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Inclusion of baryon resonances in the current-algebra analysis of B B'~ and B B'p
decays explains both the mismatch of the s- and p-wave pion amplitudes and the nonvanish-
ing negative asymmetry parameter for Z+ pZ.

I. INTRODUCTION

Despite certain successes of the current-algebra
approach to the nonleptonic hyperon decays, ' '
two important problems remain unsolved. First,
the B-B'm s-wave amplitudes are mismatched
relative to the p-wave amplitudes, due to the s-
wave Suzuki-Sugawara' current commutator and
the p-wave baryon octet poles." Second, the
parity-violating amplitude is predicted to vanish
for the weak radiative decay 7'- py,

4 in contra-
diction with the large measured asymmetry pa-
ra, meter. '

It is the purpose of this paper to solve both of
these problems simultaneously by inclusion of

decuplet intermediate states along with the baryon
octet poles. Decuplet poles dominate the pion
photoproduction background amplitudes at low en-
ergy and therefore account for most of the anoma-
lous magnetic moment of the nucleon as expressed
by the current-algebra low-energy theorem of
Fubini, Furlan, and Rossetti (FFR)." The Adler-
Weisberger' (AW) background amplitudes in low-
energy pion-nucleon scattering are also dominated
by decuplet states." It is therefore not surpris-
ing that decuplet poles play an important role in
weak hyperon decays. However, in contrast with
AW, FFR, and the weak radiative decays B-8'y,
the decuplet poles in B-B'n dominate the axial-
vector current algebra background amplitudes.
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Decuplet states have been considered before, "
but not in the context of current algebra for both
pion and radiative hyperon decays. By applying
dispersion techniques to two different methods
used to obtain current-algebra results, we settle
certain ambiguities which arise in the off-shell
decuplet propagator. Choice of dispersive covar-
iants requires particular care, but the two meth-
ods lead to identical decuplet contributions which
in all cases display the correct mass suppression
factors m~ -ms (mal+me) corresponding to parity-
conserving (-violating) spurion-baryon orbital
angular momentum transitions l=2 (/=1).

Furthermore, having included decuplet states
(10-30% effects), we feel obliged to consider Y,*
states (3-10% effects) and also 27-piet contribu-
tions to the weak Hamiltonian (2% effects in ~~).
We do in fact obtain an almost perfect fit to all
of these decays, but one might then claim that we
are simply "parameter-fitting" the four different
types of amplitudes in question. This is not the
case for three reasons: (i) We make independent
numerical estimates of the magnitudes expected
for all nonleading effects, and we do not allow fits
which require them to be unreasonably large (such
estimates also show that these effects should not
be neglected). (ii) The seven s waves, seven p
waves, and two radiative measured amplitudes
far overdetermine our additional parameters.
(iii) Forcing these parameters to fit both the pion
and radiative amplitudes requires a unique choice
for their sign which is otherwise undetermined if
pion or radiative decays are fitted separately.

One might further argue that there is no point
in trying to obtain a perfect fit because the basic
input of SU, conservation at the vertices may be
broken by about 15%. We point out that all —,'', —,",
0, 1, and 2 data given in the Particle Data
Group tables" can now be fitted to within one
standard deviation assuming SU, vertex conserva-
tion. " We therefore feel compelled to treat SU,
as an exact vertex symmetry in these weak non-
leptonic decays in an attempt to probe the scaling
of the algebra of currents which occurs only in
the s-wave, B-B'n decays. We conclude that
the algebra of currents is indeed consistent with
aIl of the measured nonleptonic B-B'n and
B-B'y decays.

In the past the mismatch between the s- and p-
wave pion decays has led to alternative s-wave
(d„/f„= -0.30) and p-wave (d„/f„= —0.865) fits
to the data. " One usually argues that the s-wave
solution is preferable because the resulting p-
wave pole "model" is somewhat ambiguous in the
soft q, —0 limit. However, in a recent paper'
we have used the hard-pion technique with q„'-0
to demonstrate that in fact it is the p-suave-octet

poles which closely approximate reality. It is
then the s waves which are more appreciably
modified by inclusion of resonance states.

The choice" "of the meson channel E*pole
as saturating the s-wave background amplitude
gives a fair s-wave fit in conjunction with the
octet spurion as determined by the p-wave octet
poles. This is in fact a correct procedure, as
opposed to the E*vector-dominance model of the
entire s-wave amplitude, "but it is only after
computing the s-wave background in the decuplet-
dominance model that one appreciates the dual na-
ture of the K* "Regge" pole. In any case the de-
cuplet saturation is more convincing than the K*
saturation because the choice of the sign of the
decuplet s-wave contribution also gives a negative
asymmetry parameter in Z'- py, in agreement
with experiment. In contrast, the sign of the K*
pole in the s-wave pion decays is a free parameter
and is chosen to reduce the magnitude of the fitted
s waves. Furthermore, this baryon resonance
approach definitely gives a better fit to all the
pion decays than does the meson resonance, A *
approach.

We begin by summarizing the role of the cur-
rent commutator and octet baryon poles in Sec. II
for both B-B'n and B-B'y decays. Then in Secs.
III and IV we discuss the decuplet contributions
to the pion and radiative amplitudes, respectively.
In Sec. V we include the additional contributions
due to the Y,* and the 27 part of H, and in Sec. VI
we obtain our fit and also discuss various methods
of analyzing the data. In the Appendix we list all
relevant formulas for each of the various decays.

II. REVIEW(—THE CURRENT COMMUTATOR
AND OCTET POLES

A. Pion Decays

There are two methods to incorporate the con-
tent of the algebra of currents into the on-shell
hyperon decays B'(p)-B~(p')+w'(q). The hard-
pion method" "involves the divergence of the
axial-vector amplitude

M„=i e"'"8 x, Bf A'„x,H„B' d'x, 1

M, = M„+(1/jf,)ql'M„. (2)

Because of the assumed current-current structure
of H, the current commutator term can be direct-
ly evaluated at q, ' =m, '.

in conjunction with the (nonsoft) PCAC (partial con-
servation of axial-vector current) structure of the
pion amplitude (where M"„has the pion pole re-
moved)
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if.M„=-(B'
I [I"'„H„]I B')

=if"'&B'IH IB'&-if'"&B'IH IB'&.

&B'IH. IB'& =iy~p'v+H~i

we extract the octet poles in q" M"„with axial-
vector coupling zg~sy py, to find

A =A.„+A,+A,

B=B„+B,+B,

(5)

(6)

(7)

Separating the amplitude into parity-violating (PV)
and parity-conserving (PC) parts (between baryon
spinors)

M = (B~m~ IH v +H~
I
B'

&
=iA +y,B, (4)

demonstrate that this limit can be achieved in
more than one way. For example, it is some-
times stated that the parity-conserving p-wave
octet poles (12) are ambiguous because one is
taking q, -0 and the related covariant u(p')y, u(p)
is also vanishing, thus rendering this limit mean-
ingless. However the hard-pion method q'-0 is
not ambiguous and gives the same pole terms (9}.
It is therefore clear that the B, pole terms are
extremely important in the current-algebra ap-
proach and cannot be ignored.

To proceed further, we make use of the sym-
metric structure of the current-current Ii„ to de-
duce that H (b, y'=1) contains an octet part trans-
forming like A., and also a 2'7 part. This leads to
the general conclusion that"

where
(B'IH"I B'& =0. (14)

~m ~ g~" Hp~ Hpv g„"
2f, ~ m +m„m„+m,.

(m, +m,. ) ~ g,'"Hpc H~g„"'
2f, ~ m„—mz m„—mz

(9)

M = M(0) +M~ —M~(0), (10)

where M(0) =M„and M~ (0) are evaluated at the
soft point q, =0. In terms of the BBv coupling
gy„ the MP -M~(0) structure leads to the octet
pole contributions

Z (m, . +I„m, +m )
1 1

pvm+m m+mf n n

(12)

The Goldberger- Treiman relation (with q' = 0)

f,g~' = 2(m~+ m,-)g~'

then relates these two forms for the octet poles,
(8) with (11) and (9)with(12). Our reason for dis-
cussing both formalisms is that the soft limit is
sometimes extremely subtle and we prefer to

with ~m =rn, -m&. The background axial-vector
amplitude can be parametrized as M„=I",y„
+G„iy„y, so that f,A =r»mi, and f,B = (mz+m, )G„.

In the soft-pion method, ""one can work direct-
ly with the pion amplitude and separate off the
rapidly varying poles; M =Mp+M. One then eval-
uates M at the soft point q, =0 in order to deter-
mine the slowly varying background to find

We may also write

(B~IH~ (&»)IBi& =h, (d„d~" —f if '6) (15)

with d + f =1. Because all the r»I=-2 and Lee-
Sugawara' sum rules are nearly valid for s and p
waves, we can neglect the 2V part of H„ to first
approximation, but we shall return to it in detail
in Sec. V.

Next we extract the decuplet intermediate states
from the background amplitudes Q and B. The PV
decuplet transition has a relative baryon-spurion
angular momentum of E = 1 while the PC decuplet
transition corresponds to l = 2. This indicates that

B,o- (mD —ms}, whereas A»- (mD+ms). Combin-
ing these mass factors with the Am octet baryon
mass suppressions of (8) and (9), we rewrite (6)
and (7) in a form which roughly estimates the size
of the various contributions because b,m/m
-(m —m )/m--', ——,', :

A =A„(1)+A»(am/m) +A',

B = B (m /b, m ) + B„[(m -m )/m j + B' .

(16)

(17)

The terms A' and B' will be discussed in Sec. V
and are small. We are adhering to strict SU, con-
servation at the (hadronic} vertex, but even if we
assumed mass breaking effects to violate (14) to
O(Am/m) we would find that A8 and B„are sup-
pressed by 0( (Am/m)') relative to the dominant
terms in (16) and (17) and therefore can be ignored.

To first approximation we can keep the leading
terms in (16) and (17), A„and B„and try to fit
both the s and p waves with one set of values for
the parameters Ii, and d /f „ in the octet-domina-
ted weak Hamiltonian (15). The mismatch between
the s and p waves is then apparent because d /f

-0.30 for the s waves and d /f --0.86 for the
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p waves. The latter ratio is determined by the p-
wave pole terms (12) with d~/f~ =1.7, and gives
s-wave amplitudes which are in proper proportion
to one another but a factor of 2 larger than experi-
ment. There are two possible variations in this
scheme. First, we can use the p-wave pole terms
(9) instead of (12), with the measured value of
d„/f„=1.7 obtained from semileptonic hyperon de-
cays.""Due to the relative minus sign between the
s- and u-channel poles of (9) or (12), the mass
factors in the Goldberger-Treiman relation (13)
lead to somewhat different values for B, as given
by (9) or (12). While the best fit to the axial poles,
d /f --0.79, is slightly closer to the s-wave
value -0.30, the ratio A„/A is still a factor of 2
greater than experim, ent. As a second alternative
we can again use the p-wave pion poles (12), but
with a slightly larger value of d~/f~ than the axial
ratio 1.7. The best value for d~/f~ obtained from
low-energy scattering ' and from Hegge fits" is
d~/f p -2.1. This has the effect of lowering
A„/A„„~ to about 1.5, with d /f --0.88. Since
we shall be using a dispersion theoretic approach,
we must adopt the latter alternative which is
formally derived from the on-shell version of the

Qoldberger- Treiman relation. ' " Thus, we shall
use p-wave pion-pole terms (12) along with

d~ jfp 2.1, d—-/f = —0.88, A„/A, „-1.5. (18)

= e(C+iy, D)-,'Iy. e +, y. k], (19)

where C is the PC and D the PV amplitude. The
octet pole terms are

PC uPCZf„II„;C —— fn ni

(mq+m„)(m, —m„) (m„—mq)(m„+m;)

(2o)
~PV PV

D, = — + . (21)
~fn n$ &fn&n&

(m&+m„)(m, +m„) (m„+mr)(m„+m, .)

B. Radiative Decays

The weak radiative decays E'(p)- B~(p') +y(k)
can be viewed in the same perspective as the pion
decays. We write the amplitude as

T(B-By)=(Je' '*6(x',)(B ([)'„"' 'H ](i)ie&"d'x, „

transitions in accordance with the Hara theorem4
to be crossing-odd in the variable" v
= (p' —p) ~ (p'+ p) = m, ' —m, '.

DU (V) = DU —(-V) . (22)

This forces D~ to vanish in the SU, mass limit v

=0, but for physical masses to be O(hm/m). 27

Our SU, expansion of the amplitude in powers of
b,m/m thus h(kes the form

C = C,(m/&m) + C„((m~ —ms)/m),

D = D,o(l)

(23)

(24)

for the U'-nonconserving transitions A -ny, ™0
-Ay ='- Z0y and

C =C,(1)+C~((m -m )/m),
D' = D,",(~m/m)

(25)

(26)

m2 m2 3

F=~ C'+ D'

= (1.02+ 0.15)x10 "4 MeV,

2 ReC*D
!CI'+ iD I'

O3+ 0 ~ 52 (28)

This large asymmetry parameter would seem to
imply that C =-D, thus violating the SU3 struc-
ture of (25) and (26) and the Hara theorem (22).
This mismatch between C and D might indicate
some new structure in weak radiative decays not
accounted for by the above simple analysis. "

However, extreme measures are really not nec-
essary. By comparing (26) with (25) we estimate
IDI 51 CI and therefor~

I o'I I2D/CI -0.4, which
is, after all, just one standard deviation from ex-
periment. The important point is that the sign of
n will be correctly determined by our decuplet fit
to the s-wave pion decays.

for the U'-conserving transitions Z+ —py,- Z y. The background corrections to (23)-(26)
are taken to be small. Again, we have displayed
the PC I =2 suppression by mn —ms in (23) and
(25).

Experimentally the only available data are for' "

It is clear that D„ like A„vanishes by (14).
Moreover, U-spin symmetry also suppresses C8
for U'-conserving transitions because these anom-
alous magnetic moments z/2m also become e(lual
in the strict SU, limit. Fortunately, this suppres-
sion is only one order in b, m/m since experimen-
tally it seems that the dimensionless moments a
obey SU, ." Finally, U-spin "G parity" suppresses
the entire PV amplitude D for U2-conserving

III. DECUPLET STATES AND PION DECAYS

(Dli'I&) =,
2 (my) + mg )

where the SU, structure of g», is given by

(29)

First we display the various couplings needed
for decuplet transitions. The strong vertex can be
written as" (q=p' —p)
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g2D &cde Bb& a~ leading to g&++,„+=g» g~+, „o
= -(—',)'~'g„etc. We are adhering to strict SV,
conservation at the hadron vertex and extracting
the mass factor 2(mal+me) from the vertex guar-
antees that the dimensionless coupling constant

g, =15.7 leads to a perfect fit to the four D-Bm
decays with y'& 1.""Because the decuplet terms
are already corrections to the leading octet or
current-commutator terms in (16) and (17), we
can safely ignore the 27 part of H and write

(D I H pv
I B) = iD„p"BH (30)

where p is the momentum of the baryon, and for
b K=1 transitions the SV, structure of (30) is, for"
H -Ae,

HD~
——h2D ~ c3eBPU (2bc) e (31)

H~D = h2Be e' '
D(3bc) . (32)

The coupling constant h, is dimensionless and we
infer that, like g„ it is the correct SU, -invariant
vertex strength. Likewise, we replace HPU by H~,
ip„by p„, and h, by h, in (30)-(32) in order to
specify the PC BD transition. The actual magni-
tude of h, should not differ too greatly from h, be-
cause a theorem analogous to (14}does not exist
for DB weak transitions.

The violation of angular momentum at the weak
spurion vertex (30) implies that the divergence of
the on-shell projection operator (P& p vanishes
for p=pD, where

1
6'6 =-(y p'+m~) gs —srsr —

3
(rsp' ps-y )

D D

3m ~
D

(33)

The entire decuplet contribution then comes from
off-shell corrections. If we were to use field the-
ory we would not obtain reliable results, since the
form of the off-shell spin- —,

' propagator is ambig-
uous. " Instead, we have used dispersion theory
to evaluate both of the hard pion methods. In the
first method, we write an unsubtracted fixed-t
dispersion relation for the fictitious process
B'H (q') -B~A„(q) to obtain the coefficients of
p„, p„[q r, q'rl, q'„, q'„[q y, q'r], r„, and

y„q' ~ y for the parity-violating case, and the same
covariants with an extra y, in the parity-conserv-
ing case. We use the narrow-resonance approxima-
tion. Taking the limit as q' -0 then determines
M„, from which M, can be found by Eg. (2), the
answer appearing in terms of the axial-vector vertex
(D„(p —q)IA„IB(p)). Of the four invariants corre-
sponding to g„„, q„p„q„q„, and q„y„, the last
three contribute to the Goldberger-Treiman rela-
tion and to M with an extra p-wave suppression
factor (m~ —ms), as they must. " Hence, we may
ignore all but the coefficient of g„„, and the gen-
eralized Goldberger- Treiman relation determines
(M, )» in terms of the pion-baryon-decuplet ver-
tex (29).

Our second method is the hard-pion technique of
Okubo, "involving a once-subtracted dispersion
relation for B'H„(q') -B~m(q) with the covariants
l(1, y, ), [q. y, q' y](1,y, ). Results of the two meth-
ods are identical:

(m11 + ms ) pv pv (m11~ + ms')
A10( 1 p } &(mB1 By) gsyD& 2 DB1+HByD' 3 gD'B1W

i

(m~ —ms, ) (m~. —ms )
Bp»)= —,(m, +m I}g „,' H +H, . g (35)

These two decuplet contributions ought to be the
same order of magnitude and, according to (16}
and (17), no more than 40% of the s-wave O(1)
term A„. We can estimate the size of h, or h, by
comparing, for example, the ratio Hz, z /H„z to
the strong-coupling-constant ratio gz, z»/g„z». This
leads to h, , -0.2&10 ', corresponding to decuplet
contributions which are 30% of A„and 10% of Bs.
Our fits will, in fact, be consistent with this es-
timate.

IV. DECUPLET STATES AND RADIATIVE DECAYS

There are two DBy couplings which can be writ-
ten as [q =p~ —ps, P = -,' (p~ +ps )]:

(DI&'„ I B) = eD8[c.(DB)(qay —q. rgb )

+ C,(DB)(q&P„—q ~ Pg8 &)]y,B . (36)

The ANy transition has been analyzed in resonance
photoproduction'4 and found to be almost purely
magnetic dipole in nature with"

C,(A'p) = —m&C (Z1'p) = 2.14 GeV '.
These couplings can be used to dynamically com-

pute the baryon anomalous magnetic moments K~

from the decuplet contribution to the first CGI N

(Chew, Goldberger, Low, and Nambu) covariant"
~[y h, y„]y, for the soft-pion photoproduction pro-
cess By-B'm:
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~c," (q, = 0) =+2g„,C,(DB)
Sl g)

(38)
the SU, relations

A. ~+p ——A, ~o„——-A.~g+ ~+ ——2A, ~gonzo

which includes both C, and C4 couplings in the
magnetic dipole configuration. The dispersion-
theoretic value (38) is unambiguous because of the
particularly unique structure of the spin-flip co-
variant 2[y' k, y„]y2. The soft-pion theorem of
Fubini, Furlan, and Rossetti then implies that"

8++a 0 as q„-0, leading to

g, (q, =0) =A, ,o(Q, =0)=
B

(39)

Combining (38) and (39) we find for a proton target
that

m 2

~2 = —', (-', )'" ",(m~+m„) 'C2—(&'p) =2.2, (40)
Sly, g

w'hich is close to the measured value zp =1.79.
Neutron targets lead to Kp = -K„compared to K„
= -1.91. We therefore conclude that decuplet sat-
uration of background amplitudes as given by (38)
is a reasonable dynamical approximation, "and at
the very least the sign and approximate magnitude
of C (A2P) are indeed correct.

There is as yet no resonance photoproduction
analysis off hyperon targets, but we could argue
that SU, partners of (40) ought to be the dimension-
less anomalous "transition" moments A. in analogy
with the "elastic" moments ~ (Ref. 26):

C,(DB) = X~~/2'(m~+ ms) .

The SU, DBy structure D~"' e„,B', then leads to

= -(2/W3)A. ~2p~ ——-Au~22p = 2.34, (42)

-Xz*+z+/X~+, = ~z+/s, ,

2A, ~2oq /Af+2 = -O.viz /K2,

Auto-. ojX~+2 =+0 5(&gojl(.2,

(43)

where" 2Z, = Z' —v 3A. We might then conclude
that on the average the heavier hyperon SU, transi-
tion moments are suppressed by 0.75 over SU,-
invariant moments as defined by (42). In any case
it is clear that the hyperon A.» SU, couplings can-
not be larger than predicted by (42).

Now we are prepared to analyze the various de-
cuplet contributions to the PV and PC amplitudes
of D- By. The same dispersion-theoretic spin- —,

'
projection operator used in A, ,~o" immediately
determines the decuplet amplitude D„because
both are coefficients of the same covariant:
2[y„, y k]y, . Treating the weak spurion as the
analog of the soft pion in photoproduction, we find

With A.gg —A,gg).
On the other hand, it is remarkable that the SU,

analog of the FFR relation (40) for various hyperon
targets is exactly satisfied for d~/f~ =3 and d» /

2f„=3, the latter ratio corresponding to anomalous
moments with Kp = -K„. For physical mass and

d~/f~ = 2.1, these relations lead to

(mal+ms, ) „(m~.+ms )
D10(Bj Bf r) = &B D 2 HDB HB D 2 ~DB

mg Sl~f i
(44)

Again we have used a pure magnetic dipole transition for the DBy vertex, and the only significant differ-
ence in the structure of (44) compared to (38) is the relative minus sign between the s and u channels in

(44) because of the opposite SU, 6 parity of Hp" relative to w. This sign forces D,o(Z'-py) to zero in the
equal-mass limit, thus respecting the Hara theorem. ' However, for physical masses and the values of A»
as determined by (42) or (43), the u channel in (44) is suppressed relative to the s channel leading to
D»(Z'-Py) wO. Similarly, for the PC decuplet amplitude we have

(m~ —ms. ) (m~. -ms )
Bf f) = —.

'
&B D 2 HDB ~ +HB D' 2 ~DB (45)

m~ i f mgf

where the plus sign between the two channels in (45) follows from 8 (HP ) = 1.

V. OTHER CONTRIBUTIONS

We shall also consider other contributions which
are less than 10% of the dominant A„or B, terms.
These may become important when the leading
terms interfere destructively with the secondary
decuplet amplitudes. In particular we include

y,*[A'(1405) J resonance states and contributions
due to a small b,I= —,

' part in H .
The partial decay width of" 40 MeV for A' Zm

leads to a coupling constant gA ~, -0.84. The weak
vertex (n~ H»c

~ A) -40 eV indicates that the weak A'

transitions are also (n~H»c»v ~A') -40 eV. With
these magnitudes we find that
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TABLE I. 106B for p waves.

10 Yo Theory Exp 2"

0

y+
0

HM»

~0
~0

-0.16

0.05

0.03

0.15

—0.14

0.13

0.20

-1.32

1.87

3.09

4„02

—0.36

2.00

-0.30

0.42

—0.31

—0.13

0.31

-0.45

0.32

0.11

0.11

-1.78

2.34

2.81

4.15

-0 ~ 08

1.68

-0.89

-1.63 + 0.10

2.27 + 0.065

2.73 + 0.22

4.22 + 0.035

—0.14+0.02

1.52+ 0.12

—1.00 + 0.23

-1.74 + 0.16

2.28 + 0.07

2.86 "oo.~&,
'

4 17+0.08

—0.14 + 0.02

1.52 + 0.12

—1.00 + 0.24

~ These values were calculated from the branching ratios and asymmetry parameters e by
assuming A and B to be real. See O. E. Overseth, Appendix III of Ref. 11.

These values represent the real parts of the amplitudes obtained by assuming time-rever-
sal invariance and incorporating known information about final-state phase shifts into the data
on o. and P in Ref. 11.

a, ,(z', ) =w, ,(z:)
gA,.(n I

IIPv
I
A') (m, —m„)

(m. A. —m„) (m~. —m~)

-0.0'75x10 '

a, ,(z,') =a, ,(z:)
g g„(n~Hpc ~A') (m +m„)

(mA. +m„) (mA. —m~)

4)( $0 6

(46)

(47)

b = -1.0 Geg (50)

Ao + &2Aoo= 0.002 a 0.010,

:-:+v 2:-DO=0.022+0.016, (51)

(52)

which is to be compared with Eq. (37). Contribu-
tions to the C and D amplitudes are listed in the
Appendix.

With regard to 4I= —,
' contributions in B, we note

that the violations of the 41 = —,
' rule are

with undetermined signs. Again we expect our fits
to respect these estimates.

The A' will make important contributions to the
neutral radiative decays, especially the PV am-
plitudes, where they are not suppressed by angu-
lar momentum effects. (In the pion decays, these
contributions are suppressed by the smallness of
their coupling to the pion. ) We estimate the BA'y
coupling by including the A' in the FFR relation
(39) for Z' and A targets. The U-spin singlet tar-
get Z, = &v 3 Zo+-,A is decoupled from the Z*o, so
that (39) becomes

A, (Q, =0) =A, ~ (0, =0)

~~bg. ~ z

sgg mAI

dJ ~n

2m 2g»& &m g

where b is defined by

(A'~J'„~ Z, ) =eibuA [q, y„]y,uz, , (49)

q=pA. —pz . (For simplicity, we here ignore the
A —Z, mass difference. ) Equation (48) leads to the
estirr. ate

for s waves and

A' + v 2AOO =,',",+ 0.025,

+ v 2 =00=0.11+0.44,
Z+ Z

- ~2 Z+ 0.50 &0.3'7
+ 0 Oe27 +Oo48

(53)

(54)

for p waves, where the upper values correspond to
Overseth's analysis" assuming no final-state in-
teractions and the lower values correspond to pos-
sible final-state interactions as given by the raw
data. " (See Tables I and II and discussion in
Sec. VI.)

While the first two relations (51) must identical-
ly satisfy the ~I= 2 rule in the context of current
algebra, the last four relations can violate this
rule. Although the errors of (52)-(54) mask any
attempt to identify absolutely a AI= —, violation, the
27 coupling coefficients

(PiII„Pc„iZ"
& =a„, (56)

nA: pZ':nZO:A='. ZO"-'. Z =

=-'(-')'" 1 3/2': —,'(-')"'3/2&a:1 (55)

lead to an H" which agrees with the signs of all
four central values (52)—(54). With the definition
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TABLE 0, 10' for s waves.

CC 10 y g
0 Theory

Ap -0.006 -0.265 0.060 -0.211 -0.234 + 0.005 —0.232 + 0.OQ5

O.OQ8 0.374 —0.084 0.298 0.331+0.002 0.330+ 0.OQ4

&() -0.009 -0.575 0.254 —0.330 -0.313+ 0.020 -0,0140 303 + 0.02 0

Z+ + 0.033

—0.020

+ 0.008 -0.682 0.202 0
~0
wQ -0.006 0.482 —0.143

—0.080 0.065

0.814 —0.439 0,065

+ 0.018

0.420

-0.472

0.334

0.018 + 0.004 0.013+ 0.004

0.333 + 0.008 0.333 + 0.008

0.426+ 0.002 0.426 + 0.003

-0.450 + 0.004 —0.450 + 0.005

we find that h» is negative with a magnitude be-
tween zero and 3% of the octet spurion.

VI. FITS

A straightforward method of obtaining experi-
mental values for A and B is to neglect final-
state interactions, perhaps justifiably on the
grounds that the theory gives real values. Pn the
other hand, in principle it would be better to use
time-reversal invariance and known phase shifts
and asymmetries to find the complex amplitudes,
only then to compare the real parts with theory.
To free our results from uncertainties in the han-
dling of the second method, we use the first meth-
od for fitting the theory, and then compare with
the numbers obtained by the second method.
Final-state effects are greatest for the Z', decays,
but errors are largest there as well.

We have performed all our fits in such a way as
to preserve the role of refinements as such, and
not just as added free parameters. In fact, we
regard the weak couplings for our baryon reso-
nances and the 27-piet piece not as free but as
constrained by the requirement that they contrib-
ute reasonably small corrections to A. and B as
indicated in the previous sections. Thus treated,
they improve the fits without weakening the the-
ory's predictive power for the pion decays.

In addition, we have strong cross checks on our
important refinements. As noted in the previous
section, all four relevant deviations from the
&I = 2 rule for pion decays indicate the same sign
for h», for either method of data analysis. Fur-
thermore, our values for h, and h, determined
from the pion decays correctly describe the radi-
ative decay Z+ -py, and make testable predictions
for the other radiative weak decays.

We begin by estimating h». We note that h27
will lead to a violation of the &I = 2 rule for the
s-wave Z decays via the dominant current-com-
mutator contribution, and for the p-wave g, A,
and " decays via the baryon pole terms. We es-

timate from experiment that

h» = —1.7y1.5 eV,

which is about a 2/0 addition to the octet part of
the spurion.

For fitting the B amplitudes we have a choice
between a theoretical expression involving the
pion-baryon coupling and one using the axial-vec-
tor coupling constants for the octet baryons. We
have found that fitting the p-wave decays with the
second method requires unreasonably large de-
cuplets. We have also discovered that the choice
(d/f)p = 2.1 (see Sec. D) is an advantageous one
for fitting —e.g., a choice of (d/f)~ =2.3 requires
noticeably larger decuplets.

A1though the B amplitudes are strongly dom-
inated by the octet baryon poles, these are not
quite so large as might be expected because of
cancellations between the s and u channel poles. '
The resulting delicacy of the fit allows a good
determination of the octet spurion. Furthermore,
these cancellations allow the decuplet contribu-
tions to be significant, despite their suppression
by the p-wave factor

(m, -m, ) (ml -m, ) /m'

relative to the octet poles. The same effect en-
hances the 27-piet contribution to B, although it
is only 2% of a„.

Taking the central value for h», we fit the B
amplitudes by first including octet baryon and
decuplet poles (with octet spurion). We find

Ii, =( —0.40 + 0.03)x10-'

h~d = —97.5+ 9 eV,

h,f =111+3eV,

where the errors for h, and h, d have a strong
direct correlation. The magnitude of h, is slight-
ly larger than the estimate given in Sec. III but
still acceptable. Finally, we find that the p-wave
Z ++ and Z both benefit by adding a reasonable
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amount of Y*,(A'), in agreement with our esti-
mates in Sec. V:

TABLE III. Contributions to radiative decay ampli-
tudes.

hAi =31 eV.

The fit is displayed in Table I. The quality of the
fit does not change much if h» is varied, aside
from &I = 2 rule effects.

Having now determined the current-commutator
contribution to the A amplitudes, we fit the s-wave
decays A', Z 0+, and ":by adding decuplets lead-
ing to

Process

~'-Pv
A ny
~p

~Q gp

C (10 'Q MeV ')
8 10~ 1 (A')

1.15 0.22

-0.66 -0.13 -0.13

—2.06 -0.21 -0.11

-3.26 —0.18 -0.20

-0 03 0 0

D (10 ~p MeV ~)

10& 1 (A', )

-0.17 0

0.33 0.7

-0.23 3.5
—0.25 6.1

h, = (0.20+ 0.03) x 10 ',
in which the error due to uncertainty of the weak
spurion is included. Finally, a small amount of
Yo pole was added to 5++ and g to achieve the
fit displayed in Table II:

h A =31 eV.

The quality of this fit is insensitive to the values
of h», h,d„, and h,f„.

In spite of our use of seven parameters, it re-
mains remarkable that the B's are quite well de-
scribed by the octet spurion alone, as required
by our expansion in mass differences (17), and that
the spurion thus determined need be supplemented
by only one parameter, h„ to describe the s
waves.

For the radiative decays we use the above pa-
rameters, and making the choice of electromag-
netic couplings corresponding to (42) we find

C„(Z'-py) =0.22x10-" MeV-',

D„(Z+ -py) = —0.17x10-"MeV-'

C8(Z+ -py) =1.15x10 ~ MeV-

Since D, (Z' -Py) = 0 and the I;*does not couple
to this decay, we find ICI'+ IDI' =1.9x 10 "MeV ',
and z = -0.24. If we use the extra suppression of
the Z'Z*'y vertex indicated by our analysis of
FFR in (43), we find C.„=0.18x10 "MeV ' and
D»=-0.33x10 "MeV ', so that ICI'+IDI'=1.88
x10 "MeV-', and n = —0.46. These predictions
are to be compared with the Z'- py experimental

Ke have used Eq. (42) in obtaining the decuplet con-
tributions. Only D (Z+ py) is sensitive to this assump-
tion.

results" "ICI'+ I
DI' = (3.07 + 0.5) x10 "MeV ' and

a = -1+0.5.' In either case the sign of n is deter-
mined by the pion decays (h, )0) and is in agree-
ment with experiment. The Hara theorem really
prevents us from obtaining 0. =-1, but n =-0.46 is
within one standard deviation of the measured val-
ues. Furthermore, the sign of Cyp is also deter-
mined from the pion decays (h, &0). If, instead of
adding to C„C» had the opposite sign (h, &0), then
ICI'+ IDI - 1x10 "MeV ', which is far too small
to be considered acceptable.

In order to see that the sign of o.(Z'- py) is in-
deed correlated with the reduction of the Z'- pn
s-wave amplitude, we note that the expressions in
the Appendix indicate

sign(A„A»)z+ = —sign(h, h, gg, ) &0,

sign(C, D»)z+~ = —sign(h, h, g, A. ~+) &0.

Because of the FFR relation (40) or the higher
symmetry groups, " these two constraints are
identical.

In Tables III and IV we display this result along
with our predictions for the other four radiative
decays. Note the large contributions of Y ~0 to the
neutral D amplitudes. This is because of the
smallness of the pole denominator mA. -mA ~.I

However, the errors on@A are large and our
method for estimating b is purely theoretical.

TABLE IV. Predictions for radiative decays.

Process C (10 ~Q MeV ) D (10 ~Q MeV ~)

Branching
ratio

Asymmetry
parameter

&'-Pv
A~ ny

~Q XQ

1.37

-0.92

-2.38

-3.64

-0.03

—0.17

1.0

5.8

0.78x10 3

1.5 x10 3

1.5 x10-'

1.0 x10 '

-0.2 to -0.5
-0.995

—0.95

-0.90
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Lower values for these parameters could sub-
stantially reduce the asymmetries and branching
ratios listed in Table IV.

VII. CONCLUSION

of - —1 should be easier to detect because the
competing pion decay has o.(A-neo)- 0.66. The
larger relative "' branching ratios (- 10 ' due to
the 1'n) might. make these measurements feasible
in spite of the difficulty in producing ™~'s.

We have shown that the apparent mismatches
between the pion decay amplitudes A. and B and

between the radiative amplitudes C and D are
completely resolved in the framework of current
algebra by inclusion of decuplet states. Further,
the addition of the Y*, resonance and a &I = —,

' piece
inH refine the fits to the pion decays. Whereas
the decuplets, 1'*„and H„(b,I = —,') contribute 30%,
10% and 2% to A, they contribute 10%, 3%, and
6% to B, respectively. The decuplet states com-
pletely account for a negative Z+ -py asymmetry
parameter of z- —0.2 to —0.5, and the K~0 domi-
nates the "' -Z'y and ™0-Aydecays.

Theoretically we conclude that the hyperon non-
leptonic decays B B' m and B B' y provide a
very significant positive test for the H -J J -

A.,
and J = V -A. assumptions along with the current-
algebra equal-time commutator

[F HPC, PV] [F HPV, PC ]

needed in the derivation of (3). We have adopted
a pragmatic attitude toward the isotopic properties
of H in that we have not derived octet dominance,
but instead use it along with a 2% empirical con-
tamination by a 27-piet inH

A further probe into the current-current struc-
ture of H is to dominate the complete set of
states between the two currents by baryon octet
and decuplet states according to the procedure
of Chiu, Schechter, and Ueda, "but with the most
recent fits to baryon form-factor data. This not
only demonstrates the octet-dominance property
of H„, but also verifies our fitted value for the
octet weak-spurion ratio d„/f „-—0.9.o' Thus,
the s-wave value d /f „=-0.3 (Ref. 13) is incon-
sistent with the p-wave amplitudes and with the
baryon saturation of the current-current H . '
Further, any attempt to relate d /f = —0.3 to the
K* vector-dominance model is inconsistent with

SU, ." We therefore reject the notion that d /f
is somehow related to (d/f) .

- —0.3.
As for the experimental consequences of our

theory, we would hope that future experiments be
directed toward the various B-B' y decay modes.
The error on o, (Z'-py) must be lowered if we
are to know by just how much the Hara theorem4
is broken. Measurements of the branching ratios
and asymmetry parameters of A -ny, " —Ay, and

Zy should be considered, in spite of their
difficulty. The small predicted ratio I'(A -ny)/all
-10 ' will be hard to measure, but an o(A -ny)

ACKNOWLEDGMENTS

One of us (M.D.S.) would like to thank P. T.
Matthews and T. W. B. Kibble for their kind hos-
pitality at Imperial College.

APPENDIX

We display all contributions to the various am-
plitudesA, B, C, and D. We denote the masses
as %for m„, etc.

X„{A')= -&2&„(A;)

1
nAt

1 1

A„(Z:)=—H„zo,
1

A„(.:)= -V 2A„(=oO)

1
A~O ~

(A+N) ljnn+ HnA 2gz+An+&pz+

f n N(A —N) (Z-+A)(Z —N)

(A+N) gnnno nA 2gz AnoHnzo

f„N(A N) (Z+A-)(Z-N) '

,
)

(Z+N) gppnOHPZ+ gZ+Z+nOHPZ+

f n N(Z —N) Z(Z —N)

+) (Z+N) gn~ PZ gZOZ+n ZO

f, N(Z-N) Z(Z-N)

+AZ m

(Z+A)(A-N) '

(Z+N) gzoz-, +H„zo 2gAz ,+H„A &-
f — Z(Z —N) (Z+A)(A —N)

(:-+A) 2gAZ-n+Hz-x- gnome, -,+HAno

f. (Z A)(=--Z)

o (~+A) gAzonG zoggo gno@onoHAgo

f. (Z+A)("- —Z):-("--A)

A'n A —oN KzAHnzo

(Z+A)(Z —N) '



2200 M. D. SCADRON AND L. R. THEBAUD

Kg AHgp-. p

(z A)(=-z)'
Kn Z+ 2~ ZA A"

2=-Z =--Z '" (Z A)(=--A)'

(K2 + KN)
C ( -Z y)= Hz-~-,

where H~, =(Bz.
~
H

~ B,), with

H„A =-2hh(2)"'(f~+ pd„) + 2(2)"'h„,

HAX0 2hh(2) (fN) 3dN)) + 2(2)"'h27 h

H2z+ =-2h,(f —d )+h,„,

H„zo =
2 (-2)' 'h, (f~ —d„)+—,'(-,')"'h,„,

1H~-g- = 2h, + h27,

Hzohho 2(2) hh 2(2) h27 h

and

gppgp = gnnvt'P g y

gppg+ =gNPN- =h 2gh

2
gZ+A((+ =gZOA((0=gAZ+N =~~&Pg ~

gz+z+7(0= gzoz+2 =gzoz N+ =2fJ g

B,o(A0) = —v 2B,0(A0)

hg, (g

B,o(Z0) =0 V 2hpg2(Z+N) 2 + 2
A —Z, Z*-N

B„(z',) = —~h, g, (z+N)
a —Z, Z*-N

6 -Z, Z*-N
B„(Z ) = ——,'h, g,(Z+N), +-,"

B„(:-:)= -&2B„(=;)
h3 g2= ' '(:-+A) „, +
3&6

h3hpg+ Q g g~g+~+ g+ NC.( '-P )=-
6~~

h3A. g 2) OA
C„(A -ny) =

h AAg Qp g~ QO~PC„(='-Ar)—
A g 2I('.0

h A, zp~ 40 g + ~ g-„+p-„p

6v 6 Z*' A. zoz*0

c, (. -z y)=o,

and

g~.=...= -(2)'"g=o=-. =(f, — &)g,

K~ =KZ+ =1.79,

KN = Khgp = 2 h= —2Kzp = —(2/&3)KzA = —1.91
h

KZ- = K-. = —(K2 + K„) .

h2A&&+ Q + g g&w+ &+ g 4+ N.( '-P )=-
h2A, ~g()AD„(A-ny) =-

6$ 6 A+2

( p A )
2 Az+0 Z++~ ~ hg+oxo "++A
6v 6 Zg'2 g g,o

2)(zozkp Zw A
A.-g:0-0 4+ Z

Z+2
The decuplet contributions are (we assume H -Ap

here)

A„(A') = -&2A„(A,')

h g Z*+N
--3~6(A -") z*

A, (E+) =-, WRh, g, (E —N)(, + —, „, ),

A, (E;)= —-', h,g, (E —N)(, ——, „, ),

A, (N:)=--,'h, g, (N —N)(, +'- N, ),

~„(=:)= -W2W„(=-;)

h2g2 g++ "++A=3~6'=-"

D,.(=- zr) = o-,

mith

A, g+ = A, go = A, g4+ g+ = 2A. z +pgp

= -(2/&3)&z~0~ = -& *0~0= 2.34.

Finally

x,.(z', ) =a„.(z:)
(Z —N)gg AI z hpA"

(A' —Z)(A' —N)
'

and all other AA. are 0;

B'(Z:)= B'(Z:)
(z+N)g. 'zh~A
(A' —Z)(A' -N) '

and all other BA. are 0;
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yI Pc

C, ,(x -nr) =
yI Pv

D~.(A -nr) =—

i
&A (-"-'-Ar) = &-&~ (:"'-~'r)A

bh~A,

A'+ "'

=0
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A hard-pion model is presented for a general symmetry. In the case of strong partially conserved
currents the proper vertices are assumed to be analytical. Ward-like identities are obtained for the
contact terms. For the soft-pion process in the symmetry limit of SU(2) && SU(2) a phenomenological
Lagrangian is built which reproduces the results of the hard-pion model. As an illustration we deal
with the K,3 problem, and build an amplitude for the photoproduction process yN mN.

I. INTRODUCTION

Hard pions (H.P.) and the phenomenological La-
grangians (P.L.) have been successfully used in
describing various low-energy phenomena. " It
has been pointed out that both methods give simi-
lar results. More systematic proof of the equiv-
alence of the results given by P.L. with those ob-
tainable from current algebra was given by Dashen
and Weinstein. The equivalence is clear, in par-
ticular for soft-pion emissions in the symmetry
limit. Our aim is to present a general H.P. mod-
el which in some sense is a generalization of the
Gell-Mann-Oakes-Renner (GMOR) model' for
symmetry breaking and the work of Gerstein et
al. ' on the structure of 3-point functions.

The main advantage of the H.P. model presented
is the possibility of extracting the scalar (pseudo-
scalar) contribution from the nonconserved cur-
rents. Having constructed the H.P. model, we

shall discuss soft-pion-processes in the symmetry
limit. We shall show that the same results may
be obtained using a P.L. in the tree approximation.
As an illustration for the use of the H.P. model
we shall deal with the K» problem and with the
photoproduction process yN-mN in the P &1

y
GeV/c region.

II. THE HARD-PION MODEL

The construction of the H.P. amplitudes will be
achieved in four steps.

SteP 1: The symmetry stmctuxe. The symmetry
structure of the model is defined by the following
commutation relations between the currents and
their divergences ':

[J,o(x), J"(y)] 5 (xo -yo) =iC„,Z&(x)5'(x -y) +S.T. ,


