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We discuss the q - 3n decay within the framework of current algebra and soft-meson theorems using
both the conventional electromagnetic interaction and isospin-breaking terms ("U," terms) from the
same representation as the strong interaction. The interrelation between the strong Hamiltonian and the
SU(2)-violating interactions is discussed. We find that the electromagnetic interaction gives a value of
the decay width which is too small by three orders of magnitude. Using isospin-breaking contributions
transforming' as a member of the same representation of SU(3) )( SU(3) as the strong Hamiltonian, the
decay width is not adequately described in either the (3,3) + (3,3), (6,6) + (6,6), or (8,8) models.
Consistent use of all possible soft-pion theorerns demonstrates that it is incorrect to neglect certain o-

terms that have been discarded in the existing literature.

I. INTRODUCTION

Recently attempts have been made to explain the

g -3n decay by writing the Hamiltonian density in
the form' '

X, =2~ d'xD""(x)

x T( V'„(x)V'„(O)+V'„(x)V', (O)), (1.2)

V'„(x) being the vector currents whose charges
generate SU(3), and X3 is a "strong" SU(2)-break-
ing Hamiltonian transforming as the third compo-
nent of some octet.

G-parity considerations require that the q-3m
decay proceeds via the SU(2)-violating part of the
Hamiltonian, namely

=~ Xem+&3X3 p (1.3)

but in order to apply current-algebra techniques
we need the transformation properties of the axial
divergences, and these are determined mainly by
XSB~

There are two three-pion decay modes for the

q meson, m n n and n+n' m, and experiment shows
that the matrix element T+, for the charged mode
may be written as

T, o=u+PEo, (1.4)

X Xo+ CXgB + 8 Xem+

where X, is the SU(3) xSU(3) symmetric part, Xs~
is the strong-symmetry-breaking part conserving
isospin and hypercharge, X, is the effective elec-
tromagnetic Hamiltonian for this process, i.e.,

where Eo is the energy of the neutral pion.
Sutherland' showed that if Eq. (1.4) is valid off-

shell and only the conventional electromagnetic in-
teraction X, [Eq. (1.2)J is used, then the ampli-
tude vanishes.

Subsequently it was suggested" that this prob-
lem could be resolved, still using the conventional
X, , by making a more general off-shell expan-
sion, namely

T+,—-A+BEo+C(q+'+q ')+Dqo' (1 5)

(where q,", q", and q," are the four-momenta of
the pions), but, as has been more recently shown

by Bell and Sutherland, ' although the amplitude no
longer vanishes, it is still far too small to fit the
experimental data. It is important to note that in
order to obtain a result with the larger expansion
in Eq. (1.5) one has to use the transformation prop-
erties of X~B under the chiral group. All these
authors' ' have effectively used the (3, 3) + (3, 3)
model of Gell-Mann, Oakes, and Renner" (GMOR).

Consequently, in order to overcome the problem
of the small width caused by X, , the X, term was
introduced in Eq. (1.1).' ~ Assuming that X, is u„
the third component of the scalar octet in the (3, 3)
+ (3, 3) representation, using either Eq. (1.4) or
Eq. (1.5) to make off-shell extrapolations of the
amplitude, and neglecting certain 0 terms, a good
slope [P/n in Eq. (1.4)j is obtained and the decay
width is calculated as a function of e,. If e, is de-
duced from the K'-K' and n'-m' mass differences,
the width is too small. But if one uses the value
of e, obtained by Oakes' from a Cabibbo rotation
on an SU(2) xSU(2)-symmetric Hamiltonian, a
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higher value is obtained for the width. A similar
conclusion has been drawn if Xz~ and K, transform
as the appropriate components of the (8, 8) (Ref. 11)
representation.

In this paper we reinvestigate the q-3m prob-
lem and attempt to clarify the interrelation be-
tween the strong Hamiltonian (K~») and the SU(2)-
violating interactions (K, and K,). In Sec. III we
use the conventional electromagnetic Hamiltonian
[Eq. (1.2)] but consider other transformation prop-
erties for X~~, which we have summarized in
Sec. II. We find that in both the (8, 8) (Ref. 12) and

(6, 6)+ (6, 6) (Ref. 13) models the decay width is far
too small, just as in the (3, 3)+ (3, 3) model. In
Sec. IV possible contributions from an X, term

are considered. Instead of neglecting cr terms
arbitrarily, we use all the possible soft-meson
theorems and work consistently to lowest or-
ders in the symmetry-breaking parameters. For
the case of (3, 3) + (3, 3) we find that (i) the expan-
sion in Eq. (1.4) for the off-shell amplitude gives
a vanishing matrix element; (ii) using Eq. (1.5),
arbitrarily discarding o terms, also constrains
the amplitude to zero; and (iii) the decay width is
still far too small. For K~» and K, from the (8, 8)
and (6, 6)+ (6, 6) models the expansion in Eq. (1.4)
is possible, and we also estimate the decay rate
in these cases.

We conclude in Sec. V with a discussion of the
various results and the assumptions involved.

II. OFF-SHELL EXTRAPOLATIONS AND CHIRAL-SYMMETRY BREAKING

To first order in the effective electromagnetic Hamiltonian we write

&«wls —&In& =-a f & *&«~l&'&~&In&'

Thus

= i(2n')'5'(QP)T .

T=-(~~~]K'(0) (q&,

and in order to make an off-shell extrapolation in this amplitude we use the LSZ (Lehmann-Symanzik-
Zimmermann) reduction formalism and PCAC (partially conserved axial-vector current). Hence

(2 1)

(2.2)

Jn™n ~ Jw m Jm~r

d x2 d x3 e' '+"&"-"2"+3 0 T 8 ~A+~ x, B„A' x, B~A3 x3 K ' 0

(2.3)

where f, is given by

(0 ~
8 qAI'(0)

~
&&')

&
= t'&0 f,m, '

and

(2.4)

A ~~ = ~ pAi~ + &~ pA

Now if we take one of the pions, m, for instance, to zero four-momentum, we get

; f(m, '-q, ') ~(m, '-q ')

(2 6)

x d'x, d'x, e'~'+"j"-"2' 0 T Q3 ~@A+" x, ~„A"= x23C' 0 )

+(0( T( S „A,"( )[Qx,", S,A'(x, )]K'(0))[q&

+(0~ T(S„A~(x,)S„A (x,)[Q,",K'(O)])~ q&}, (2.6)

but if we keep a particle on shell its corresponding axial divergence does not appear inside the time-or-
dered product in Eq. (2.3), so that if, for example, both w' and» are on shell, one obtains

T, (m„', 8;m „',E;0, 0) = —(»'m
~ [Q, K'(0)]

~ q& . (2.'t)

Now, if we take two pions to zero four-momentum, we obtain to order ee' (or ce,)
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z(m, ' —q z)
+-o( t u t s Io I 0) (~2f )z f 2

x d'x, e"p"3 0 T 2 +, , ~„A," x, X' 0 +~„A" x, +, Q", X' o

+ [Q"„8„~~(.,)l[q",~ (0)]+ [Q", ~„&."(&.)][Q",36'(0)]

+(+- -))) lzl&, (2.8)

[Q.",~'] = [Q.",30']-0 (2 9)

in the case when n' and w have been taken soft.
This involves discarding terms such as T([Q"„
a„»]s„A,'X'), which is of higher order than the
terms retained in Eq. (2.8).

If X' is the conventional electromagnetic Hamil-
tonian, R, , given in Eq. (1.2), then

and

c
ss =

[Q, , T~', J =i f,,k Tk' + zf, k T,'k,

Iqi ~ Tyk] — (dz~kT-kk+ "zkkTJk+~odkimTim

+ 5lk 9lmTzm) I

(2.19)

(2.20)

(2.21)

s,~~ = -z[q,",.X»] (2.10)

neglecting the SU(2)-breaking contribution. The
models we wish to consider have the following
transformation properties:

(a) (3, 3) +(3, 3) (Ref. 10)

and

X sg =Op+ cg8

[Qz~y uj ] zfzjkuk y

[Q. , vg J = zf(jkvk

[q", , u, J = -zd„,v„
[q,". , v, ]=id,„u.„, .

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

where i =1, . . . , 8 and j, k=0, 1, . . . , 8. The coef-
ficient c is determined from the pseudoscalar me-
son masses to be -1.26.

(I» (8, 8) (Ref. 12)

and the amplitude in Eq. (2.7) vanishes. We also
observe in Eq. (2.6) that if we are considering off-
shell pions we require knowledge of the o terms,
[Q, , S„AP], in order to compare the amplitude at
different off-mass-shell points. These 0 terms
are determined by the transformation properties
of the strong-symmetry-breaking Hamiltonian,
since

where

(2.22)

i, j, k, p, l, andm=1, . . . , 8, and T'and T have
positive and negative parity, respectively. In this
case we obtain c =1.59.

The isospin components of the o terms (i.e.,
[Q, , s„AJ ] for i,j =1, 2, 3) are isospin singlets in

the (3, 3)+ (3, 3) model, while in (8, 8) and (6, 6)
+ (6, 6) we have I = 0 and I= 2 contributions.

We can now use the off-shell extrapolations for
the amplitude, developed earlier in this section,
together with the transformation properties of X'
and Kz~ to obtain conditions on the coefficients in
expansions such as (1.4) and (1.5). We apply these
considerations to both the charged and the neutral
decay modes. In general the neutral decay ampli-
tude Tppp is related to T, p by

Tppp T+ ~p + T~p+ + Tp+ ~ ~ (2.23)

This follows from Bose statistics and the assump-
tion that the final state is l =1.

III. CALCULATION WITH Xem

As mentioned in Sec. I, it has been shown' that
assuming a linear off-shell form for the amplitude,
namely Eq. (1.4),

C
SB & kk ~g 8lm I m

[Q;, Sq J='f;, S, + f;

A&k kk 'f kk Jk»

(2.16)

(2.17)

(2.18)
Tooo =3m+ P(E, +Ez+Ek), (3.1)

T, ,= n+PE, ,

leads to a vanishing amplitude. This conclusion is
independent of the form of the strong symmetry
breaking, and is deduced as follows. Equations
(1.4) and (2.23) give

where i, j, k, P =1, . . . , 8. In this model c' is found

to be 0.67.
(c) (6, 6) +(6, 6) (Ref. 13)

and energy-momentum conservation leads to

Tppp =3m+ Pm q (3.2)
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A = -2'„'C,
2m. 'a= " (C-D).

mn

These two equations are independent of Xq~.

(3 5)

(3.6)

in the rest frame of the g. As pointed out in Sec.
II, the right-hand side of Eq. (2.7) vanishes when
R' is e'3C, . Thus Eqs. (1.4) and (3.2) give

(3.3)

More generally, however, assuming the larger
expansion'" (1.5) for T, , together with the appro-
priate expansion for T,» [which is given by Eq.
(2.23)]

Tooo = 3A + R(E, + E2+ E~) + (2C + D) (qi + q2 + q~ )

(3.4)

to obtain a solution is more complicated and in the
(3, 3) + (3, 3) model proceeds in three distinct steps:

Step 2. In both the amplitudes T+ p and Tppp let
q,"-0and keep the other two pions on the mass
shell. Again, Eq. (2.7) shows that both amplitudes
vanish, requiring

SteP 2. Since in the (3, 3)+(3, 3) model we have

[Q B„A",] =0, (3.7)

T+ o (but not T«0) will vanish if we let q"-0 and
allow n' to be off the mass shell, keeping m on-
shell. In this case we have

A+C(q, '+m„') =0

for all values of q+', and hence

(3.8)

(3.9)

At this stage the slope is determined, for
the on-shell amplitude may be written, using Eqs.
(3.5), (3.6), and (3.9), in the form

T, , (m, ', E„'m„', E;m, ', E,) =Dm„'(I —2E,/m„),

(3.10)

which agrees very well with the experimental value
of the slope.

SteP 3. For Tppp taking two of the pions to zero
momentum (i.e., q,"-0 and q,"-0) so that the third
goes off shell to p& (assuming energy-momentum
conservation) gives

Tooo(0, 0; 0, 0; m „',m „) = 3A + Am „+(2C + D)m „'

x~ e 3 3(0
~ T([Q,", [Q,", s&A,"(x,)]]e'X (0)) ~ q),imw'

(3.11)

[Q,", IQ.", s„A."]l=s„», (3.12)

where again we have made use of Eq. (2.9). Since
in the (3, 3)+(3, 3) model

where o. and P are the on-shell values of the pa. —

rameters in Eq. (1.4), so that for the larger ex-
pansion (1.5)

we obtain"
o. =A+ (2C+D)m, ',
P =B.

(3.19)

(3.20)

D(m „'—2m, ') = —,(n'o(p „)~
e'BC,~(0) ( q) . (3.13)2

Dryer, 2= —3x10 '. (3.14)

The decay widths (with the phase-space integrals
evaluated relativistically) are given by"

The right-hand side of Eq. (3.13) can be related to
the E'-K' and z'-g' mass differences, and follow-
ing Bell and Sutherland (and taking into account
footnote 14) we get

Alternatively, in the literature, frequent use is
made of the formula

I o. I '(m „—3m, )'
+ '3456v 3 ~'m-„ (3.21)

when the slope P/a is equal to -2/rn „and the
phase-space integrals are evaluated nonrelativis-
tica. lly. Equations (3.15) and (3.21) are compatible
to within 20/0. Thus, in this case the decay width
can be written

I', ,=489~~~'(1+0.02y+0. 02y') eV,

r„,=827I~I' eV,

with

(3.15)

(3.16)
, , (m„-3m, )2

I (q-~'~ ~0) = JDm, '/'

= 6x10 ' eV, (3.22)

x=3o. +Pm „,
mn -3m.
m „+3(n/P) '

(3.17)

(3.18) I"„„„(q-z'w m') =600 eV. (3.23)

a value which is three ordersof magnitude smaller
than the experimental value
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In models other than (3, 3)+ (3, 3) the situation is
less straightforward. Step 1 remains unchanged, so
we retain Eqs. (3.5) and (3.6). Step 2, however,
breaks down if XSB transforms as the (8, 8) or (6, 6)
+(6, 6) representation, since [Q",. 9„»,] go in these
models.

But the result of step 2 can be obtained, in gen-
eral, if one assumes that the expansion in Eq.
(3.4) is valid when the 7l meson is taken off the
mass shell and that PCAC holds for this particle.
In this case we have the following.

Step 2'. In Tppp take all the mesons to zero mo-
mentum. Then

&o II q.", [q.", [q,",
I q,",x,.(o)]]]]I o& = o,

(3.24)

and we see from Eq. (3.5) that Eq. (3.9) is indepen-

dent of the transformation properties of X», thus
Eq. (3.10) still holds, and in all these models we
have the correct slope. Note that since step 2'
gives the same answer as step 2 for the (3, 3)
+(3, 3) model, the assumptions involved in step 2'
are quite reasonable.

It may appear that in general step 3 also breaks
down because in models other than the (3, 3)+(3, 3)
model [Q,", [Q,", B„A,"]]wcs„A,"; for example in the
(8, 8) model we have extra pieces transforming as
the 10 and 10 representations under SU(3), while
in (6, 6)+ (6, 6) these are singlet and 27 parts.
Thus, at this stage we cannot relate this amplitude
to (wo(p„)IX, (0)Iq). We can overcome this diffi-
culty, however, in the following way.

SteP 3'. For the amplitude T, p let the charged
pions go soft. Using Eq. (2.8), we obtain

&, ,(0, 0;0, 0;m 2, m„) =A+am„+Dm„'

(&2f}fm, „
d'x, e"o"3-,' f(OI T([Q+, [Q", s„A3(x,)]]e'X, (0)) I q)

+(ol T(s „A&(x,)[q"„I:q", e'x..(o)]])I q)

+ (+—-)]+o terms. (3.25)

The terms [Q,", [Q", s„A,"JJ are calculated, as is
[Q,", [Q,", S„A,"]J in step 3, by using Eqs. (2.10) and

(2.16)-(2.22). Then, comparison of steps 3 and 3'
enabl. es us to eliminate the unwanted representa-
tions and obtain a linear combination of T, ,(0, 0;
0, 0;m„', m„) and T,»(0, 0;0, 0;m„', m„) propor-
tional to (wo(p „)I X, (0) I q). Thus, in this way we
can still calculate the parameter D as was done
before. The results are

(8/8) (3 3 )+(3 3)

= -6x10 'm, ',
D(6,6 )+(6,6) (3 3 )+(3,3)

3&&yP-~ m -2,

(3.27)

(3.28)

Although the 0 terms appearing here are of the
same order in the symmetry-breaking parameters
as the terms we are considering, we discard them
because we cannot calculate them explicitly. Thus,
the calculation which follows can be considered as
an order-of-magnitude estimate of the decay width,
rather than a strict evaluation.

Remembering the current-current form of K,
[see Eq. (1.2)] and using the current-algebra rela-
tions gives us immediately

'I.Q", [Q"-, X. JJ+-'[Q"-, [Q,",X. ]]=2X. (3 26)

IV. CALCULATION WITH X3

W'e have shown in Sec. III, that the usual tech-
niques of current algebra and PCAC imply that the
g-3n decay cannot be completely described by the
conventional electromagnetic interaction. For this
reason, it has been suggested that a further isospin-
breaking interaction should be considered, and
this has been described by the term X, in Eq. (1.1).
The simplest choice for X„and the one we adopt
in the following, is to consider it to be just the
third component of the same scalar octet as that
which appears in the strong interaction Xs~, Thus,
in the (3, 3)+ (3, 3) model, which we wish to con-
sider first, the full Hamiltonian is just

X(x) =X,(x)+ e[u, (x)+ cu, (x)]+e,u, (x), (4.1)

where the u,. were defined in Sec. II.
In the (3, 3) + (3, 3) model one has

rather yields the trivial identity D=D. Thus, we
summarize the results of this section: With X'

, , as given in Eq. (1.2), the slope of the am-
plitude is independent of the form of the strong-
symmetry-breaking X», the decay width for g-3w
is far too small for models where Xs& transforms
as (8, 8) and (6, 6)+ (6, 6), as well as for (3, 3)+
+ (3, 3).

where the notation is self-evident.
Step 3' gives no further information for the case

of (3, 3)+(3, 3), as might have been expected, but

[q"„u,] = o,

[Q"„s„A."J = o,

(4.2)

(4.3)
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as can be seen from Eqs. (2.10)-(2.15).
Using the off-shell extrapolation Eq. (2.3) for the

amplitude T, „and Eqs. (4.2) and (4.3), we find
that keeping the negative pion on shell and taking
the positive pion to zero four-momentum makes
the amplitude vanish for all off-shell values of the
four-momentum of the neutral pion. In this case
energy-momentum conservation gives

2 2 22mqED=mq —m~ +qo,
and so we obtain, using Eq. (1.5),

T, ,(0, 0; m, ', E; q, ', E,)

(4.4)

=A+BEO+Cm~ +D(2mpEO+m~ —mo )

=0 (4.5)

Since the above equation is true for all values of
Eo this leads to"'"

A+ Cm, '+ D(m, ' —m „')= 0,
B+2m qD = 0.

(4.6)

(4.7)

Using these relations, the on-shell amplitude may
be written

T, o(m, ', E„'m, ', E;m, ', Ep)

(mr mrp )
3v3f ' (4.12)

(mx+' —mx p'), = (m„+' m,—p'), (4.13)

(where em denotes the contribution from the usual
electromagnetic interaction) together with

(4.14)(m, +' —m, p')„, = 0

(to first order in e,) and the experimental masses
to get

(4.15)(mr+' —mr p') „=-0.0053 GeVP .

Alternatively, if we follow Qakes and assume that
the u, term arises from a Cabibbo rotation of an
SU(2) x SU(2)-symmetric Hamiltonian, we obtain

(mx+' —mx p') „=-m, '

where the quantity (mx+' —m~p')„, is the contribu-
tion of e,u, to the K' —KP mass difference (which
can be obtained by use of f,'m, '5,, .=(0~[@,". , [Q", ,
~]110&).

To evaluate the right-hand side of Eq. (4.12) we
can use the Dashen sum rule"

=(A+2Cm '+Dm ') = -0.019 GeV'. (4.16)

x 1—
(

2(A + Cm, '+ Dm, ')
Ep . 48

m p(A+2Cm„P+Dm &)

At this stage we would like to point out that the off-
shell expansion of the amplitude given in Eq. (1.4)
gives a vanishing amplitude, for we see from Eqs.
(4.6) and (4.7) that C = D = 0 also implies A =B = 0.

Next, consider the charged amplitude when both
charged pions are soft (q,"-0; qL-0). It is im-
mediately clear from Eqs. (2.8), (4.2), and (4.3)
that the amplitude vanishes. Thus,

I', ,=4.8 eV, (4.17)

whereas using Eq. (4.16) instead of Eq. (4.15)
yields

I'+ 0=62 eV; (4.18)

This result is independent of the strong-symme-
try-breaking transf ormation properties. ' Using
the expression for the decay width given. in Eq.
(3.15), together with Eqs. (4.11), (4.12), and (4.15),
gives

T+ p(0, 0;0, 0; m„', m „)=A +Bm „+Dm „'
=0.

Solving Eqs. (4.6), (4.7), and (4.9) gives

A. =-2Bm„= -Cm„'=Dm„'.

Substituting these values in Eq. (4.8) gives

T, ,(m, ', E„m„',E;m, ', .E,)

(4 9)

(4.10)

which is again far too small (I","Pp =600 eV).
Before discussing the (8, 8) and (6, 6)+(6, 6) mod-

els, we would like to exhibit explicitly why it is
not allowed to neglect 0 terms arbitrarily. Con-
sider the charged amplitude when n' and w' are
soft (so that q

' =m „'). One obtains

T, ,(O, O;m„', m„;O, O)= ', (x'(p)~u, ~q(p))

+o terms

=A 1 —— —, 1- 1 — '-; -- --, 411

yielding the correct value for the slope. To de-
termine the value of A and obtain the decay width,
we proceed as in Sec. III, step 2', and take all the
mesons to zero momentum, which gives in this
case"

(4.19)

where the o terms are of the same order of mag-
nitude in the symmetry-breaking parameters as
the term (c,/f, ')(n P~ u, ~ q), which is proportional
to A (since A-(e, /f, ')(0(up(0) -(e,/f, '(wP~u, ~q)).
Therefore neglect of o terms in Eq. (4.19) would
cause A. to vanish, and consequently the whole am-
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plitude would also vanish.
Now we would like to consider a "strong" SU(2)-

breaking Hamiltonian transforming as the (8, 8) or
(6, 6)+ (6, 6) representations of SU(3) xSU(3). In
these cases, we choose K, to be the third compo-
nent of the same octet as Xs~, so that we have for
the (8, 8) model

R~ = d~;;S;~, (4.20)

X3 (f3fg Tf) (4.21)

for the case of (6, 6)+ (6, 6), where S,&
and T,&

were
defined in Sec. II. Equations (4.2) and (4.3) are
not true for these models, and so we do not expect
to obtain Eqs. (4.6) and (4.7) in general Ho. wever,
in the (8, 8) model, taking w' soft in T, , and keep-
ing the other particles on the mass shell, we ob-
tain

o+gPmv =0
~ (4.23)

where we have used energy-momentum conserva-
tion to obtain E, =-,'m~. Therefore, in the (8, 8)
model we also get the correct slope. However, in

the (6, 6)+ (6, 6) model, the amplitude in Eq. (4.22)
does not vanish from symmetry considerations,
since [Q,",d„&T,', ] has a 27 SU(3) com. ponent with
an I= 2 part. Thus, in the (6, 6) + (6, 6) model, we
are unable to predict the slope. To estimate the
value of the parameter a, we again take all par-
ticles soft; this gives

(mr, 2 —m „02)„,
3&Sf,' (4.24)

for the (8, 8) case, while

31(mr+' —mro')„,
21@Sf ' (4.25)

in the (6, 6)+(6, 6) model. Hence, we are able to
calculate the decay width in the (8, 8) model, but
for the (6, 6)+ (6, 6) case we have to assume the
correct slope. Using Eq. (3.15), the decay widths
are found to be

(4.22)

Since the final n n state is in the S wave, "Bose
symmetry forces this state to be 1=2. However,
[Q~+ d3, )S(~] has only 8, 10, and 10 SU(3) compo-
nents which do not contain I =2 parts. Therefore
the amplitude in Eq. (4.22) vanishes. This is the
only current-algebra zero which we can obtain
without arbitrary neglect of o terms. Thus, we
may use the expression given in Eq. (1.4) for the
off-shell expansion of the amplitude. Then the
relation T, o(0, 0; m „',8;m„', Eo) = 0 leads to

l, =4.8 or 62 eV

in (8, 8) [which is the same result as in (3, 3)
+(3, 3)], and

(4.26)

(4.27)I", ,=94 or 1200 eV

in (6, 6)+(6, 6), where, as before, the two values
quoted come from using Eqs. (4.15) and (4.16),
respectively. The (6, 6)+(6, 6) result seems to be
better than the results of the two other models,
but is still not in good agreement with the experi-
mental value of 600 eV.

V. DISCUSSION

We have tried to explain the p-3r decay, using
both a conventional electromagnetic interaction
and "strong" isospin-breaking terms within the
framework of standard current-algebra tech-
niques, such as PCAC and soft-meson theorems.
Since the strong interaction plays an important
role in defining the divergences of the axial-vec-
tor currents, we have considered three different
possible representations for the Hamiltonian,
namely (3, 3)+ (3, 3), (6, 6)+(6, 6), and (8, 8).

In order to proceed, it is necessary to make
further assumptions. These vary from model to
model, and in each case we assume a minimum
set in order to obtain predictions. In particular,
we always have to choose an expansion for the
off-mass-shell amplitude. Experiment shows
that the decay is well described by an amplitude
which depends linearly on the energy of the neu-
tral pion, Eq. (1.4). In each ease we attempt to
use this expression for the off-mass-shell ex-
trapolation. When this leads to a vanishing am-
plitude, we use the next simplest assumption
which includes linear dependence on the squares
of the four momenta of the pions, Eq.(1.5). With
energy-momentum conservation, and the g-meson
on the mass shell, this is the most general am-
plitude to this order. In taking the g meson soft,
it is, in principle, possible to include an extra
q-momentum-dependent (P~-dependent) term.
Generally, we are unable to predict the decay
width by assuming P „' dependence; however, in
the (3, 3)+ (3, 3) model with the conventional elec-
tromagnetic interaction, it can be seen that the
g dependence does not appear. Thus, we do not
consider this term.

Our results can be summarized in Table I. When
using X, , we are forced to use the enlarged ex-
pansion (1.5) in order to obtain a nonzero decay
rate. For a strong Hamiltonian transforming in
the (6, 6)+ (6+6) and (8, 8) representations, our
results for the decay widths are only an order-of-
magnitude estimation, since we have arbitrarily
neglected o terms. The decay width is too small



2260 P. DITTNER, P. H. DQNDI, AND S. E I IE ZER

TABLE I. Calculated and observed decay width for
q-37t decay.

I'(g z+ 7t. 7t.p) (ev)

"U3" term

+ em

(3, 3) +(3, 3)

(6, 6) + {6,6)

(8, 8)

Expt. decay width

0.6

0.6

4.8

4.8

600

1200

62

(mz+ —mzP )„=-0.0053 GeV, determined by fitting
pseudoscalar meson masses.

(mz+ —mxp )„=-0.019 GeV, determined by
Oakes's r otation.

bythreeordersof magnitude, and thus the con-
ventional electromagnetic interaction cannot de-
scribe this decay with any of the accepted modes
of strong symmetry breaking.

Considering "strong" isospin breaking in the
(3, 3) + (3, 3) model, we find that it is still neces-
sary to use an enlarged off-shell amplitude. Using
all possible soft-meson theorems, it is shown
that arbitrarily neglecting o terms leads to a van-
ishing amplitude. When the isospin-breaking
term transforms as a member of either the (6,6)
+ (6, 6) or the (8, 8) representation, the off-shell
extrapolation may be described by the smaller ex-
pansion, Ec(.(1.4). All these models give small
decay widths, although the (6, 6)+ (6, 6) model is

somewhat larger than the others. The hypothe-
sis due to Oakes that the strong interaction is in
some sense given by a Cabibbo rotation of a Ham-
iltonian describing zero-mass pions allows one to
obtain decay widths larger by a factor of 13.

In all the models, apart from that with "strong"
isospin breaking transforming as (6, 6) + (6, 6),
the slope is predicted to be —2/m„, in excellent
agreement with experiment. In our calculation
with the (6, 6}+(6, 6} model, we have insufficient
information to calculate the slope, and so in this
case, to predict the width, the slope must be tak-
en as an input.

These results tend to suggest that within the
usual framework of current algebra the "strong"
isospin-breaking term is a more acceptable can-
didate to describe g-3m decay process than is the
usual current-current electromagnetic interaction,
but the results are still far from satisfactory.
However, the values of the decay width could
clearly be improved for the "U,"term by slight
variations in some of our assumptions, such as
PCAC for the q meson, "or a larger expansion
for the amplitude, but then, although the experi-
mental value could be fitted, no definite predic-
tion could be made.
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The possibility that multiple v, -e scattering within the sun can account for the low solar-neutrino

counting rates is considered. In the absence of v, -e scattering data, bounds are imposed from v, -e

data, introducing a requirement for strong forward peaking. Generalized four-fermion interactions
calculated to first order are found to be inadequate, Electromagnetic v, -e interactions with a finite
neutrino magnetic moment are found to be satisfactory, but require a seemingly unphysical neutrino
form factor corresponding to a mean neutrino radius of r & 7 g 10 ' cm.

Considerable interest has been generated by the
unexpectedly low counting rates for solar neutri-
nos. ' Searches' ' for possible explanations have
been conducted in many areas of astrophysics,
chemistry, and physics. In this paper we report
an investigation of the possibility that the anomaly
can be explained by the multiple near-forward
scattering of neutrinos from solar electrons.

Since the neutrino absorption cross section of
"Cl rises rapidly with increasing neutrino energy'
above the threshold at 0.814 MeV, the counting rate
is very sensitive to the energy spectrum of the
neutrinos. Consequently, a significant downward
shift in the neutrino energy spectrum resulting
from energy loss in multiple scattering would cause
a substantial decrease in the counting rate. The
preference for considering scattering on electrons
rather than nucleons or other more massive par-
ticles is based on the familiar enhanced energy
loss for lighter targets at corresponding momen-
tum transfers. Although this possibility has been
considered by Bahcall" no quantitative analysis
has been reported.

The importance of multiple scattering is usually
disregarded on the basis of V-A predictions' for
the v, -e cross section and the apparent success of
the model for 7, -e scattering. " The predicted
v, -e cross section suggests a solar mean-free
path on the ord r of 10' solar radii. Indeed, the
expectation of a negligible neutrino interaction
within the sun has provided the primary impetus
for solar-neutrino experiments, since it has been
hoped that this property would make available
otherwise unobtainable information about the solar
interior.

The chance that forward-peaked p, -e scattering
might account for the small observed counting
rates is left open by the absence of experimental
data for the v, -e interaction" and the possibility
of non- V- A. neutrino-electron interactions.

If, however, we insist that the v, -e cross sec-
tion must behave at least qualitatively as the v, -e
interaction (e.g. , total cross sections of the same
order of magnitude), then we should recognize the
limited sensitivity of previous v, -e experiments to
near-forward scattering. This experimental fact
is a consequence of the minimum observable ener-
gy for recoil electrons s,g, ii The relationship be-
tween the recoil electron-kinetic energy T and the
neutrino-scattering angle 8 (in the lab. system) is
given by

2(E'/m) sin'(-,' 8)
l+ 2(E/m)sin'(-, '0) '

where E (E') is the initial (final) neutrino energy
and ns is the electron mass, The squared momen-
tum transfer t is related to T by t = -2' T.

As an example from results of the most recent
p, -e experiment, ' T;„=3.6 MeV, which the authors
use for comparison with theory, corresponds to a
minimum scattering angle I9mjn = 14 for antineutr i-
nos of a maximum energy of 10 MeV. The most-
forward data are reported in the 1957 paper of
Cowan and Beines" for which T„„.„=0.1 MeV and
T =0.5 MeV.

Our approach is to investigate the energy loss
for multiple scattering in the sun for particular
forms of the v, -e interaction which are constrained
to satisfy the experimental bound for the p, -e
cross section over the region T;„+T& T,„. The


