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ily correct) way to resolve this formal field theory
ambiguity. However, we have applied his method to
this problem and find that it gives results for A ~o and
D f 0 which are twice as large as those given by dis-
persion theory. What is worse, it does not generate
the PC spurion vertex l,=2 suppression factor (mD

mB) i»to and C&o.
This gives a sensitive test of our choice of dispersion
covariants for the spurion process. Schnitzer (Ref. 9)
and Chan (Ref. 10) choose axial vertex covariants g»
and three others which are orthogonal to q~. This
choice contains kinematic zeros which eventually
destroy the needed mD-mB suppression at the k=2 PC
spurion vertex.

34We take the results of J. Mathews, phys. Rev. 137,
B444 (1965). For a review of the somewhat confusing
literature on this subject, see H. F. Jones and M. D.
Scadron, Imperial College report, 1972, Ann. Phys.
(N.Y.) (to be published).
The sign of C3 and C-parity phase of DB is consistent
with Refs. 29 and 30. The magnitude of C& and of gz
should be reduced somewhat due to corrections to the

narrow-width approximation at threshold. See Refs.
7 and 8 and G. Hohler et al. , Nucl. Phys. B39, 237
(1972). In practice this will simply scale up our fitted
values for h2 and h3 but will not alter our fits to the
data in any way.

3 G. F. Chew, M. L. Goldberger, F. E. Low, and
Y. Nambu, Phys. Rev. 106, 1345 (1957).

3~Reference 7 finds that corrections to the narrow-width
approximation (38) reduces (40) to 22% below the experi-
mental value for x&.
The U =1 state Z3 will rule out possible V~0 resonant
contributions.

39It should be noted that the various measurements of
the Z+ -py branching ratio are somewhat inconsistent,
but that the experiment with the smallest errors gives

~

C [ + (D
~

2 = (2.7+ 0.4) x 10 2O Mev 2, closer to our
theoretical prediction.

4 Y. Chiu, J. Schechter, and Y. Ueda, Phys. Rev. 150,
1201 (1966).

4 K. Gavroglu and M. D. Scadron, Imperial College
report, 1972 (unpublished).
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A hard-pion model is presented for a general symmetry. In the case of strong partially conserved
currents the proper vertices are assumed to be analytical. Ward-like identities are obtained for the
contact terms. For the soft-pion process in the symmetry limit of SU(2) && SU(2) a phenomenological
Lagrangian is built which reproduces the results of the hard-pion model. As an illustration we deal
with the K,3 problem, and build an amplitude for the photoproduction process yN mN.

I. INTRODUCTION

Hard pions (H.P.) and the phenomenological La-
grangians (P.L.) have been successfully used in
describing various low-energy phenomena. " It
has been pointed out that both methods give simi-
lar results. More systematic proof of the equiv-
alence of the results given by P.L. with those ob-
tainable from current algebra was given by Dashen
and Weinstein. The equivalence is clear, in par-
ticular for soft-pion emissions in the symmetry
limit. Our aim is to present a general H.P. mod-
el which in some sense is a generalization of the
Gell-Mann-Oakes-Renner (GMOR) model' for
symmetry breaking and the work of Gerstein et
al. ' on the structure of 3-point functions.

The main advantage of the H.P. model presented
is the possibility of extracting the scalar (pseudo-
scalar) contribution from the nonconserved cur-
rents. Having constructed the H.P. model, we

shall discuss soft-pion-processes in the symmetry
limit. We shall show that the same results may
be obtained using a P.L. in the tree approximation.
As an illustration for the use of the H.P. model
we shall deal with the K» problem and with the
photoproduction process yN-mN in the P &1

y
GeV/c region.

II. THE HARD-PION MODEL

The construction of the H.P. amplitudes will be
achieved in four steps.

SteP 1: The symmetry stmctuxe. The symmetry
structure of the model is defined by the following
commutation relations between the currents and
their divergences ':

[J,o(x), J"(y)] 5 (xo -yo) =iC„,Z&(x)5'(x -y) +S.T. ,
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s„Z~(x) = e~T~;p» (x), (lb)

[J.'(x) 4'»(S)]&(x'-y') = fT-'»peg(x)&'(x-S) (lc)

(We sum over repeated indices. ) C„,are the
structure constants of the Lie algebra defined by
the charges of the currents. S.T. is the Schwinger
term, for which we assume we have at most a
first-order derivative of the 5 function. e~ are
the symmetry-breaking parameters, and the fields

Q,. (x) are scalars [pseudoscalar according to the
nature of the current J'~(x)] forming an irreducible
representation of the Lie algebra. Equation (1b)
may be obtained for example in a GMOR model
in which the symmetry-breaking part of the Ham-
iltonian, H», is given by

H, s (x) =-e,P, (x) .

For complete specification of the symmetry struc-
ture one should also specify the symmetry of the

Q, EGs ~e)Tq» =0, vk,

Q, RG„~T;»A» =. 0, vj .
(2a)

(2b)

The symmetry structure will be used through
%ard identities applied to the covariant time-or-
dered products of currents and their divergences.
The existence of such time-ordered products was
proved by various authors. '

Step 2: The exjemal singula~i ties. Let us de-
fine the Fourier transform of the vacuum expecta-
tion value of the covariant time-ordered products
of n fields A, (x), . . ., A„(x):

vacuum, which might be broken "spontaneously, "
i.e., there are some fields Q, (x) such that
&0$ (0) lo& =&,.x 0. Such fields would give rise to
asymmetric vacuum, i.e., there are some charges
Q, such that Q, lo) wo. The following constraints
are caused by the symmetries G~ and G~ of the
Hamiltonian and of the vacuum:

J(e
'»&"&"' '»~-&'»-&&OlT*(A, (x,) A„,(x„,)A„(0))lo&dx, dx„,—= &A, (p, ) A„(p„)&, p, +p2+ ~ p =0,

It is well known that if the field A (x) is an extrapolating field for a particle of mass m (no mass-zero parti-
cles), then the amplitude

(p, 2 —m')&A, (p, ) ~ ~ A„(p„)&

is analytic in the vicinity of p, ' = m'.
In what follows we shall define the analytic structure of our amplitude in the external momenta. Let

A,. (x) be fields describing particles in the theory (stable or unstable). Let us define

&J"(p )"~
&
=~" (p )&A (j )" )

where

(3)

&.";(p) = 8 ""&OIT*(J!(x)A;(0))IO&~

We assume that the amplitude &A, (p, ) ~ ~
&

is analytic in the variable p, . The extraction (3) is to be per-
formed on all currents Z, (x), and on the fields Q,. (x) appearing in the above amplitude. We shall call this
amplitude a ~educed amplitude. This amplitude corresponds on the mass shell to the scattering amplitude
of the particles described by the fields A,.(x).

As the singularity structure in the external momenta was supposed to be given entirely by the 2-point
functions, we present below all 2-point functions (covariant and satisfying Ward identities) of interest:

e-""0T+ZI'x g,'0 0 -=zj', p =- g~"p'-p~p" ~", p +g~"a,"p, (4a)

where

gs» 1 p2»(s)ds
2vi J s(s-p'-i. )

' ~"(p) =
-1 p,"(s) —p,"(s)

ds~
S -P —ZC

-g~'p,'(p ) +, p' (p') = (2w) Q &OlJ»(0)ln&&nl~,"(0)IO&~(p -p„),
n

(4b)
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-*'"&olT*g,. ( )y, (0))lo& =~„(p)

1 p', , (s)
27t'2 S —p —ZE

(4c)

we would lose the identification of the currents
with the weak and electromagnetic currents, as is
the case in SU(3) &&SU(3). We therefore do not per-
form this type of renormalization on currents, but
rather use Eq. (3) to extract the 1' (1 ) and 0 (0')
parts from the currents:

p,'z (s) = (2w)'Q (0 l pz(0)ln& (n l p, (0) lo&5 (p -P„)
(s =P').

Equation (4b) was obtained by using the Ward iden-
tities, which also enables us to write

s[p,"(s)—p,' (s)] =-e,T;2e, T,.,p2. , (s. ) . (4d)

&olJ~(0)l~, p, I» =~;(p)g.,/(2~)2",

&oIA;(0)l p, j& =;;/(2 )"'
(5a)

(6b)

(X is the helicity of the vector state, p is the cor-
responding momentum, and a, 5, i,j are the sym-
metry indices. )

As det(a, j) w0, let us define a'=Z ' (in matrix
notation) and the renormalized fields Q~(x)
=(2'"') 0, ( )

For &j&,"(x) we shall have

&o ly", (0) Ip, ~&
= 6,,/(2~)"'.

We may keep the relations (1b), (1e), (2a), and
(2b) formally unchanged if we define the "renor-
malized constants"

~r ~ (g I/2)

gr (gl/2)

T r + —(g-1&2) T+ (Z&&2)

Similar renormalization may be performed on the
currents J',"(x), changing the structure constants
C,„, and T;,". ". However, such a procedure would
be unsatisfactory for nonconserved currents, and

In the model of current algebra defined by Eq. (1)
the fields Z~(x) have the quantum numbers J~ =1'
Therefore the fields A, (x) appearing in Eq. (3)
have the quantum numbers J =I" and also J~
=0 ' for nonconserved currents. Let us suppose
that in the symmetry limit to each J~(x) (conserved
in this case) there corresponds one particle for
which J~(x) may be taken as an extrapolating field.
The same assumption is made about the fields
g,. (x). We therefore assume [in the SU(2) && SU(2)
case and the (—', , —,') representation of p,. (x)] the
existence of p, A, , m, and 0'. When the symmetry
is broken by the parameters e,.c 0, mixing will
occur in the first order in e between some states,
and some mass shifts will occur in the multiplets.
These facts may be taken into account, introducing
the renormalization constants Z;,. and g„, by

«."(p)" &=V!'«'(p»" ~!;&~,(p) ~ ~ ~
&, (6 )

&0;(P) ' ' '& =&;g(p)(4, (p) (6b)

where
-1 [ p (s)(g"'p"p"/s)
27N o S -p —Lf

In Eq. (6a) the amplitude (J,"(p). ~ ) is analytic in
p' and void of 0" (0 ) contributions, i.e., they have
only p, (A, ), ete. contributions. Equations (6a)
and (6b) define for us the analytic structure in the
external mometa. In the next step we shall reduce
the number of independent amplitudes.

Step 3: The prinziHve a~nplitudes. We recall
the relation (1b),

a„J~(x)=~,.T,.;y,.(x),

which may be used [whenever the fields P,.(x) can
be expressed in terms of current divergences] to
express the amplitudes of fields Q;(x) as diver-
gences of the reduced amplitudes (J ~(p) ). We
shall call p&.imitive amplitudes the amplitudes con-
taining the fields J,"(x) as well as the fields Q,. (x)
for which the relation (11) is not invertible. We
shall describe now a procedure to express all am-
plitudes in terms of the primitive ones.

The Ward identity may be written as

ip (&(p)" &=(s &'(p) "&+(&'(p) "&

(J o(p) ) denotes all the terms which arise from
commutation relations. For instance,

(J'(Pi)~l(P2)&~(P2» =i&.~.(J."(Pi+P2)4';(P2)&

-i T;2(J2(P2)'P2(pi+ P2)& .
l,et us substitute in Eq. (I) the decompositions (Ga),
(6b):

iP [V,"f,(p)(J,'(P) .) +~,"~(p)g& (P) )].
=~,T;,~„(p)(4,(p) ~ ~ )+«.'(p) "&. (6)

Introducing the matrix notations and using the ab-
breviations

~„(p,)-a„
V."."(p,)-V„
ip„V"'(p, ) = E, =p, '~~, -

ds
-1 p (s)
27l' 8

R„' =e;T;)6,2(0)-R,
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we write Eq. (8) as

R &0 (P )"'&=~ &J (P )'''&-&J '''&

We note that if R, has an inverse [in the SU(2) x SU(2) case it is the number E,/i for pions], then

g&, (p, ) ~ ~ ~ ) may be expressed in terms of a primitive amplitude (of index1) and amplitudes of lower order
For R, =0, we obtain the so-called vector constraints on primitive amplitodes. The above procedure
should be repeated for all (nonprimitive) fields Q;(x) appearing in the amplitudes. The situation is more
complicated for the case when we have two or more nonyrimitive fields, but a final expression may be
obtained (see Appendix A):

R~'''R»V+~ "V&/~(P~)'''Q»(P»)J»-(P»+~)'''J„(P„)&=E~' ~ 'F»V»+~'"V(J~(P, )'''J„(P„)&

where

lh-Z $»&' 'Pi' 'Ps'x'&i ~ (10)

g u,"»,0) J, g (R;(& ')„4,) P (&"»;0)
j=1 -" -k~ j~l — -j&k

X,.P =X",:»P»

='!;'sV'g)(' ')i»~» .
S» denotes the symmetrizer on the first k indices 1 k [S» =Q(permut. )/k!]. As an example we demon-
strate the use of Eq. (10) for the amplitude &Qf& J&:

RxR2V3&&x&.Js&=~i~»V»«xJ»J3&-»[Ri'i '&&iI. (Js"-Xs&)&+R.~. '«i &2 (Jl-XN)&1

-2'[Pl&(J1-Xl&) J» (J»-Xs&)&+&2&JAN (J»-X2&) (Js Xs&)&].

SteP 4: The pxoPex vertices and contact teems.
In Step 3 we were concerned with the analytic
structure in the external momenta. As an n-yoint
function has, for n& 3, 3n -10 other independent
variables, we wish to specify also the analytic
structure in the remaining variables.

First we shall define the proper vertices by the
diagramatic decomposition shown in Fig. 1, in
which (b) denotes the proper vertex. The ampli-
tude (a) with k inside the circle denotes a reduced
amplitude of order n -k+1, having in the tree de-
composition of Eq. (11) proper vertices of at least
order k. The wavy line denotes the possible prop-
agator which may connect two proper vertices
[they mayhave J~=1'(1 ) and 0 (0')]; Q stands
for the sum of all possible permutations on the
external legs, giving rise to different singulari-
ties in the propagators.

In the perturbation approach the proper vertices
would correspond as usual to vertices which

cannot be divided into two parts connected by a
single propagator. As our approach is not pertur-
bative, the decomposition of Fig. 1 states that the
proper vertices do not contain singularities asso-
ciated with single propagators (factorizable sin-
gularities). An example of the decomposition of
Fig. 1 for n =4, 5 may be seen in Figs. 2(a) and
2(b). Having defined the proper vertices, we
would like to get the constraints imposed on them

(a)
2 1

4 54 5 4

(a)

e

FIG. 1. Decomposition of a reduced amplitude to
proper vertices. FIG. 2. Example of Fig. 1 for (a) n =4, and (b) =5.
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by the Ward identities. For conserved currents
only, one can easily prove that the proper vertices
obey the usual Ward identities. For the algebra
defined by Eq. (1) the problem is more compli-
cated, and one obtains simple relations only in
the case of strong P.C.C. (partially conserved
currents). Expressed differently, we obtain the

relations stated below only under the assumption
that the propagators of the fields appearing in Eq.
(1b) are of the form 1/i (m' —p') (i.e., single-
particle-approximated). In the P.C.C. assumption
the Ward identity reads in short notation (see Ap-
pendix 8 for proof)

Ii &4, (p )~",(p )0 (p )'"&„., =n pl« "(p )~".(p.)4.(p.)"'&„.,
$CX2rr&J tr (Pl +P2)$3(P8) )pro& 3k&4 2(P2)Pk (Pl PS) &prop

(I/P-. ')[p."~;T.C,.a+(p, +p.)'~;T;";T,'.]«."(p,)~"(p, +p.)" &„., ~ (12)

In Eq. (12) we have denoted by & ) „ the proper
vertices, and have written down only the typical
contributions coming from vector (axial-vector)
and scalar (pseudoscalar) external legs in the
proper vertices. Equation (12) may be used to re-
duce the number of independent proper vertices
and to obtain the vector constraints on them.

Now comes the crucial assumption in the H.P.
model. The proper vertices are assumed to be
analytic in all variables. We shall call such ver-
tices contact teems.

A few remarks are in order. The definition of
the proper vertices has nothing to do with the mod-
el. If we avoid P.C.C. we still obtainWard iden-
tities, which are more complicated than Eq. (12).
In this case we cannot make the "analytic assump-
tion, " as the Ward identities mill connect the
yroyer vertices to others, multiplied by propa-
gator and their inverse. The singularities of these
yropagators are canceled under the P.C.C. as-
sumption. Still, we do not have to assume the
single-particle approximation for the vector
(axial-vector) propagators.

All four steps were carried out in the case of
SU(2) && SU(2) and n = 4 by Gerstein and Schnitzer, '
and for general symmetry and n =3 (the proper
vertices being the reduced amplitudes) in Ref. 5.

So far we have not included in the H.P. model
any fields besides J,"(x), Q, (x). It turns out that a
more general model can be built which includes
other fields as well, such as a ~nucleon field for
example. An attempt in this direction was made
by Osypowski. ' We shall not pursue this line of
approach here, but rather study in the next section
the connection of the H.P. model to a phenomeno-
logical Lagrangian.

tedious; second, one needs the P.C.C. assumption.
Making the latter assumption, one cannot expect
the model to describe correctly scattering pro-
cesses for all ranges of external momenta. We
rather hope that the model is a good approximation
for low-energy phenomena, such as soft-pion
emission, determination of scattering length, etc.,
i.e., processes in which the momenta (external,
internal) are not much higher than the masses in-
volved. There is an alternative way of describing
the above-mentioned phenomena. Among them we
find the effective and phenomenological Lagran-
gians. '"' We shall attempt here to obtain a P.L.
which will reproduce the result of H.P. described
in Sec. II, at least for soft pions in the symmetry
limit of SU(2)X SU(2).

Let us therefore study the process n- P + nw,
i.e., the emission of n soft pions in the process
n-P, where n and P are some hadronic states
(which do not include soft pions). The T matrix
for such a process is proportional to

where we used the definition of Sec. II, but l0&
—

l n&, lP&. We assume the fields Q,. (x) to belong to
the Q, —,') representation of SU(2) x SU(2). In this
case we have R"=F,/i, where n =1, 2, 3 are the
axial-vector indices and F, is the weak-decay
constant of the charged pions (F, = 94 MeV).
X"„&(p)=-H„,.F,p", e =e,=F,p, ', and g is the
mass of the meson m. C„,=e„, is the antisym-
metric tensor of third order; A„" (x) are the axial-
vector currents, S„A~(x) =F,p'P (x); Vg(x) a.re the
vector currents, conserved; p, =)Q, are the ex-
ternal momenta, and $ —0. Using Eq. (10) we ob-
tain

III. FROM HARD PIONS TO A

PHENOMENOLOGICAL LAGRANGIAN =(& ) p," p.&~l&, (p,)" &.(p.)lp&
In Sec. II we have seen that the H.P. model has

a serious drawback. First, the procedure is very + (commutation relations). (13)
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class a: Rb 1[A„', (P,],
class b: p.X[A~3, p, ],
clas s c: p)'[A~3, A)8] .

(14)

In the limit of e-0 (p,2-0), $-0, we have p X
-p' = p2 =O(e) and RS '- (E,/i)(l12-p2)-0.
Therefore only class c will contribute to order
1(e). It can be shown by induction that a typical
term arising from class c will be of the form

A p»"'p"~C ' 'C (o'IJ»(p ) ~ ~ Z"~(p )Ip)t

where A„ is a numerical coefficient. (p, ), . . .,
(p„j is a decomposition of the set (p„.. . ,p„] in-
to disjoint sets; p,. denotes also the sum of all mo-
menta in the set i, p"t ~ (p,] . The coefficients
C, are the numerical coefficients obtained by suc-
cessive commutations of currents, i.e., in the
expression

[A.'(p, ), " A.'„,(p ), A'. (p )]' p ~(P ).
The currents J ~ are vector currents V& or axial-
vector currents A)' (free of pion poles).

Formally, such terms may be generated by the
functional

The first term on the right-hand side of Eq. (18) is
is of the order P (the Adler consistency condition)
and obtains contributions whenever the currents
A)'(x) (axial-vector) can be attached to the external
legs [it would be of the order $' if In) (or IP))
were a vacuum state].

In the "commutation relation" we distinguish
among three classes of contribution, which stem
from the following typical commutators:

t(tt)t= f et (tt)V"(tt), „,(e()t)xe„tt(t')

+cos (8)A"(y) . s„p (y)

1 —cos (8)+ —. —[V(y). 8 V(y)][A"(y).V(y)][dy.
s

r'(y)

(16)

Here the current A"(y) is an axial-vector current
void of pion poles. The exact expression for G(y2)
[which determines B(y)] would be obtained by
counting the numerical coefficients A appearing
in (15). In Eq. (16) B(y) should be thought of as
representing a phenomenological Lagrangian de-
scribing the coupling of currents V"(x) and A)'(x)
to the pionic field y(x). The currents V"(x) and
A)'(x) are phenomenological ones built from the
fields appearing in the states u and P, since in
the limit as e - 0, and $ - 0, only the phenomeno-
logical structure of the currents is important. "
In the calculations of diagrams using the Lagran-
gian (16) only tree diagrams should enter, as
these were built in the H.P. model we started with.

It should be noted that we have omitted the ease
of

I a) = IP) = IO), i.e., the pion scattering. We treat
this case separately. We shall see that the pro-
cess is of the order &'; therefore, in the expansion
given by Eq. (10) only terms where at most two
p's appear will contribute. As we do not calculate
the exact numerical coefficients, we wish to indi-
cate how different contact terms and tree diagrams
arise in this case. We start with Eq. (10). On the
right-hand side we keep only two types of contribu-
tions (the others a1.'e of orders less than g2):

p2( 1 t +2 2~)! R3+3 pt R4+4 4t ' ' ') d (17a)

p,"p3(A, t (A2 -Xg) )t (A3 -X3$)t R4b, 4 (t), . . .)

F(y) =T*exp[iB((p)],

where

B(t )=JD(t, )ate(x, t)D '(et, )et(e (x, t)dx,

( D)=te p xf t( Gl qt(tx), t) (tx, t)d'x .

Here the field y has to be understood as an exter-
nal pion field, and the amplitude for pion emission
is obtained by functional differentiation and the
Fourier transform.

In the case of SU(2) && SU(2), which we trea. t here,
the functional may be brought to a more compact
form by introducing a rotation around the "direc-
tion" p(x) by an angle 8 =+ IG (p2)(y2)'"I.3 The re-
sult is

P2( 1(P1 P2)9 343 t 444 t ' ) t

P2P3( 1(PX P2)t (P3)P R4449 ' ' ')'

(18a)

(18b)

In the next step [using Eq. (10)] we shall obtain
typica. l terms of the types

In both terms only the commutator between the
currents will contribute to the leading order. The
reason is as follows: p)'X)'=O(e), Rb, 1(1:(p2-m2),
while [A', y] ~ c, and the o particle has mass dif-
ferent from zero. Therefore the pole coming from
the 0 commutator will not cancel the zero of 6 '
in the limit of $-0, e-0. In other words, in the
above-mentioned limits we shall not have any 0
contributions. From Eq. (17) we therefore obtain
typical contributions of the form
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P2( (Pl P2 P3it 4~ 4) ' ' '& i

P."P3(V"(P1+P2» V (P3+P4) f~343 " &

P,"P:&&"(P, P, P.),~"(P.), ~.~„".&.

(19a)

(19b)

(19c)

1

\

1+
I

I

Expression (19a) may be rewritten, using Eq. (6a),
as

&i Pa&~"(P1+P. +P3» ft4&4

+Pit "(P, +P. +P.)(4 (P, +P. +P.), f~8„."&. (2o)

P2"a1'(P, +P, +P,) has a pole at (P,'+P,'+P,') = p2

and is of the order $'. These terms correspond
therefore to the tree diagrams of the form shown
in Fig. 3. The above extraction of the pion poles
from the currents A,"(x) will in general generate
for us all the different tree diagrams which may
occur, while the other terms will contribute to the
contact term of order n which will at the end be
the sum of terms of the form

CP, P (5„5 5, ).
As me have not counted the numerical coefficients
C, we will write down only the formal expression
which generates such terms:

&(V ) =G, (V')(B„i q)'+G. (q ')(s„V)' (21

The process of pion scattering is described by the
above Lagrangian, using only tree diagrams (of
course one has to check whether the numerical
coefficients in the tree diagrams and contact terms
are correct).

We note then that in the above Lagrangian the
field o does not appear. As we started with the
chiral-invariant theory and the above Lagrangian
was obtained in the limit of ~-0, p-0, the La-
grangian should be invariant under chiral trans-
formations. Thus the fields p,.(x) have to trans-
form nonlinearly.

The transformation properties of the fields p, (x)
are defined by the functionals G, (y'), G2(p'). Us-
ing Eqs. (47) and (45) of Weinberg' we should
identify

FIG. 3. The pion pole in a tree diagram.

G.(m') "[f'(V')+V'] ',
G (m') "af'(p') +p'] '[f'(~ ') - lV(m')]]'9 '

4, [f2(+2) + +2]-3/2[f1(+2) 1V (+2)]

(22)

The transformation properties of cp,. (x) under axial
transformation mill be given by

[q. , @3(x)l= -2[5.,f (V') +V .V,g (V ')] .
[The functions g(y2), V(p2), f (y2) are defined by
Weinberg. 2]

IV. APPLICATION

&v'(P, ) IV2(O) IK'(P, )&

=
2 2 ~ [(P, -P.)"f (t) + (P, +P,)2f,(t)],

(23)
(V" iV2) . -1

Applying the reduction technique and Eq. (11) (in

this case ft, =F,/i, 82=A/i), we arriveat,

(a) K». Although the main purpose of this paper
was to give a unified H.P. model and to link it to
a phenomenological Lagrangian, we shall give
some application of the H.P. model presented.
%e have chosen a simple problem of finding the
function f,(t) in the K» process. This process
was successfully treated by Arnowitt et al."using
the effective-Lagrangian approach, and by Ecker"
using a noncovariant H.P. model. Our results
will be closely related to the latter.

The amplitude f+(t) is defined by

(-)F2'(v'(-P2)K (P1)V")=F1F2(&0(-P2)&3(P, )V"(P,)) +commutation relations. (24)

We may now extract, according to Eq. (6a), the K* and ~ contributions to V2. But it is easy to see that
the I1 will contribute to the f (t) only. Collecting all the terms proportional to (P yp ) we obt jn

g$
F3F f+() =2(Fz'+F ' —C,)+2 ' -- «+[(P, +P,)" coefficient in F;E~Vp(A,"(-P,)/~(P )V4g(P ))J

p2x*(a) d a
2ra

(25)

We now need some estimation of the last terms in Eq. (25).
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and suppose that Eq. (25) represents f,(t) for all
values of t. (From the H.P. model one expects
this to be correct for small values of t.) There-
fore we obtain the sum rule

FK +F„—Cv = CCv,

p, *(a)
2wa

(in contrast to the sum rule E,'+Fr' = C„ in Ref.
13). introducing for small values of t the usual pa-
rametr ization

f (') = f (0) () + ', &) ,mr'

we obtain

f,(0) = (Fr'+E,' —C„+C'„)
I
r K

I
(E 2+E,2-F, '),

7f K

which is the Glashow-Weinberg" value.
2nor

2f (0)E E
p~r*(a)d a

2%a

(28)

(29)

Nutbrown~~ gave an interesting integral repre-
sentation for a 3-point function in the H.P. model
in the SU(2)xSU(2) case. Let us make the crude
approximation of SU(3) symmetry on the reduced
3-point functions of currents. More specifically,
we assume that p,"~(a) = pf&(a). Therefore, using
an equation similar to (4.2) of Ref. 14 we obtain
for the coefficient (p, +p, ))' the expression

K* a da~(t)=-,ct„i) ' ""'. (26J a(a —t)2n

The constant C contains information on the anoma-
lous magnetic moment of K„and on the spectral
function pf&(a), but it need not be specified for
our purpose. Let us use the result'~

tl f+(t) I'

From the sum rule (27) and Eq. (28) we get

(C +1)C'„=2f+(0)F„Fr,

and therefore

In the pole approximation we have the well-known
result

m'
y =---r =2.5x10 '

+ 2
K

which is consistent with experiment. "
How strongly does our result depend on P.C.C.?

The answer is that it does not, as a pole approxi-
mation on the mass shell (p,' = m,', p, ' = mr') is a
correct one and the v component in V~~„., (x) does
not contribute to f,(t). The F„Fz, etc., should
stand for E„m,'s, (0), Erma'Ax(0), etc [see.Eqs.
(8) and (9)]. On the other hand the result for the
last term in Eq. (25) depends on the model used.
Thus, taking our assumption of SU(3) symmetry
of the &educed 3-point function literally and still
using the Nutbrown representation, we would ob-
tain instead of the result (26) the expression

p~~*(a)da I' p~)'(a)da '
t

p~(a)da
2v(a —t) (a —t)2)) 2wa(a —t)

and therefore get a different result for X, . (Both
results are equal in the pole approximation. )

What we know quite generally on K(t) is that it
is bound by a constant at t- ~ and is an ana. lytic
function on the cut plane from t = (m, + mz) to
t = ~. Different assumptions on its spectral repre-
sentation may lead to different results for f,(0)
a,nd Z, ."

(b) yN- mN. In the first example we dealt with a
3-point function only. To demonstrate fully the
use of the pole extraction and of the contact terms
we have chosen the photoproducticn process yN-m¹ This process is described by the following
7.
' matrix:

T ~ lim L(p, )e&(q)[(-p', +W)&Z& (q)q„(k)y(p, ))j)(p,))(-P, +M)(p'-a')]M(p, ) . (31)
a, 2

q2~ Q

k2~ p2

To explore in our method the expression (J', )p)I)T))) we have to specify the commutation relations of the cur-
rents involved [J', =Z~+ (1/v 3 )J',] with the nucleon fields (resonances). This commutation relations are
model-dependent. We adopt similar commutation relations to those of Osypowski' [SU(2) &&SU(2)]:

5 (x,)[V'„(x), )C)„(0)]= T" )I)(0) 5(x), -5 (x,)[A', )I)„(0)]= +T"„y,)I)„(0)5'(x) . (32)

The index ~ labels the isospin of the field. T is the matrix representing the rotation around the n direc-
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FIG. 4. Tree decomposition
for yN mN.

tion in the corresponding isospin space (i.e., T'"=v„)

6(~.)[J'..(~), 0, (0)] = (T".+2)4, (0)6'(~) .
In the first step we write the decomposition of the reduced amplitude into the tree diagrams. This step is
shown in Fig. 4. In Fig. 4 g,. stands for the sum over mN resonances (including N) having different (I,J )
assignments [i.e., N and P»(1970) are included in the same diagram]. We need now to parametrize the
different independent contact terms. The 3-point functions including only mesons (the one independent is
the (VAA) vertex) may be taken from Ref. 1 or Ref. 14, introducing one unknown parameter 6 (the anoma-
lous magnetic moment of A, ) for which the most probable experimental as well as theoretical value is
5=--, . To parametrize the (O', Apg) „, term [to which (J, yp) „, is connected by Eq. (12)] we adopt the
old hard-pion hypothesis and assume that it is of zeroth order in the current momenta. Consequently the
3-point functions will be of first order in the current momentum. This sort of approximation we expect to
be reasonable in the low region of the photon beam momentum, say P &1 GeV/c. This limitation is also
expected from the following considerations. Adopting the Rarita-Schwinger representation for high-spin
fields, the electromagnetic form factor (between nucleon and resonance of spin J) is"

&V"(q)4J'"'~-i~'(p&)4(p, )) =q "q'i .q"-"' (A& x'+A&pi+A&p&)(q'Z"" q "g"')r;—, (34)

& Vg (q)A", (u)y(p, )y(p, )) „„o'=3,8.

%e shall have to deal separately with the isoscalar and isovector parts of the electromagnetic current.
The independent tensors in both cases are

r, 4"', a"",P"P", r"P",P"r", ") P=p +p .

Making isospin decomposition in the t channel, we may use "G parity" to reduce the number of independent
parameters. The restrictions from G parity are that for the isoscalar case the possible tensors are

r, (g"'"P, P" r", r"P", a"', ),

and for the isovector case the possible tensors are

f, =l: r.(a"', P"P'),

I, =0: as in the isoscalar case.

We know that the (A ~(k)g(p, )((p, )),.„,has to be of first order in k. We have also the vector constraints

a, q~(Vg(q)A", (k)4(p, )4(p, )),.„,=ie„& (A" (u -q)4(p, )4(p, )) =,'~„&A",(u)tI (p, -q)4(p, ))

+(A; (Ii)q(p, )y(p, +q))-,'r„,
a~q "& V", (q)AB (&)((P,)P(p&)),.„,= -5~3

&A 8 (&)g(p, -q)g(p, )) +2 v 3 &AB (&)g(p, )g (P& +Ii)) .
Parametrizing the 3-point functions to first order in the axial momentum, we finally obtain from (35) and

(36) that there are only three independent constants and

(35)

(36)

where a=0 (1) for natural (unnatural) parity of the resonance. This form is obviously of order q' at
least for J & —, . Therefore in this approximation the F»(1688) decouples, which is inconsistent with experi-
ment; therefore the above approximation cannot hold within the energy range where the F„(1688)may be
produced, i.e., P & 1 GeV/c. Limiting ourselves to the P & 1 GeV/c we have the four important reso-
nances, P»(1470), D»(1520), S»(1535), and P»(1236). Let us begin with

(Ag(li)q(p, )y(p, )) = y,~.(ym, +aW, +is&'P"G,),
&V&(q)A:(~)q(p. )q(p, )&

= r, (G,5..c&'-G;.'[~„.]a~"),

(V~8(q)A„'(Ii)g(p, )p(p, )) = y,o,r„io~'v3

(37)

(38)

(39)

The constants Gz and G, are connected to the weak decay constant of n- pe~, 2F„by G, -2MG, = 2E„=1.18.
For the S», D» resonance the contact terms have five constants:
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A/(p' M*'-+iMr)

where A is an appropriate projection operator. The S» propagator [which should include the nucleon and
the S»(1535)] may be approximated by

/+M P+M*
(42)

and the (P, g, g) is found from

(E /i)g&~(k)g(p2)g (p1)) = b~zk&(Ag(k)( (p2)g(p1)) +7.„ys(g (p2 -k)g(p1)) —($(p2)( (p~ +k)) y,v~,

which is found to be not smooth. [It is interesting to note that Sz(p) may be found by solving an integral
equation emerging from the unitarity condition (the continuum approximated by the mN state) and using Eq.
(43).] We need some extrapolation in p, ', p, ' in the form factor:

&&,
" (C)g(p, )g(p, )& =2 (~, +1)y"+[2 (7, +I)V, +2(7.+I)us]c"'e

(43)

(44)

(Ag(k)gs„(pm)$(p, )) =r (y&D, +k"D2+P"D, +v""k"D,+v""P"D5), (40)

&Ag(k)g~„(p, )g(p, )) =~ (y'&,"~ ) . (41)

In the canonical basis (Tgij =(1- n~ —,*,-i; —,',j). For the p» we have satisfying our assumptions eight ten-
sors, which reduce to only two on the mass shell (of the nucleon and the resonance). [Schematically
g~1{l,g, p'), p{p', k'), y1(p~, k~), o'~'- {g~', y1'k1).] We have no theoretical reason to abandon any of the
tensor s, but in the actual fit the probable most predominant contribution to the over-all amplitude will be
from the s-channel pole in the vicinity of the pole, where only one coupling (in AN*) will be important.
From this point of view we may be satisfied with one coupling only.

The propagators are taken to be of the form

The simplest way which will take into account the
experimental fact that the P» (14VO) couples weakly
to the electromagnetic current will be to multiply
Eq. (44) by

(p, ' -M*') (p,' -M*')
(M*' -M')'

(p, ' or p, ' will actually be equal to M'. ) We may
as well try the form a + bp' and leave the constants
to be found by the numerical fit. We have thus
finished building the complete amplitude for pho-
toproduction in the P&& I GeV/c region, using the
hard-pion approach. We do not attempt an actual
numerical fit to the data, as this is out of the
scope of this paper (and will be done elsewhere),
but conclude this section with a few remarks.

The main feature of the amplitude is the reso-
nances which are built in. In this respect it re-
sembles strongly the old isobar model, ""but the
t-u channel structure is different. In the u chan-
nel appear all the resonances which contribute to
the s channel; in the t channel we have the addi-
tional pole due to A, . All current-algebra con
straints have been built in systematically. Some
of the couplings are connected directly to the
physical values of the width of resonances. We
have also given the specific form of the background
contribution (in the low partial waves) which is
due to the 4-point contact term. (This may explain
the "additional contribution"" in Walker' s termi-
nology. )

V. SUMMARY

In the first part of this work we built a hard-
pion model for a general symmetry scheme. Us-
ing the strong-P. C.C. assumption we were able to
obtain Ward-like identities for the contact terms,
thus reducing the number of unknown amplitudes:
and obtaining some constraints on the others. It
has to be noted that the H.P. model is not compati-
ble with unitarity. We observe from Eq. (10) {for
conserved currents) that for n =2

p, "(J"(p,)&'(p.)&'(p,))„.,"[&"'(p,)] '

[~ k(p )]-1

and therefore [b, "~ (p)] ' has to be analytic, which
is in direct contradiction to the existing cuts in the
spectral decomposition. One may approximate
those cuts by a finite or an infinite number of
poles. In the former we shall obtain that [see Eq.
(10)] an integer k exists such that all contact terms
of order greater than k will vanish. The converse
is also true, i.e., the existence of the above k
will force the [A"~(p)] ' to be a, finite polynomial
in p'. The approximation of the cut by an infinite
number of poles seems therefore more natural in
the H.P. model.

In the second part of this work we studied the
processes of soft-pion emission in the symmetry
limit. We obtained that to order I(e) the process-
es a-P+nv are of the order $0 for ~n) = ~P) = ~0),
of the order t' if ~a)=~0) (or ~p) =(0)), and of the
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order t' for
~
e& =

~P&
= ~0&. In this limit we pointed

out how a phenomenological Lagrangian arises,
which, in the tree approximation, reproduces the
same results as the H.P. model does.

In the last section we applied the H.P. model
together with the suggestion of Nutbrown for 3--
point functions to find the form factor f,(t) in the
K„process. We recovered the Glashom-Weinberg
value for f,(0). In the pole approximation for the
vector spectral function (H.P. is not bound, as has
been shown, to this approximation) we got

A.,= m„'/m '=2.5x10 '
K

The high-energy contribution will probably lower
this value. We also built a hard-pion amplitude

for the photoproduction process yN -m¹ With the
aid of current algebra and partial conservation of
axial-vector current (PCAC), we have been able
to reduce considerably the number of independent
coupling constants. The amplitude obtained re-
sembles the isobar model, but me have been able
to give a specific form to the "additional" ba"k-
ground contributions which are not due to s, t, u
poles. Adopting the "smoothness assumption" for
the 4-point function, we mere forced to limit our-
selves to the P &1 GeV/c region. We have also
seen that by releasing the propagator from the
one-particle approximation the 3-point function
becomes "unsmooth. "

APPENDIX A

We prove Eq. (10) by induction. From Eq. (9) and Eq. (3) we obtain [6,~(p, )-D(a)]

R, g&, ,J, ' ') =E,(J, , J,' '') —(J, , J,'

~R,[V (2)(P, , J, ) + D (2)((f)~Q, ~ ~ ~ )]= E~[ V (2)(J „J,' ) + D (2)(J „Q, &]
—(J, ,J, ), (Al)

R b, (2)g& d& ) =E,h(2)(J, Q
' ) —(J

R,(@,e, ~ "&=F,«„e.~ ~ ~ &-A(2)- «„4. ") .

Multiplying Eq. (A2) by D(2) and subtracting the result from Eq. (A1) lead to

R,V(2)g), J, ) =EV(2)(J,J &-(J„(J,-x Q) ~ ).
Let us use Eq. (10) (by induction) and Eq. (3) to obtain

R, ~ ~ R„V(k+2) V(n)(g, " y, , y„„
= E, E» V (k + 2) ~ V(n)(J, ~ ~ J»Q»„, J»+2 ~ ~ J„)+ Q (commut. relations)

R, '''R»R „V(k+2) ' V( )(P '' 'Q „,J „'' J„&

=E,~ ~ ~ E»R»+, V (k +2) ~ ~ ~ V(~)(J, ~ Jj»+, , J»+, ~ ~ .J„)-R„,b, (k+1)Q (commut. relations).

(A4)

From Eq. (A3) we have

U(1) ~ ~ V(k)R»„V(k+2) ~ V(n)(J, ' ' 'J», Q»„,J»„' ' J'„)

=V(l) ~ V(k)E„,V(k+2) ~ ~ ~ V(n)(J, ~ J»„, "J„&-((J -x,y) ~ "J»„. ~ (J„-x„y)& . (A5)

Multiplying Eq. (A5) by p~» ~ p»», subtracting the result from (A. 5), and then performing symmetrization,
we obtain the desired result in Eq. (10).

APPENDIX 8

Equation (13) will be prove by induction. As we shall represent the proof diagrammatically, let us use
the following abbreviations: A dashed (solid) line labeled with indices k, 1 (e, p, , 1) represents a scalar
(vector) external leg (or internal leg, then representing a propagator) of symmetry index k (n), momen-
tum p, (Lorentz index p) (p~, =p, +p,).

Let us write the decomposition of Fig. 1 in a different way, as shown in Fig. 5, where we have classified
different types of diagrams in which the external sca1ar leg labeled by index I appears. In class a it ap-
pears in a 3-point function; the other two legs are also scalars (pseudoscalars). Class 5 differs from
class a by the vector internal leg instead of the scalar one. In class c the external leg numbered I cou-
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FIG. 5. Explicit appearance of 3-point functions in Fig. 1.

ples with the external vector and the internal scalar. In class d the external leg (1) couples with two vec-
tors. In class e, as in classd, it couples with two vectors, but both are internal, and in class f itap-
years with two internal scalars. In class g it couples with the internal vector and the internal scalar. In
class h it couples with a contact term of order greater than 3 and less than n. Class i is the eont3ct term
of order n.

Let us start with Ward identities of 3-point contact terms. Using Eq. (10) we obtain

&",g, (P, )~.";(P.)~.";(P.)) =~.P,"(~g, (P, )~g;(P, ) ~g;(p, )& P„—I '(~. -~e)-, I '(~, -~e)-)

=&ipz«" (pz)~"'(pz)~"'(pz))

-z[(C„„,(V ')„(gjz (-p, +p, ), (I'-')„,(J, ~,y))

+ (I'-').„(P,)X„(p,)T;, g, (p, +p, ), ~-'(J -XO)))+ (2-3)]. (B1)

Let us use Eqs. (4a)-(4c) to rewrite the term appearing in the square bracket of the right-hand side of Eq. (B1):

(y-l)pz&(y-z)llzx. (P&pk Ap 2) P2 ( ) &x ' 1 2 ( )
~zz, z 2zzz „s(s -p z-ie) s -p, ' ze-

+~ e Tz "' . ds(s ') (p ) ' e,Tz ) "', . +[(2—3)].
2zz ' '" s(s -p, ' e)z-~ ' 2zz

' '"0 s(s -p, '-ie),
From Eq. (4d) it follows that

2zzz s(s -p'-ze) ' " ~ ~'2zzi J sz(s -pz-ze) 2zzi J s(s -p'-iE)
Therefore for (B2) we arrive at

p ~!s 1 p' (s(y-l)pzu(y-z)pzk gux 2 ds +@vs(p ) ~~ Ts ~ Z 6 ll( dspvpx.
s I ' ' " ' "2zzz s'(s -p'-ze)

)
ds +(2 3).

2zz s(s -pz —zE' 2'7 s 8 -pz —zE j
In (B4) we have used some obvious abbreviations and the definition

" (S""-p"p"/s)O", '(s)
27zz „s-p —zf

Now, because of the antisymmetry property C 8
= -C„8

"p (s) 4s
S

does not contribute to the over-all result.
Let us recall that

o';( )
, (P) 2„, p.

therefore the terms involving po&(s) in (84) may be written symbolically as

, .[~(p.) —~(0)]~-'(p,)[~(p.) -~(0)]~I'.1 6 (p, ) -6 (0) p'(s)ds 1

3 3 3

In (B5) we have used the obvious relations

(B3)

(B4)

(B5)

po(s) ds " po(s) ds
s (s -p -z6) g s -p -zE'"po(s)ds

S

1 & p'(s)ds b, (p) -b, (0)
27M ~ s(s —p —zE) pz
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Remembering that b, (p) is a matrix in the symme-
try space, we obtain the expression in the square
bracket of (&5) as

i.e., only if

&(p) =,A.

a(0)a-'(p, )a(0) 1 - p'(s)ds s(0)
(p 2)2 2p2 p 2S (p 2)2

We arrive therefore at the P.C.C. assumption. In
what follows we assume P.C.C., and Eq. (&1) fi-
nally becomes

This expression vanishes only if 6 '(p) is of the
form

f~", &y(P, )~." (P.)J." (P, )&

z (0)z ' (p)a (0) = C,p'+ C„
+~,p', «"., (P,)~.";(P.) ~".;(P.)&. (BB)1 p'(s)ds

C, =2—.-~

The second 3-point contact term is &$,$2J3&, for
which we obtain

V

=/. P,«g .~.&
—C.,„(l ')",".,(P.) —-(~-')., (P.)-„—:p')&., (p, )

S

+(l'g (P,)) '
2 ~2T.'W./(P3)//~(P3)(2)Tt//3/. (P2)(/ ').2(P2)~s

+L Pl&~1 P 32& 0'y28 ( )8&3(P3) &

where

U V
)J P2 $ P~. 8&~ &8= 2 Cn 8,&;T,a-- . &iT~;~&~'.

The first 3-point contact term gives

~",&4, (p, )4„(p.)A„,(p.)&=~,p,"«g(p, )4„,(p.)4,, (p.)&+ T„,,(~ '),„(P.)+2T„".,4-')„.(P.). (alo)

f
//), LP}

2~v 3

Ro

}y
akp ~kj+ ITnj ~nk (pR) ~jl (pl p2) }+2 + IT

e -I o n

kI
/2

g.}
O. } 0.2

+LP}R'
}'~

ky

R

k
2

PIL

Piv+4 kP i Cuyp
y~F

b.) b.2

~LP}

/3 V k

+AajyVyp(P2)&jk(P}+Pz)}+2
PI 3

S.v
~3~~3V 3~P~~

V }—
Auky

C. 2
ALP}Rcl

ka, —i CI2y8 ( Vyp (p3)) V3 ( }+3) —i Cgyp h. 5

2
V j
AykCj (p3)

j
hgj (p5) —

5

Cap8 V8y(p3) + (2—3)

h.7e.}

+LP}
8.2

R

(contact term of order n)
3

k a
T ~ Q. (3) ——

2 kj jg
+(2 3)

PEG. 6. Ward identities presented diagrammatically.

~", &e, (p, )e, (p, )J"., (P.)& =&", '&4, (p, )(~-')„(p,)e, (p,),~:,(p.)&

=& P'&~', (P )4 (P )J",(P )) - &J (& ') (P )0;(P.) C'„(P,)[~', (P, )

-~'„(p.)e;(p.)]&
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We now apply the results (B8), {B9), (B10), and

Eq. (12) (by induction) to the different classes of
graphs. The result we present diagrammatically
in Fig. 6. The right-hand side of Eq. (10) may be
presented diagrammatically as shown in Fig. 7.

When expressed in terms of tree diagrams (in
Fig. 7) the a, .l contact terms will cancel all the
diagrams a.1, b.1, c.1, . . . , h. l (in Fig. 6) except
the n-point contact term in a.1, which does not
have a counterpart on the right-hand side of Fig. 6.
We perform the commutations in b.2 and express
the results in terms of tree diagrams. Then b.2
will cancel all the terms a.2, b.2, c.2, d.2. We
note that different diagrams coming from class h

[ h.2, . . ., h.7] will cancel all other diagrams ex-

A

& J) & (2) $(2),V '(3) (J~-X~ $)" )

FIG. 7. Right-hand side of Eq. (10) presented diagram-
matically.

cept for a.3, b.2, d.3 [and i.] when the reduced am-
plitude is a contact term of order n —1. We there-
fore obtain the diagrammatic equality

(i.) + (a.3)„,+ (b.2)„,+ (d.3)„,= (A.l)„,
which is equivalent in the full form to Eq. (12).
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