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We explicitly formulate the vacuum quark-pair-creation model (QPC) of strong-interaction vertices

(Micu, Carlitz and Kislinger) in terms of the harmonic-oscillator spatial-SU(6) wave functions and an

explicit vacuum quark-antiquark-pair transition matrix (both displaying the quark internal momenta).
The coupling constants are expressed as functions of masses and the oscillator radius. The structure of
the formulas is in agreement with the expressions coming from VMD (vector-meson dominance) and

PCAC (partial conservation of axial-vector current), and the quark-model calculation of leptonic decays.
We carefully investigate the relation of this QPC model with the additive quark model with elementary

meson emission, which is known to explain most of the hadronic decays. We show that we recover this

model in a given limit. It is shown that in this limit, a term cr(i) (f„-k,.) (depending on the
internal quark momentum) appears in place of the usual o(i)'k term; the additional contribution is

similar to the well-known "recoil" term of Mitra and Ross. The main limits of the model lie (i) in the
presence of a phenomenological pair-creation constant and (ii) in the nonrelativistic character of the

treatment. A critical test of our model is provided by prediction of the decay-products polarization. We
find a striking agreement with experiment for the crucial A, and B decays. We make a comparison
with the parameter-dependent model of Colglazier and Rosner.

I. INTRODUCTION

In the simple additive quark model of strong
vertices, one is able to relate the hadron coupling
constants to the coupling constant of elementary
meson emission by quarks. Thus, one is left with
some quark-quark-meson coupling constants, e.g.,
g„, and f„~which remain theoretically undeter-
mined. Nevertheless, n and p are themselves
composed of quarks. Then, this simple additivity
leads to an asymmetric treatment of the two out-
going mesons in three-mesons vertices, although
we expect both to play the same role. This is a
well-known problem of this additivity scheme.
Moreover, since mesons are composite systems
of a qq pair, one should be able to relate the cou-
pling constants g„and f„ to the qq structure of
m and p, namely, to their quark wave function.

We present two approaches to this problem. In
Sec. II, using VMD (vector-meson dominance) and
PCAC (partially conserved axial-vector current),
we relate the strong-interaction vertices to the
leptonic decay of mesons, which is interpreted as
quark-antiquark annihilation, and thus reveals in
a very straightforward way the quark structure of
mesons. We finally express the strong coupling
constants in terms of spatial quark wave functions
of mesons.

In Sec. III, instead of taking information from
leptonic interactions, we consider a quark model
of strong-interaction vertices, namely, the vacu-
um-pair-creation models of Micu and of Carlitz
and Kislinger' [QPC (quark-pair-creation) model].
However, in these models, the internal motion of

quarks is either omitted (by Carlitz and Kislinger
who are just reproducing SU(6)~ predictions) or
treated through fitting of spatial matrix elements
(Micu). Here, we explicitly express the matrix
elements in terms of the harmonic-oscillator wave
functions and an explicit quark-pair-creation T-
matrix element, depending on internal quark mo-
menta. With this QPC model, we obtain formulas
rather similar to those of Sec. II, namely, for the
dimensionless coupling constants G -m' 'A' ',
where m is some hadron mass and A is some wave-
function radius.

We feel that there is a deep relation between the
two approaches, although we are not able to for-
mulate it at present owing to the nonrelativistic
character of our quark model and the lack of
cr osslng.

In Sec. IV, we investigate the limiting procedure
in which the usual additivity calculation is obtained
from the QPC model. We show that simple addi-
tivity is recovered when the emitted meson be-
comes pointlike. However we do not recover, e.g.,
for m emission, the simple 5(i) k, interaction, but
rather v(i) ~ (k„—k, ), where k,. is the initialmomen-
tum of the interacting quark, much like the phe-
nomenological interaction of Mitra and Ross. '

%e then explain the p and co polarization in A.,- pn and B- cow without any free parameters
[SU(6)~ predictions are wrong]; the results depend
only on the oscillator radius, which has been fixed
once and for all by the Regge slope and other phe-
nomena. ' The theoretical interest of these decays,
which badly contradict SU(6)~, has been emphasized
by Colglazier and Rosner. 4 In their relativistic
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pair-creation model there is no unique treatment
of all the hadron vertices, and the explanation of
I'-mesons decay polarization, e.g. , A, - pm and
B- &m, needs a specific parameter. This polar-
ization test is, in our opinion, a very critical test
of the QPC model.

II. RELATION BETWEEN STRONG-COUPLING CONSTANTS
AND QUARK-MODEL WAVE FUNCTIONS COMING

FROM VMD AND PCAC

VMD and PCAC provide relations between the
weak or electromagnetic leptonic decays of pseudo-
scalar or vector mesons and their strong coupling
to hadrons. ' On the other hand, Van Royen and
Weisskopf derive the amplitudes for these weak
and electromagnetic leptonic decays by interpret-
ing them as quark-antiquark annihilation. ' The
transition amplitude is proportional to the wave
function at the origin, that is, to the amplitude for
the quark and antiquark being at the same point.
It is then possible to relate in a straightforward
way the strong-coupling constants to the quark
model nonrelativistic wave functions. This has
been suggested by Feynman, Kislinger, and
Ravndal. '

A. Decay Constants and Quark-Model Wave Functions

Here we only quote well-known calculations of
the amplitudes for mesons decaying into leptons:

p'- e'e
v-e+e

rived the following matrix element':

A= ((0)(2m)'g Q(», s)(olR, a„*(0)I),*(0)lo),
r.s

(2.6)

I"(p'-e'e )=,lq (0)l',
p

(2 'I)

m2 2
('(w -v. i)= —)(„(0)('G„"cos'gm„'((-

(2.8)

and the analogous formulas for w and K.
In (2.8), G„' is the quark axial-vector weak-cou-

pling constant, fitted to give G„/G» =1.2 through
the additivity relations in neutron P decay:

The comparison between the two expressions for
the widths yields

s/r m "'
Alp m QJ

v2 l(), (0)l
' " 2)(2 lg (0)l

ly, (o)l 8~2 ~G lqr(»l
j /2 & K 5 G m 1/2

V F K

(2.10)

where (1)(0) is the meson wave function at the origin,
a* and b* are the creation operators of a quark
and an antiquark, and King describes the (I-(7 an-
nihilation process into a photon or a lepton pair
(see Figs. 1 and 2). The corresponding widths are

7f ~P v~

v.

(2.1) Comparing these results with experiment, Van
Royen and Weisskopf derived the well-known em-
pirical formulas ("Van Royen and Weisskopf para-
dox" ):

These transitions are described by the following
phenomenological Lagrangians: lq, (0)l'= —,

' m„', (2.11)

e
2f

p

(2.2)
m/ m/r
le.(0) I le (o) I

(2.3)

(for K, replace C, by Cr, m by K, and cosB by
sinB). In (2.3) G» =G/v2 . (For example, cf.
Sakurai. ') The resulting widths are

(for ~, we replace f by f and p„„by ~„„), and

2 =iG»cosB(&2 C~)&„7( I y~(1+y, )v

rnp'"

(o
(2.12)

2
p +

)
47)'c( mp

3
p

(2 4)

I" (m —p, v) = " (&2C )'m cos'Bm ' I—6 2 m'
4m r r

(o)

(2.5)

with the obvious analogs for ~ and K.
On the other hand, Van Royen and Weisskopf de-

FIG. 1. The model of Van Royen and Weisskopf for
x weak decay
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(2.20)

where G~~~ ls defined through

2

~int =iG „~NNy, 7N f', —" = 14.6,
4w

(2.21)

Relations (2.12) follow from the experimental
values given by Sakurai "'.

C, = 94 Mev, ~=13,C (2.13)

assuming 8„=8~, and from the Orsay data:

FIG. 2. The model of Van Hoyen and Weisskopf for p
electromagnetic decay.

5 m ~/2

qNN 3~2 N
ly (0)l

(2.22)

From relations (2.18) and (2.22) and the decom-
position of the nucleon into quarks, we deduce the
corresponding f~, and G„, coupling constants:

G roe KEN

From (2.10) and (2.20) we find a relation similar
to (2.18):

~ = 2.10y 0.11,
4n'

2
= 14.8 a 2.8.

4m
(2.14)

In a previous paper ' using a semirelativistic
quark model, we showed that the Van Royen and
Weisskopf leap(0)l and lg~(0)l are compatible with a
meson Regge slope 1 GeV ', but we did not ex-
plain the breaking among lq. (o)I, lqN(0)l, lq, (o) I.

fpqq fpNN 0

g/2

m "2
P

~q ly, (o) I

'

(2.23)

(2.24)

(2.25)

B. Strong-Coupling Cpnstants Via VMD and PCAC

m2
(2.15)

which yields the so-called universality relation

fpNN fpq q

PP

(2.16)

where the strong coupling constants of the p are
defined through the Lagrangian

2;„,=[ifpNNNyp(27')N -fpqqmx &p

fpppp„xs, p„j p„. (2.1 I)

More explicitly (2.16) through relation (2.9) means
that the strong coupling constants of the p are
built up through the quark binding in a way that we
shall discuss later From (2..16) and (2.9) we have

fpNN=fp. .
PPP

=
m'"

P

Multi p(0)l

In a similar way, using PCAC':
CX,p

= C~m~ m

we get the Goldberger-Treiman relation:

(2.18)

(2.19)

Let us write the current-field identity of the iso-
vector part of the electromagnetic current:

G„, and f „being defined by Lagrangians similar
to (2.1V) and (2.21).

We have thus shown that the strong-coupling con-
stants can be expressed in terms of (i) the mass-
es and (ii) the nonrelativistic wave functions of
mesons. "These formulas go one step further
than the usual additive quark model, which pro-
vides only relations between coupling constants
but not the absolute value.

One can now wonder how such formulas could be
obtained by a strong-interaction quark model with-
out the byway through leptonic decays.

III. QUARK-PAIR-CREATION MODEL OF
STRONG-INTERACTION VERTICES

In Sec. II, we obtained an expression for strong-
interaction coupling constants in terms of hadron
masses and. wave functions, i.e., quantities which
can be completely derived from a Hamiltonian such
as the well-known osci11ator quark model. We
also saw that within quark-model concepts, the
coupling constants are fully explained. However,
we are not completely satisfied; first, because
the preceding deduction is rather involved and
includes a detour through weak and electromag-
netic currents, the role of which is not at all clear;
second, because one has therefore no idea of the
dynamical processes which take place in p- gn,
b, - Ng, etc. The aim of this section is to elucidate
the pure strong-interaction mechanism which
could lead to relations such as (2.18) and (2.22).
Here, evidently, what we look for is a basic "pure
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quark" interaction in contrast with the elementary
meson emission model which leaves us with un-
determined constants such as g„, and f„, (see the
Introduction). We propose as a candidate the
vacuum pair-creation model, which is very sim-
ple and appealing.

The model is summed up in Figs. 3 and 4 for
three-meson vertices and meson-baryon vertices,
respectively. It is a rearrangement model with
creation of a quark-antiquark pair; instead of being
created from quark lines, the pair is created any-
where within the hadronic matter and since the two
ingoing quarks suffer no change of their quantum
numbers, the created pair evidently bears the
quantum numbers of the vacuum. The model will
be shown to give, among various interesting con-
sequences, relations closely analogous to those of
Sec. II. By comparison with simple additivity, it
will be shown to explain some yet unsolved diffi-
culties of previous quark-model calculations (Sec.
IV).

What about other possible models? We discard
local four-fermion interactions such as the one
introduced by Marshak and Okubo", however inter-
esting they may be, because they would yield, at
least to first order, a coupling constant propor-
tional to $(0) (Fig. 5) (the argument goes the same
as for the quark-lepton local couplings) in contrast
with the formulas of Sec. II. Note, on the contrary,
that the interaction of the quark-pair-creation
model is nonlocal. Another type of model is the
trilinear interaction between quarks and some
funaamental meson field, such as the vector model
of Fujii." Such an interaction generates nonlocal
forces between two quark lines and would not be
incompatible with the relations of Sec. II. How-
ever, we are not able at present to discuss this
model.

The general graphical form of Figs. 3 and 4 was
suggested by Zweig" from the selection rules
pg pv and g&NN

= 0. (According to these rules, the
quarks of the initial state seemed to be "con-
served". ) It was also much emphasized by Iizuka"

vacuum
qua«
pal r

FIG. 4. The baryon-baryon-meson vertex in the @PC
model.

as a consequence of the neutral-vector model and
of pair-suppression hypothesis. (However, as we
shall see, the pair-creation strength comes out to
be very large. ) It was extended to the four-point
amplitude by Harari, by Rosner, and by Matsuoka
et al." in the interpretation of duality properties.
Such diagrams are well known by now and have
been used by many people either for selection
rules or as a basis for calculations.

What we are doing here specifically is to consid-
er these diagrams in a "naive" way, as reflecting
a true quark-pair creation out of the hadronic
vacuum, and to treat this creation process in the
spirit of the usual additive quark model with spec-
tator quarks, and tridimensional wave functions
to describe the binding. This has been done also
by Micu, ' who, however, did not use an explicit
set of wave functions, but rather fitted the various
spatial integrals. He thus obtained a fit to decay
widths but did not discuss the polarization phenom-
ena which, in our opinion, are the most sensitive
tests of this kind of model.

Carlitz and Kislinger' have also considered a
real quark pair-creation process with 'P, struc-
ture, but they have neglected the internal momen-
tum distributions, and, consequently, they recover
no more than SU(6)~ predictions.

Kitazoe and Teshima, Bohm and Gudehus, Kaiba
et al. ,"and Colglazier and Rosner have considered
"dual" quark diagrams with covariant treatment

k„ vacuum
guar k
Pal I

4 (o)
A

FIG. 8. The three-meson vertex in the @PC model.
FIG. 5. The local four-quark interaction of Marshak

and Okubo.
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(Bethe-Salpeter amplitudes, etc.). This is quite a
different spirit from the naive quark model. The
first three papers do not explain the polarization
phenomena. " Colglazier and Rosner can obtain a
fit to the critical B and A, polarizations, but at the
cost of superposing in an ad Roc manner various
couplings which, in fact, are no longer described
by the simple graphical structure of Figs. 4 and 5
(for further discussion see Sec. IV).

(q,q, I T„,. I 0) = 5(k~+ k,)yP& 11m -m
I 00)

x gi (k4-ks))(i A

(3.3)

where y, are the spin-triplet wave functions of
two spins —,

' and

([i'5'+ 3I3I+u.) .1

A. General Formula for the Matrix Element
in the Present Model

We define the T matrix

S = I - 2 wi 5 (E~ -E, )T,
and write (see Fig. 5 for illustration)

T =I, (SI2(SI3(3 T„, .

(3 1)

(3.2)

The I, 's are the identity matrices reflecting the
quasi-free propagation of quarks in the same sense
as for quark spectators in usual additivity. To get
the matrix element, one must sandwich T between
the hadron states.

Let us now discuss T,.&. The qq pair must be
created in a 'Po state' due to I'- and C-parity con-
servation, P=-(-1)~, C=(-1)~+~, and it must be
a SU(3) singlet. Thus we write

@.- =Xi AC (3.5)

and I (A; B, C) is the spatial integral. For mesons
(see Fig. 4) it becomes

y is the dimensionless pair-creation constant in
the hadronic matter; y still bears a phenomeno-
logical character. We use it as a tool to investi-
gate the structure of hadronic vertices. Its possi-
ble dependence on the particle involved in the ver-
tex will be discussed later. As to the dynamical
origin of pair creation, it will not be discussed in
detail in this paper.

We now write the matrix element between hadron
states

(BCI TI&& =rZ&11m -m loo&&@sOcl c'~C'.-"&
m

xI (A;B, C), (3.4)

wher«e 4"s are the SU(6) wave functions,

I„(A;B, C) = I dk, dk, dksdk~5(k, +k, -k„)5(k2+k, -k~)5(k~+k, —kc)5(kB+k4)alp(k, —k )

X [t)„(k,, k, )(s (k „k3)[t)c(k4, k, ) .
The [t)

's are the Fourier transforms of the meson spatial wave functions:

il„(k, , k )=( -) „fdr dr II(-'(rrp))p(r„r )exp[i(k, r +k, r )],

with

(3.6)

.«-'(~&+~a))14(ri r.)l'=1 dk, dk, 5 (k, +k, )lg„(k, , k, ) I' = 1 .

For baryons, we have analogous formulas (see Fig. 5). Now eliminating the 5 functions in the integral,
and defining

4(kx-k2)=4(ki k2»

we get for mesons in the center-of-mass system

I (d B C)= —,il(k +k )f dk'k, (k —k)i) (k rk)p (-k)p (k) .

For baryons, defining
I

q„(k„k,) -=[t,(k„k„k,),
where

(3.7)

kp —— (k, -%,),
v2

kq —— — (k~+kB -2ks),
6
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we get

}5'iN&)= }}(k +k~)f i}kii}ki2,(-2(k +(—',)'}'kq)}i}l(k, kq) (i(k, (
—') 'k„+k )i) (k +k(—,')'i'k )3 3

(3.8)

If we now use Gaussian wave functions for the ground state, i.e., for mesons:

g 2 S(4 —
k k 2g2

(k k) (" a

and baryons:

1 (r, -r, )'
4A( 1 } 2) (~R 2/3/4 P 2R 2

A I A
(3.9)

2 3/2 & g 2

$2, (k, , k„k2) = " exp — " p (k,. -k,.)'r

g((/(r, —r/)'4( 1 } 2 } 2) (3~R 2)3/2 P 6R 2

(3.10)

then the integrals amount to

I (/l;8, C) = — ( k )
2RARaRc '

2RA +R2 +Rc ex k~ . RA (R/} +Rc ) 6(k +k )nt & & 4& &3/4 m ( p 2+g 2+g 2 p 2+g 2+g 2 P 8 Z 2+g 2+p 2 B c
A B C A B C A B C

I (
' NA) = —'— ( 'k )

R// RA 4R// +RA k 2 12R// +5R// RA t
( )m } } 4)/ )13/4 m A 3R 2+R 2 3R 2 ~R 2 P A 24(3R 2 ~R 2) J N A

(3.11)

(3.12)

B. Calculation of Some Typical Coupling Constants

We now identify the T-matrix elements with those obtained from phenomenol. ogical Lagrangians. We
consider f,„as an example. Factorizing 2ni5(E/ E,), we g—et i. n the center-of-mass system of p-m2/
for the special choice p'( j,= 0)- w' 1/' (Oz axis is in k, direction)

"(2)"'(2 )"' " ' ' " ~ 3&2 4
P P

7r 3'
'II' P 7I P

2 g 2g 2
7I 0

P —
4 2~ 2+~ 2

In the left-hand side, we have set 2E, =m~. In the right-hand side, we multiply the spatial integral by the
factor —1/3v 2 which comes from the L SClebsch-Gordan co-efficient, and the spin-SU(3) matrix element
of the created pair. This last matrix element would come out to be zero, if the relative sign of pion mo-
menta were omitted (see Fig. 6). Then

the exponential can be neglected in a rough approximation.
In the same way, considering p or m emission by nucleon in the initial nucleon rest-frame and taking n.

and p to be slow, we get, omitting the exponential (which is approximately correct),

3(4 i(2 ~&X'& ' ' 4&N'+& '
2m„~3~6~ ' 3R„'+R,' 3R '+R, 2

(3.13)
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A~di ti vi ty

versa' ~y

FIG. 6. These two diagrams are to be added when
calculating the p+ —7l+7ro vertex.

C. COMMENTS

P

'(s~)
I (,(o)l

3R 4R '+R '
3R~ +Rp 3R~ +Rp

(3.14)

In the case off „„,we have good confidence in
the Gaussian wave functions and, moreover, we
have a good estimate of the R value. (See our
paper in Ref. 3.) We find that the factor in brack-
ets is indeed close to one and thus

A remarkable feature of the expression for the
coupling constants is that they are quite similar
to those obtained from consideration of leptonic
decays in Sec. II. Let us, for instance, write f „„
in the following form:

FIG. 7. We indicate here which coupling constants may
be related using, respectively, additivity, universality,
SU(6), and @PC.

which would not be sensitive to those effects, but
would rather test the fundamental structure of the
model. We formulate such predictions in Sec. IV
and compare the QPC model to the old additive
quark model.

IV. QUARK-PAIR-CREATION MODEL AND ADDITIVITY

A. Comparison with Elementary Pion Emission: Deduction
of the Recoil Term of Mitra and Ross

In the quark model, one usually treats the pro-
cesses A-B+n, where A. and B are any hadrons,
by pion emission from a single quark,

x/2 m 3/2
P

(&') l(, (o)l ' (3.15)
Z(i) = ""

[&x(i) .k,][a(i) ~ n],
q

(4.1)

to be compared with (2.18). Evidently the contents
of (3.15) and (2.18) are not fully identical; the
appearance of the arbitrary constant in the QPC
model seems to weaken the interest of the model.
However, one should not underestimate the suc-
cess performed in formulating a simple descrip-
tion of all the strong interaction vertices, with
the help of only basic hadron quantities. In this
respect, we have a much more general description
than in Sec. II, not restricted to 0 and 1 emis-
sion, but valid for any type of emission. In one
formula we recover the various relationships
which were previously obtained for coupling con-
stants from universality, additivity, and SU(6)
symmetry (Fig. V). Indeed, if we take the limit
where the p and m have the same mass and wave
function, we get from (3.13) the Gttr sey, Pais,
Radicati relation.

The way to recover additivity will be seen in
Sec. IV. The main weakness of the QPC model is
that at present one cannot take into account the
symmetry breaking affecting the wave functions
and, moreover, the emitted hadrons are treated
in a nonrelativistic way. Thus, one cannot expect
any accuracy for the magnitude of transition ampli-
tudes. This has led us to look for predictions,

where n is the pion field,

R(i)= "'ir(i) k.— ' k)i(i) ir.
m q q

(4.2)

It adds an isotropic contribution equal for the
three polarization states of p or &.'

Let us now compare (4.2) with the QPC model.
In E(I. (3.4), we make C= v, and consider baryons.
We write 4, and 4„„with the help of 0 and T ma-
trices and get

(N7r i T iN') =—
3

3 4„4)„y o „(3)T(3) ~ y

x I (pr', g~).
g (3) and T(3) denote the spin and isospin Pauli
matrices associated with the third quark. The
factor 3 is for the number of (Iuarks; @ is the
pion isovector.

7Iqq

2mq

being related to g,» by (2.23). This o ~ k, coupling
fails especially for p or u polarization in A, and B
decay; the experimental result is roughly inverse
to the theoretical prediction.

Mitra and Ross' have introduced a recoil term:
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We have defined

0' + g, gg -a„+io,
V+2 ~~ ) 0'

2
— ~ ) OP —0'k

and

~„(¹;Nm)=5(f~+k,) df df df, 5(f,+f, +f,)(l)N(k„f„f,-f~)('JJ, {-2(f„-f,))$ (f 2f )](]),(f, k k )

Writing
X/2

'JJ, (-2(k —k, )) = —22„(k —k,)(—
we get the operator to be taken between C„and C „:

(
Z/2

yb(kN+k ) df2df2dk36(k2+k2+kp)pz(k22 k, kp —k )[o'(3)~ (k —k3)(7(3) ~ g)p (k —2k3)]

x (T)„,(f„f„f,) . (4.3)

Between the brackets, we recognize an operator similar to the one of Mitra and Ross.' It is however
multiplied by the function (C),(f —2k, ), which expresses the composite character of the pion, and the non-
local character of the interaction. In the limit where the pion radius is very small, one fully recovers the
elementary pion emission of Mitra and Ross [assuming in (4.2) E, =M, , i.e., an effective quark mass] .

X/2

y 0 5 k~+k~ f,df2df, 6(f, +k, + f,)g„(f„k„f, —k, ) [o(3)~ (k, —f,)r(3) Q] (1)„(f„f„f,),
(4 4)

where we have approximated (T),(f, —2k, ) by )T),(0)
(very small). This is a remarkable achievement
of the QPC model since the interaction (4.2) is sat-
isfactory for strong decays of mesons and bary-
ons. 2'7 Thus the additivity (in the form assumed
by Mitra and Ross') appears as a limit of the QPC
model when one meson is considered as being
pointlike. But at the same time, the composite-
ness of the meson is still reflected in the k,. term,
i.e., the quark momentum, which cannot be, in gen-
eral, expressed in terms of hadron momenta.

Let us now see what is the effect of the finite
pion radius We se.t (]),(f, —2k,)- c(c),(0), where c
is now &1. We get

on p or ~ polarization in A„Bdecays.
In the case of ground-state mesons (L =0), the

o'k3 term is, after integration, simply propor-
tional to o'k„. This is not true for excited me-
sons, for which the o'k, term yields an additional
isotropic term coming from integration over qua-
dratic polynomials in k, .

We get

(4.7)

(4.S)

~m, 4c
2m, 2vY y„(0) v'3w

(4.5) where

(4.6)

to be compared with (3.13). We see that

2 3/2 4R 2+R 2
N fI

3R 2+R 2 3R 2+R 2

when R,'-0, e- 3 and not 1. This shows that c
also takes into account effects other than R,' g 0;
it takes into account the effect of the k, term.

I„= () d'k 'g ", (f, —f)g (f)g),(-f)g, (k, + k) .

(4.9)

In (4.9) g, "(k~+f) is the Fourier transform of the
L= 1 spatial wave function

B. A Calculation of Polarization in B and & I Decays
g", (k) =i(—',)'~' 'JJ2"(f)exp-

To emphasize the effect of the o'(k, —k, ) cou-
pling to Eq. (3.3), let us consider the typical effect

Then, explicitly in terms of the wave-function
radii,
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M(+ 1) 8/(R~ +Rp'+R~ ) —k, '[1—R~ /(R~'+Rp +R~') ]
M(0) „, 8/(R„'+ R '+R„') (4.10)

M(0) 4/(R '+R„'+R,')-k, '[1-R '/(R '+R„'+R ')'j
ML+ 1)g s („,

' 4/(Ra'+ R„'+R,')
(4.11)

Independent of the accurate value of the radii,
k ' being very small for A, decay, we get

[M(O)]„„„-[M(~1)]„„„
in absolute value and sign. For B decay, k,' being
large, we obtain an amplitude [M(0)]s, of the
same sign as [M(+1}]s „but smaller in absolute
value.

With the three radii equal to the value of A p'
determined from the p-Regge slope, "Ap
GeV ', we get

M(+1)
M(O) „„=1——,'R, 'k, '

= 0.8'7,

M (0)
M (+1) „,=1 ——,R,'k, '

= 0.36.
Let us now compare with the experimental data.
For B-~m, experiments in n'P- n'P (see Refs. 19,
20) give the following value for the above ratio:

description of the experimental situation, pointing
out from BNL data that if the ratio [M (+1)/
M (0)]„~,is real, then

1

M (+1)
M (o)

in remarkable agreement with our prediction in
absolute value and sign.

We must emphasize that the qualitative agree-
ment of relations (4.10), (4.11), or more generally
(4.7) and (4.8), is more important than a quantita-
tive agreement with a given piece of data. The
presence of the isotropic term in (4.10) and (4.11)
is strongly supported by the data. It subtracts
from the k, ' depending term for A,

p
——a 1 in A, —pn

and for A. =0 in B-&um (this difference between B
and Ay is due to their different I -8 quantum num. -
bers).

This success gives us strong confidence in the
quark model classification of parity + meson states
as well as in our dynamical model of strong inter-
action vertices described in Sec. III.

/M(o)/'

P /M(X)/2
M (0) yp 2O

M (+1)
C. More Comments on the Recoil Term

Our prediction is compatible with this experi-
mental value. Moreover, we predict a ratio

1 —[M (O)/M (~1)],S, „v2+(-,')"'[M(0)/M(+1)],„,
real and Positive, which is not in contradiction
with the experimental bound for the D/S phase
/& 45'." At the Kiev conference, Ascoli et al.
reported a new experimental value, "

M (o)
( 1)

=0.68a0.12,

rather larger than our prediction.
For A, -pw, we agree very well with the re-

sult 2'

M (+1) +p
M (0}

However, the SLAC value is lower '.
M (+1)

)
= 0.48 a 0.13.

A~~ P 71

Colglazier and Rosner4 have reported a careful

To our knowledge, the "recoil" term was intro-
duced by Mitra and Ross' mainly to cure the failure
of the e k, term in certain decay widths close to
threshold, for instance, N(1535)- re However, .
they could not predict the ratio of the two contri-
butions, since they did not use a definite set of
wave functions, such as harmonic-oscillator
states; rather, they fitted two separate form fac-
tors for the direct and recoil terms.

Dalitz'4 commented on this recoil term in rela-
tion with I.=i, I=i meson widths, the A„A„and
B being predicted too small with only the direct
term. The recoil term which he gave using a heavy
(bare) quark mass was too small to account for the
experimental widths. However, in view of the tight
quark binding, he suggested fitting a coefficient in
front of the recoil term; but then the small 5-qm
width remained unexplained. Now, we think that
the small upper limit of the 5 width (5 MeV) con-
sidered by Dalitz is not clearly supported by pres-
ent experimental data. "

Feynman, Kislinger, and Ravndal' have intro-
duced n emission in their "quadratic" covariant
harmonic oscillator quark model. In this scheme
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the (mass)' operator is described by a four-dimen-
sional oscillator:

SU(6) limit, the Colglazier and Rosner relation:

(4.15)

the Regge trajectories coming out to be linear.
Their model treats the pseudoscalar meson as an
elementary quantum field, proportional to the di-
vergence of some axial current, introduced in the
M' operator through a minimal prescription, as
in electromagnetism. Because of the quadratic
character of the M' operator, the interaction term
built in this way shows a dependence in the internal
quark momenta very similar to that of Mitra and
Ross' and to ours:

5(i)'lc, +o(,)
—(, )k,

Note that

(4.13)

M —m E~

M, being an effective quark mass. The term of the
order k, '/(M+m)' is a relativistic correction to
the dominant terms. Of course, the results for ~
and p polarizations in B and A., decays of Feynman
et al. are very close to our calculations.

We wonder why apparently disconnected ap-
proaches such as the following: (i) Galilean in-
variance in the static phenomenological elementary
m emission, (ii) a specific prescription for elemen-
tary n emission in the quadratic model of Feynman
et at. , and (iii) the composite n' emission in the
QPC model proposed by us, lead to similar effec-
tive interactions, which depend on the internal
quark momenta k,

Colglazier and Rosner' have studied the parity+
meson decays in the frame of a covariant QPC
model. They note that if the transverse orbital
angular momentum of the created quark pair is
allowed, then the predictions of SU(6)O(2)~, (or
equivalently in our language, of the interaction
term o k~) are considerably improved. They con-
struct independent-invariant couplings by coupling
the orbital angular momentum of the initial meson
to (i) the external independent momentum and (ii)
the orbital angular momentum of the qq pair; this
last coupling leads to a term which contributes to
all polarizations. The various couplings are af-
fected by different parameters. In our notation„
their coupling is equivalent, in a quantitative
sense, to a coupling of the form

Although they apparently lead to similar results,
the two models are not equivalent. What they have
in common is a representation of the decay by a
pair creation plus a rearrangement process. But
the spirit is quite different. In the naive model,
there is an explicit consideration of the quark mo-
tion. We can construct unambiguously the quark
pair-creation amplitude with the help of the spins
and momenta of the quark and antiquark only.
The breaking of SU(6)~ is a natural outcome of the
presence of transverse quark momenta. In Ref. 4,
quarks are only formally present; they are mere
indices; the "wave function" matrices involve
only the momentum and angular momentum of the
hadron itself. One is thus compelled to reintroduce
more structure through extra couplings between the
"pair" and the incoming meson. But the various
couplings depend on the nature of the hadron states
and may be weighted by different arbitrary coef-
ficients for different hadrons. There may be a
different set of coefficients for each I. (of the in-
coming meson). We are thus left with a host of
arbitrary coefficients. On the contrary, in the
naive model, the 'Pp structure describes any de-
cay process, whatever the hadrons may be. Of
course one could note that we have also to intro-
duce parameters for the wave functions. But this
is quite different; these are parameters concern-
ing the hadron in itself and not the decay process
as in Ref. 4. Moreover with the oscillator model—
apart from further complications of the spectrum—
there is only one parameter for the whole set of
wave functions„and it has a direct physical mean-
ing (it is proportional to the Regge slope, as em-
phasized in Ref. 3).

Finally let us say some words on the relativistic
quark model of Mitra and collaborators. " Their
model is formally covariant and treats one meson
as elementary. The couplings are constructed by
starting from the "direct" term o(i).k, . The de-
pendence of the coupling in the masses and ener-
gies is derived from empirical considerations. A
term having a similar effect to the "recoil term"
is obtained in this relativistic version from the
direct term through the correspondence kr2-upkP
However the model destroys the good properties of
the naive recoil term (E,/m, ) a(i) k, in the de-
scription of A., and B decay polarization.

-o(i) ~ (k, -A.k ), (4.14)

where A. is an arbitrary parameter to be fitted. A.

is fixed to be 1 in our model. Note that from our
expressions (4.7) and (4.6) we find, in the exact

D. Comparison with Elementary Vector Emission

Just in the same way as one considers elemen-
tary pion emission, it is possible to use, in the
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FIG. 8. The two possible limits of @PC model considering either B o~ C as elementary.

ordinary quark model, an elementary p or vector-
meson emission (or y emission). The correspond-
ing single-quark interaction Hamiltonian is

ko'eo

(4.16)

the first term coming from the Coulomb inter-
action.

Uretsky has introduced this vector-meson emis-
sion Hamiltonian for A y

p7l' A2 pw J3 &dF de-
cays, because of the failure of the pion emission
cr k, interaction. He proposed to consider both

pion and vector-meson emission (taking the aver-
age), since in p- nm averaging of the two m's is
successful.

Our model, being "dual" in the sense described
above, solves in a very simple manner the problem
of combining pion and vector emission. Our unique
amplitude A- I'+V may be interpreted as either
pion ox vector emission, sehethex toe single out
the pion or the vector particle (see Fig. 8).

At the same time, our model yields automat-
ically a recoil term in pion emission, thus ex-
plaining correctly the decay polarizations.

I et us now write the result of singling out the

p emission for iViVp coupling [considering only the
operator to be taken between nucleon SU(6) wave
functions]:

dk, dk2dks6(k~+$2+K, ) y» (k„%2,k~ —k )

&(—,'[(k —k, ) 'e*]+—io(8)'[(k -k, ) && e*]][T(8)' Q](p(kp —2Q)$» (k, k, k ) . (4.17)

It corresponds to an electric and a magnetic
term, although there is only approximate corre-
spondence with (4.16). One major feature is the
K, term, analogous to the recoil term of pion
emission. In contrast with Uretsky's treatment,
it gives the correct polarization.

This should not be added to the pion emission
term; in fact, we have

(4.18)

and the same for B, A, .

V. CONCLUSION

We have presented a model describing in a very
simple manner all strong-interaction vertices
with only two parameters: 8', which is the
strength parameter of the oscillator simply re-
lated to the Regge slope, and an over-all quark-
pair-creation constant which multiplies every am-
plitude. As is well known, a model for strong-
interaction vertices gives a grasp over a large
class of strong-interaction phenomena besides de-

cay phenomena, through the particle exchange and
resonance interpretation of two-body and multi-
body processes.

The QPC model not only includes many previ-
ously known relationships between the strong
coupling constants, it also makes definite new
predictions. The main pr edictive achievement of
the model is the presence of the recoil term, giving
a good polarization for A, - pm and B- con. We
emphasize this achievement because it tests just
the general structure of the model and is obtained
without any ad hoc prescription.

The QPC model in its present state still suffers
two main drawbacks. First, we have not recov-
ered the full content of the relations of Sec. II;
the general structure of the formulas for the cou-
pling constants is the same, but the derivation
through VMD and PCAC fixes y, which is left un-
determined in the QPC model. Second, our model
treats the three hadrons of a given vertex in a
nonrelativistic way; therefore, we cannot expect
any accuracy in the calculation of absolute values
(in contrast with obtaining qualitative relation-
ships), and we cannot treat the effects of mass
breaking.
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