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A group-theoretic approach, previously used to derive a precise hybrid formula relating electromagnetic
mass differences of pseudoscalar mesons and baryons, is extended here to the barycn decuplet and the
vector- and tensor-meson nonets. We derive three sum rules relating mass differences within isotopic-spin
multiplets of the decuplet, as well as a hybrid formula relating baryon-octet and -decuplet electromagnetic
mass differences. Using the present experimental average for the =' -=' mass difference, the hybrid formula
can be used to predict M ~- —M ~. = 3.2+ 0.5 MeV, M~. —M~. = —0.24+ 0.16 MeV, and

Mq" —Mq- ——0.72+ 0.48 MeV. No assumptions concerning U-spin symmetry are required in obtaining
these results. With the 27-dimensional part of the SU(2)-breaking interaction taken to be a U-spin singlet,
two additional predictions follow: M y- —M yo = 3.4+ 0.6 MeV and M~" —M~. = 3.9+ 0.9 MeV.
Hybrid mass formulas are also derived for meson nonets. Using the present experimental average for the
E -E + mass difference, we predict the neutral p meson to be heavier than its charged counterparts by
approximately 5 + 2 MeV.

I. INTRODUCTION

In a recent paper' we have used a group-theo-
retical approach to derive a new hybrid mass
formula, relating electromagnetic mass differ-
ences of baryons and pseudoscalar mesons. The
experimental accuracy of (2 +2)% of the mass
formula derived

5(mro' —mr+')+2(m, +' —m, o') 3 Mr- —M, +

2m~ +m~ —3m~ 2 M3,- M~

is essentially within the accuracy of the measured
electromagnetic mass differences. Among the
mass formulas which have been derived over the
last twelve years for "electromagnetic mass dif-
ferences, " only the well-known formula of Coleman
and Glashow, ' relating mass differences within
the baryon octet, is of a comparable degree of
accuracy. In fact, the derivation of Ref. 1 em-
phasizes the similarity of the physical content of
the two formulas.

In obtaining Eq. (1) one assumes that the sym-
metry-breaking Hamiltonian can be treated to
first order in perturbation theory, after being
separated into SU(3)- and SU(2)-breaking parts.
The symmetry-breaking parts are allowed to be-
long to 8- and 27-dimensional representations of
SU(3). Assuming that the 2'I SU(2)-breaking part
behaves like a singlet under U-spin rotations, the
hybrid formula (1) is obtained by equating the
ratio of the octet matrix elements of th'e SU(3)-
and SU(2)-breaking parts within the pseudoscalar

octet, to the corresponding ratio of the antisym-
metric octet matrix elements within the baryon
octet.

Accepting the theoretical basis which is sug-
gested in Ref. 1 for the formula derived there,
one is led to expect that the same approach can be
extended to other multiplets, and under similar
conditions it would lead to hybrid mass formulas
of comparable accuracy. Specifically, if the suc-
cess of (1) is due to a fundamental operator iden-
tity of II"' and H"', as suggested in Ref. 1, accu-
rate formulas should hold also when one considers
multiplets other than the pseudoscalar octet, for
which there is also only one (symmetry-wise)
octet ma.trix element.

From the other multiplets, we select the better
established decuplet of baryons and the nonets of
vector and tensor mesons, as the suitable objects
for our considerations. Although mass differences
within isotopic™spin multiplets are much more
difficult to establish experimentally for the wide
resonances, ' and there are also some theoretical
ambiguities related to their relatively large decay
widths, their theoretical calculation is of obvious
interest and numerous authors have considered
the question of mass sum rules since the advent
of higher symmetries. In particular, a large
number of theoretical approaches have been ad-
vanced to analyze the electromagnetic mass dif-
ferences of the decuplet. Reference 4 has a fairly
complete list of these approaches and of their
various predictions. It is interesting to remark on
the wide variety of predictions for the electromag-
netic mass differences of models, which otherwise
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II. MASS FORMULAS FOR THE DECUPLET

Following the approach outlined in Ref. 1, we
express the symmetry-breaking (SB) Hamiltonian
to first order in SU(3)-breaking couplings (g,.) and
the SU(2)-breaking couplings (n, , P, , y,.) with the
conventional notation H(~'»)

3

(8) (27 ) (8) (27 )
SB g 8 (000) g 27 (000) + ™8 (000) 27 (000)

(8) (27 ) (27 )+Ps +(ohio) +&» +(ohio& +y» +&ooo& ~ (2)

Using (2), the mass differences within the iso-
topic-spin multiplets of the decuplet are given by

M; -M,.=2(—,', )"'tl. ~+2(—,', )"'P., ~.„(3b)

-2(—,', }'"y., ~.„
M, , -M~ =2( —,', )'"P, ~ —3(—,', )'"P„&„

(3c)

M& -M, =2( —,', )"'P, g —3(—,', )"'P„~,,

M-. ~o -M, *- =2(—,', }"'P,~ —8(—,', )"'P„~„.
(3f)

Within our framework, a possible 64 contribution
to the mass differences is neglected. ' b, , are the
normalized reduced matrix elements of H"' with
the convention of de Swart. ' The six equations for
the three unknown matrix elements allows the
derivation of three sum rules:

give identical results in the realm of medium-
strong symmetry breaking. Thus, the electro-
magnetic mass formulas acquire a special role in
judging the validity of these models.

Although we conform with the practice of using
the wording "electromagnetic mass differences, "
there is no commitment in our approach to a pure
electromagnetic origin for the mass differences
within the isotopic spin multiplets. Our framework
solely requires an SU(2)-breaking interaction
which is appreciably weaker than the SU(3)-break-
ing one, and has the symmetry properties speci-
fied in (2). Part of our results will be obtained
without any assumption about SU(2)„ invariance
(obeyed by electromagnetic interactions), and
those results obtained by using some assumption
concerning SU(2)U properties are carefully iso-
lated.

M~+ —2M~0+M„- = M~++ —2M'+ + Mg0, (4b)

(M~+ ill,o)+(M.*o-M~* )=-M,+ -M„. -(4c)

g„~„=(—)'"(M, —2M-. *+M„)
=42.1 (-3 ~4) MeV=O,

go Ao = (o)' (M~ —4M3, ++ 3M')

(6a)

(6b)

where 4,. are the normalized reduced matrix ele-
ments of H"'. In order to obtain a hybrid formula,
we follow the argumentation of Ref. 1 in making
the identification

We stress that these formulas hold to first order
of SU(2)-symmetry breaking [i.e., to order e'
and to the same order of possible additional SU(2)-
breaking interactions, as expressed in (2)] and
are obtained without any assumption about the
properties of the SU(2)-breaking interaction under
U-spin transformations. Equation (4a), which
has been noted by various authors, ' ' is essentially
a consequence of charge independence within the
T =—,

' multiplet and is therefore independent of
SU(3) considerations. Equation (4b) expresses
the equality of the ~T=2 contributions to the mass
differences within the two multip. ets, while (4c)
is an equality of a linear combination of AT =1
contributions from both 8 and 27. Sum rules (4b}
and (4c) have not been obtained before from sym-
metry considerations, to the best of our knowl-
edge. Nevertheless, either one or both have been
shown to be valid in various variants of the quark
model 'o ~2

The physical content of Eq. (4c) is very similar
to that of the well-known Coleman-Glashow equa-
tion' for mass differences within the baryon octet.
The latter can also be derived' without any as-
sumption about SU(2)~ invariance, and is an ex-
pression of the magnitude of the antisymmetric
octet reduced matrix element. Thus, we consider
(4c) to be the analog of the Coleman-Glashow rela-
tion within the realm of the baryon decuplet.

For the decuplet, there is no need for any addi-
tional assumption in order to isolate P, b, , whose
explicit expression in terms of mass differences
is needed for obtaining a hybrid formula. Thus,
we do not have to proceed as in Ref. I and to make
the SU(2)~ assumption relating y» to P», at this
stage. From (3b) and (M) we find

p, ~, = [4(M,.-M,.)+(M-*o-M-. *-)]. (6)
vS

flO

Neglecting the SV(2)-breaking interaction in (2),
one can easily derive

M ~++ —M~ ——3 (M~+ —M ~o), (4a)
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Using also the equality of the appropriate anti-
symmetric octet matrix element within the baryon
octet, i.e. , D„=D„as well as their explicit ex-
pressions derived in Ref. 1 from the Hamiltonian
(2), we find by equating P, Z, /g, g to P, Dz/g, Dz

4(M~+ —M~0) +My+0 —Mn*- Mp- —Mr+
M~+ 3M~ —4Mg+ Mg —MN

(8)

Using the equal-spacing rule resulting from the
vanishing 27 contribution of (6a}, we can rewrite
(8) as

(M=+- —M=eo)+4(M&o —M&+) 2 Mr- —M&+

Mg+ —Mg 5 Mg —MN

(8')

Formula (8') is the decuplet hybrid mass formula
analogous to our previously derived' Eq. (1), ex-
cept that no assumption concerning invaxiance
under SU(2)„ transformations has been made in
obtaining (8) or (8'}. In this respect, its similarity
to the Coleman-Glashow formula, "goes even
further than that of Eq. (1).

By using (4c) we can obtain a different form for
(8'), which is also more transparent for comparing
to other previously derived"'" hybrid formulas,
as follows

4(Mr —M„+}—3(Mg~- —M gp) 2 Mr- —Mr+
Mg*-Mg 5 M-. -MN

(9)

The formulas (8') and (9) are different from their
predecessors. In the Coleman and Glashow tadpole
model, " the 27 contribution is evidently neglected
in deriving their formula, while Eq. (13) of
Radicatj, e~ al." is obtained from assumptions
different from ours, leading to hybrid formulas
having numerators and denominators with different
SU(3) transformation properties.

The assumption of SU(2)c invariance for the 27
part of H implies

and then several additional relations hold, namely

M~ —M~o =Mgw- —Mg*o =M~ —M~0,

mass differences is such that it is not possible at
present to check the relations derived here with
reasonable degree of confidence. A search of
the literature reveals the following situation:

(A) 6 Mass Differences. We found two relevant
references, giving

M~o —M~++ =2.9 +0.85 MeV (Carter et al."),
M~- -M~++ ="t.9+6.8 MeV (Gidal et at.").

(B) Y' Mass Differences The ."Review of Par-
ticle Properties" lists' nine experiments, which
give for (Mr -Mr+) values between 2 to I t MeV.

(C):" Mass DIfference. The world average of
five experiments which are reasonably close in
their findings is given' as

Mgw- -Mg*o =3.4 &0.6 MeV. (12)

M~- —M~+ =3.2 +0.5 MeV,

M&o —M&+ =-0
~ 24 +0.16 MeV,

(14)

and using (4a) one further has

M~++ -M~ =0.72 ~0.48 MeV (i6}

We emphasize that the predictions (14)-(16)are
obtained by using the present world average for
Mg* -Mg*o, and a conclusive test of our approach
requires the accurate determination of the quan-
tities appearing in (13). For comparison, the
hybrid mass formula of Radicati et al.'4 predicts
Mr —Mr+ =6.1 +0.3 MeV (the uncertainty of their
prediction is smaller since their formula reads

(M„-Mr+)=(M r- —
Mr+ ) (Mn s —M g)/(M~ —M„)) .

At this stage, we can make some predictions if
we use the world average (12) for what seems to
be the better established mass difference. Nu-
merically, our formulas (8'} and (9) read

(M-. g- —M~*o) +4(M~0 —M~+) = 4(M„- —Mr+)
—3(M *- —M~+0}

=2.45 +0.05 MeV.

(13)

Using the value (12), we predict from (13)

MI,+ -M~- =Mg+ -Mg- . (11b)

These are the relations obtained by many authors
in the past (e.g. , Refs. 7-9) for the electromag-
netic mass differences within the decuplet, by
using the conventional approach of SU(2)„ invari-
ance. Combining (lla) and (11b) one can recover
our sum rule (4c), which we have shown to hold
independently of the SU(2)U-invariance hypothesis.

The experimental situation concerning decuplet

The tadpole model" has all the six mass differ-
ences (3) equal among themselves, and from their
hybrid formula equal to -3.1 +0.3 MeV.

If we use the relations (11a}and (11b}derived by
the additional assumption (10) of SU(2)a invariance
for the 27 part of H, in combination with our hybrid
formula (8') or (9), one can predict all the other
five independent decuplet mass differences from
the experimental input (12). One thus obtains
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M ——M 0= Q.4 y0.6 MeV,

Mg- —Mpo ——3.4 +0.6 MeV,

M&0 —M&+ ——-0.2 +1.1 MeV,

M~o-M~+ = -0.24 +0.16 MeV,

Mg+ —M~++ = -3.9 +0.9 MeV.

(17)

III. HYBRID MASS FORMULA FOR MESON NONETS

Let us consider first the nonet of vector mesons.
It can be treated along the same lines as the deri-
vation for pseudoscalar mesons. ' In this way a
hybrid formula analogous to (1) is obtained by
replacing m~-m~~, m„-mp, and m„-m~, .
Making the assumption that the 27 part of the
SU(3)-breaking Hamiltonian is negligible com-
pared to the octet part, one can use 2m~+'+m~ '

8

—3m, ' = (10/3)(m~g' —m, ') to obtain

5(m qo —m w+ )+2(m + —m o )

3 M ~- —M~+
(18)2 M~ -M~

In obtaining (18) from (2), one has to assume
SU(2)U invariance for the 27 part of H in dealing
with the meson mass differences.

There is nevertheless the delicate question of
the correct procedure of formulating mass sum
rules for vector mesons. The arguments of
Coleman and Schnitzer" indicate that the mass
sum rules obtained as a result of symmetry break
ing should hold for the inverse masses. If we
rewrite the left-hand side of (18) with this ap-
proach, the hybrid formula can be recast in the
following form:

5(m p'/mz*')(mzqo' —mz*+')+2(mz+'/m, ')(m, +' —m, ,') 3 Mz —~z+
(m *' —mp') 2 M

There are no good data for the p'-p' mass differ-
ence at present. On the other hand, an average'
of several experiments indicates a K* mass dif-
ference of mego —m~~+ =6.1+1.5 MeV. If we
accept this figure, we can use (18) or (19) to pre-
dict the Amp mass difference. One thus obtains

or

mpo —mp+ ——10.7 +3.5 MeV

mpo —mp+ =4.5 +1.5 MeV

(18')

(19')

depending on whether one uses the mass-squared
or the inverse mass-squared approach for ob-
taining the sum rule.

In view of the known difficulties involved in the
calculation of electromagnetic mass differences
of vector mesons, very little has been done on
this subject. From a quark model, Gal and
Scheck" obtain a mass difference of opposite sign
and approximately the same magnitude a,s in (18')
and (19'). Using finite-energy sum rules, Bucella
et al."obtain m p+ m po 1 Me V and a similar
result is obtained in a quark model by Barton and
Dare. ' Recently, Brown and Mich have used a
renormalizable Lagrangian with spontaneous sym-
metry breaking to obtain a finite contribution to
the charged-p-meson selfmass. Their calculation
gives 0.52 MeV for the charged-p mass shift. On
the experimental side, an analysis by Pisut and
Roos" of data on p production reveals a heavier
neutral p, giving mpo mp 2 4+2 1 MeV.

It is clear, therefore, that at present our pre-

diction cannot be tested yet. It should be stressed
that we anticipate the neutral p meson to be heavier
than the charged one, if the present data on m~~,
—m~*+ are correct. In view of the remarkable
accuracy of Eq. (1), it is an intriguing question to
find out whether the same approach holds experi-
mentally with a similar accuracy when applied to
the vector nonet.

Our derivation for the vector mesons can be also
used for the tensor nonet —and a hybrid formula
similar to (18) would then result with mz+-m«„», and m z- m„. At present, there is no

N p A&

way to analyze such a formula in any detail.

IV. SUMMARY

By using the Hamiltonian (2) with decuplet states,
we have derived three relations for mass differ-
ences within isotopic-spin multiplets, of which
(4a) does not require any SU(3) considerations for
its derivation. The other two relations, (4b) and

(4c), do not require the usually made assumption
of U-spin invariance for deriving mass differences
induced by SU(2)r breaking.

Following the approach of Ref. 1, we then assume
the equality of the reduced octet matrix elements
of H and H, thus deriving the hybrid mass formu-
las (8') and (9). These relations are also derived
without any assumption about U-spin invariance,
thus underlying their connection to the nonhybrid
Coleman-Glashow relation. "

The presently available experimental informa-
tion is not sufficient to allow a check of these



SUM RULES FOR MASS DIFFERENCES WITHIN THE BARYON. . . 2239

formulas. However, if we use the experimental
world average for the -* —=*' mass difference,
our hybrid formulas can be used to predict

M&0 —M&+ = -0.24+0.16 MeV,

M~- —M~+ ——3.2 +0.5 MeV,

and

M~++ —Mp- =0.'l2 +0.48 MeV.

If we use SU(2)~ invariance for H'"', the hybrid
formulas (8'} and (9) combined with the presently
available experimental input on M-*- -M 4p

[Eq. (12)], permit the calculation of all the mass
differences within the decuplet, the prediction
following from this approach being listed in Eq.
(17).

The application of our approach to the vector
nonet results in the hybrid mass formula (18) or
(19). The latter holds when the symmetry breaking
is originally introduced through the kinetic energy
term of the Hamiltonian. Using the present world
average for the E*'-K*' mass difference, we
predict a neutral p appreciably heavier than the
charged one [by -5 or -10 MeV, from Eqs. (19')
or (18'), respectively].

An experimental effort towards the measurement

of the mass differences discussed here would be
very timely and helpful at this stage of under-
standing of the "electromagnetic" mass differ-
ences.

¹teAdded in Proof

(1) In lieu of accurate "direct" measurements
for M~ -M~+ one can use the average masses of
M~- and M„+ for comparing with the calculated
mass difference of Eq. (14), (Mr-- Mr+),„=3.2
+0.5. An average over a large number of experi-
ments gives' for these masses M~ =1385.9+1.5
and M~+—-1382.81 +0.68, which results in
(M„--Mr+),„=3.1 +2.2, in remarkable agreement
with our calculated value. We are indebted to
Professor L. Wolfenstein for this remark.

(2) In connection with our prediction for the
p' —p' mass difference [Eq. (19'}], it is of interest
to mention that calculations of the charge-depen-
dent corrections to the two-body nuclear potential
require a neutral p meson heavier than the charged
ones by several MeV, in order to account for the
observed proton-proton and neutron-proton scat-
tering lengths [see C. Yalqin and A. N. Akbay,
Nuovo Cimento 13A, 181(1973), where references
to previous works can also be found].
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