functions. This gives
us the following inequalities for the cross section
ratio:

1.545 ng, <2.48.

Our best fit, with g=3, requires that ¢¥"/o"?
=2.10. It is interesting to note that Landshoff and
Polkinghorne!! find 1.8 for this quantity in their
model.

There is one quark-charge sum rule which can
be derived from the expression for the structure
functions, F¢(x) and F°"(x):

1
In,!’:f F;,p(x)_di‘_
o x

The sum rule takes the form:

P-In=5.
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FIG. 2. Description of the deep-inelastic electron
scattering structure function vW§? by the “modified”
Kuti-Weisskopf model, as a function of g. The upper
curve has g=1, while the lower curve corresponds to

1

8=z



2270 R. McELHANEY AND S. F. TUAN 8

This value does not depend upon the choice of con-

stants in the model but only upon the quark charges.

It is difficult to extract the correct value from ex-
periment, since the behavior of F(x) at small x is
important. Sakurai et al.,'® extrapolated the dif-
ference (F¢-F°") toward x=0 (i.e., for x <) with
Regge behavior assumed and obtained an estimate
of I* -~ I"=0.19. This is quite far below the ex-
pected value. Quite recently, however, there has
been a revision of this estimate using currently
available empirical knowledge of w (=1/x) in the
range 10 to 20 for ep-en. This places the value
closer to 0.28,"® which is more consistent with the
quark-charge sum-rule result of 3.

In view of these results, which can only be re-
garded as encouraging, it is important that the
solution which we obtain also satisfy recent theo-
retical constraints as well as the experimental;
specifically, the convex positivity domains of
Nachtmann.!* These constraints on the FV":v?
structure functions exploit the greatest information
obtainable from the electroproduction data in terms
of both F*(x) and the ratio y = F°"(x)/F°(x). The
positivity conditions lead to domains in the (n, &)
plane where

F vp F vn
n= —1—ng and §¢= —2—ng
as a function of y(x). These constraints are re-
flected by the following inequalities™:

M n<¥@+y)-¢ i<y<$
(I1) 6(1-y)<&<¥(l+y), s<y<i
wn<¥(y-32), isys<s
()n<2¢ F<ys<l.

These inequalities are interesting in the sense
that all of them are easily satisfied by any rea-
sonable quark-parton model in which the quark
distribution functions [u(x), d(x), etc.] are explicit-
ly defined and subject to the normal constraints
[ef. Eq. (1)]. The first three inequalities are auto-
matically satisfied due to the positivity of the va-
lence and core quark distributions, while the fourth
inequality requires that

d, (x) <2u, (x).

Since present data suggest that d,(x) <3u,(x), and
the normalization conditions [Eq. (1)] must be sat-
isfied, any model not satisfying this requirement
could hardly expect to agree with experiment.

For the ratio F}?/FY"=n/t, we obtain a much
less restrictive positivity domain since informa-
tion on F§? alone is not used. The latter domain
leads to the Paschos inequalities.®

Fv
0 <R(x)=—7%;
FZ
18 y(x)—ﬂ 1 2
S5[1—y(x) » 35900 <3

<2, $sylx)<1.

Again, and not surprisingly, these inequalities are
automatically satisfied due to the positivity of the
valence and core quark distributions. As we ex-
pect, the quark-parton positivity conditions place
no constraints upon a model unless the parton dis-
tribution functions themselves are not defined.
For example, one of us™ did a purely phenomeno-
logical analysis of the structure functions, and
found the Nachtmann quark-parton positivity con-
ditions to lead to very strict constraints for the
parametrization. This analysis led to a larger
ratio of cross sections than found here; namely,
o'"/o? 2 3.

It has been suggested by Sakurai and collabora-
tors'®'* that the rate of convergence of the Adler
sum rule, based on the longitudinal coherence
length argument, should be fairly rapid. Conver-
gence of the Adler sum rule is most conveniently
characterized by the value of w for 90% saturation;
i.e., the value w, defined by

w
$ [ - Er ) 20 (5= 1))
1 X Wo

In the original version of the Kuti-Weisskopf
model, 90% saturation occurred at w,=476. This
is to be contrasted to the suggested value of w, for
90% saturation <50 proposed by Sakurai et ql.'?
Modifying the model improves the convergence
only slightly; the w value now required is of the
order w, =416. The arguments against slow con-
vergence of the Adler sum rule'? has led us to con-
sider alternatives to Eq. (7).

V. DAUGHTER TRAJECTORIES

A simple alternative, and one with some theo-
retical justification, is to add a low-lying “daugh-
ter” trajectory contribution [a(0)=-3] in linear
combination with the basic “modified” Kuti-Weiss-
kopf functions [Eq. (7)], according to the following
phenomenological prescription:

(%) = Z, 2731 = )31+ ax),
d (%) =Z,x "1 /2(1 = x)**B(1+ bx), (8)
cx)=3gx (1= )72,
where a, b, B, and g are determined by a phenom-
enological fit to the data.’® Our best fit using the

above four free parameters occurred with the fol-
lowing parameter values:
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FIG. 3. Best-fit curve of the deep-inelastic structure-
function ratio vW§"/vW$? by a model which includes
daughter trajectories.

a=2.3,
b=0,

B=10.1,
£=0.6.

(9)

Figures 3 and 4 demonstrate the nature of the fit,
which is quite good; a result not unexpected with
so many free parameters. The solution again fa -
vors a relatively small core contribution.

The convergence of the Adler sum rule was im-
proved only slightly; 90% convergence now oc -
curred at w,=265. While we do not regard it as
being especially significant, we were able to ob-
tain solutions with various values of ¢ and b which
allowed for 90% convergence of the sum rule at an
w value as low as 25, with a resulting fit better
than the one-parameter fit of the modified Kuti-
Weisskopf model, but, of course, not comparable
to our fits as given by Eqs. (8) and (9). Our only
conclusion of this fact is that rapid convergence of
the Adler sum rule need not be incompatible with
a reasonable form of the quark-parton model.

VI. FURTHER CONSIDERATIONS

There are an interesting set of structure function
inequalities which can be derived from the quark
model:

_xF(avn-va)Sngn'l'up)S_LSQFng-ep' (10)

Recent CERN data suggest that both of these in-
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FIG. 4. Best-fit curve of the deep-inelastic structure
function ¥W§? by a model which includes daughter
trajectories.

equalities are very close to saturation.’” Satura-
tion of these inequalities has very special conse-
quences for the quark-parton model. The left-hand
inequality is saturated when there is an absence of
® and N quarks; saturation of the right-hand in-
equality requires the absence of A and X quarks.

In terms of a model in which the valence and core
contributions are separated, saturation of Eq. (10)
would require that the entire core contribution
vanish, leaving only the three valence quarks to
determine the structure functions. Our result,
which favors a relatively small g and thus a small-
core contribution, is perfectly consistent with near
saturation of these inequalities. It is interesting
to note, however, that complete saturation of these
inequalities would create severe problems for this
sort of quark-parton model, since we must isolate
the Pomeron contribution in the core [it is not pos-
sible to include Pomeron behavior in the valence
contribution, due to the normalization conditions
Eq. (1)].

Although the data seem to require the condition
Eq. (3) to be satisfied, there is, as yet, no theo-
retical understanding of this point. We know, for
example, that near x=1 all the quarks except one
must have a small x, but it is not understoed why
it is that the ®-type quark is the last quark in the
proton and not the N -type quark.'®

We are greatly indebted to Professor R. P.
Feynman and Professor V. F. Weisskopf for helpful
discussions and communications.
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The rapidity charge density in inelastic proton-proton collisions is discussed. Within a short-range-order
picture, the experimental data are usetul in defining the central plateau region of production processes where

the properties of the initial particles are unimportant.

One simple thing that can be done with single-
particle inclusive distributions is to combine the
inclusive spectra ab- c,, ab—~ c,, etc. to form a
charge density,

~ - AT
GQab(s’ p) =04 12: Qi {:Ei d‘Tp‘z-—— (S, p):l . (1)
Because charge is conserved, the integral over
invariant phase space of the charge density must,
of course, be given by the charge in the initial
state®:

JEL oG5, B)=3 @yt ()

= Qa + Qb . (2)
In Figs. 1(a)-1(d) the charge density in pp inelas-

tic collisions for four different energies®™ is inte-
grated over transverse momentum and plotted as
a function of rapidity. Let

y=sinh™[ /(7 + ) /7]

be the target-frame rapidity and write
6@y, - ¥)= [ d50Q1(s, ). (3)

InEq. (3), Y=cosh™(s'/2/m,) is the rapidity of
the beam in the target rest frame.

Because the right-hand side of (2) only contains
the charge of the initial particles, the charge
density provides a convenient tool for the study of
what has come to be called the leading-particle



