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Both theoretical and phenomenological aspects of broken-SU(3) coupling-constant sum rules are
considered. Assumptions underlying the conventional derivation of these sum rules are discussed. A

coupling-constant sum rule is derived in a model involving broken scale invariance. A phenomenological

analysis of tensor-meson decays is carried out. Four coupling-constant sum rules are analyzed, and the
ambiguity problem in defining empirical coupling constants is studied.

I. INTRODUCTION

It is clear from the occurrence of mass degener-
acies in both the ground state and al, so low-lying
excitations of mesons and baryons that SU(3) must
play a central role in our description of hadrons.
This is even more evident when one considers the
striking manner in which the symmetry is broken
(octet dominance). However, the physical basis of
the symmetry is still not understood. Because of
this, we are unable to answer several fundamental
questions about the behavior of hadronic matter.
For example, does the symmetry breaking de-
crease and eventually vanish for highly excited
hadronic states (and if so, at what energy scale),
or. is it comparable to that of the ground state7
Presumably, progress can be made in answering
this question empirically when the appropriate data
become available. Unfortunately„we currently
lack the information on resonant states needed to
resolve the question. As an illustration of this, we
list in Table I for certain of the baryon multiplets
the average multiplet mass, '

the average mass per baryon due to symmetry
breaking,

(~M)=-P )M, M~, -¹,
and finally (AM)/M. In (1) and (3), the summation
goes over the members of a given multiplet. We
see in Table I a decrease of (AM) /M with energy,
i.e., the mass contribution due to symmetry break-
ing is not keeping pace with the unitary singlet
mean energy. Of more interest is the apparent
slight decrease in the absolute size of (b, M) with
increasing energy. However, given the uncertainty
in high-spin masses, this cannot justifiably be
distinguished from constant behavior. Further

experimental work is needed to clarify this point.
Were the value of (b.M)—= 100 MeV to remain con-
stant, it would constitute a basic parameter for
theorists to calculate. jhcidentally, some indirect
evidence on this subject comes from particle pro-
duction data. There, it appears that SU(3) does not
improve as energy increases. For example, at the
highest accelerator energies, the production of
kaons is still not comparable to that of pions. '

Our purpose in the discussion so far is simply to
point out how deficient even our qualitative under-
standing of SU(3) is. In view of this, we feel that
the phenomenological aspect of this subject de-
serves continued study. The area on which we con-
centrate in this paper is the relation between SU(3)
and hadronic couplings. There are several ways
in which one can define hadronic couplings. These
exhibit varying degrees of SU(3) invariance. For
example, according to the Ademollo-Gatto theo-
rem, ' matrix elements of the vector current be-
tween single-particle states of the same SU(3) mul-
tiplet evaluated at zero momentum transfer, are
SU(3) symmetric to a good approximation. Allother
example of the possibility of SU(3)-invariant had-
ronic couplings„ is the Qell-Mann, Qakes, Renner
solution' for the pseudoscalar-meson decay con-
stants, for which it is predicted that F„=F~=—F„.
Our primary concern in this paper is with hadronic
coupling constants. These describe the strength of
the transition n+P -y, where n, P, y are on-shell
hadrons. The easiest way to experimentally inves-
tigate these couplings is for one or more of the
particles to be a resonance. By measuring the de-
cay width and dividing out some appropriate mea-
sure of phase space, the decay coupling constant
can be extracted from the data. When this is done,
it is generally found that effects of SU(3) breaking
are still present. As an example of this, we pre-
sent in Table II numerical values associated with
certain of the transitions 10 (~')-8 (—,

' ') S8(0 )
among baryon states. For this case, a suitable re-
lation between coupling constant and decay width is
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, 3m.'u, r
ka(E+ M) ' (3)

where M~ is the resonance mass and k, Z, I are
the momentum, energy, and mass, respectively,
of the decay baryon evaluated in the parent rest
frame To. estimate the degree of SU(3) breaking
in these couplings, we can perform a least-squares
analysis by minimizing the non-negative function,

Isospin-invariant
coupling constants

Contribution to
sum rule

TABLE II. Coupling-constant, sum rule for 2'
baryon transitions. The couplings shown in the first
column are calculated from Eq. (3) of the text. The
second column gives the percent deviation from the
SU(3) fit of each empirical coupling constant. The final
two columns display the content of sum rule (5) in the
text.

E(g) = [g(s Nw) g/W2-] '+ [g(I'*,An) —g/2] '

+[g(F*,Zw) -g/&6]'+[g(=*»w) -g/2]'. (4)

g(3+ ~ 1+0 ) SU(3) Empirical

The second term in each square bracket is the
SU(3)-invariant coupling, with over-all strength g.
Upon performing the minimization BE/Bg =0, we
obtain g=o.V3. The average degree of symmetry
breaking (in percent) can then be calculated for
each of the coupling constants, and is given in
Table II. The root-mean-square average is seen
to be about 15%.

There exists a sum rule which relates the cou-
pling constants which appear in Eg. (4}, viz. ,

W2g(~Xw)+ 2g(=-+=- w) = 3g(r+Aw)+ —,'ve g(r+Zw).

(5)

0,60 16,3

20,2

0.717

0.717 0.58

0.26

0.35

12.3 0.358

1.076

0.32

1.05

eral coupling sum rules. Section IV contains our
conclusions. There are also two Appendixes. The
first is on the relation between Gell-Mann-Okubo
mass sum rules and the concept of scalar dom-
inance, whereas in the second, the decay of tensor
mesons into vector and pseudoscalar mesons is
examined.

This sum rule is compared with the current data'
in Table II. It is obeyed to an accuracy of about
4%. The existence of such coupling sum rules can
have the following practical significance: As in-
creasingly accurate data become available, cou-
pling-constant sum rules, if valid, can provide
rather sensitive consistency checks on the experi-
mental numbers. The remainder of this paper
contains theoretical and phenomenological studies
of this subject. In Sec. II, we discuss theoretical
means by which the sum rule (5}, and others like
it, are conventionally derived. Part of the discus-
sion in Sec. II involves a dynamical model in-
corporating the concept of scale invariance. Then,
in Sec. III, we perform a phenomenological anal-
ysis of tensor-meson decays into two pseudo-
scalar mesons. The data are used as input to sev-

TABLE I. Baryon multiplet masses. The average
multiplet mass is denoted by M, and (EM) is the
average mass per baryon associated with symmetry
breaking as defined in Eq. (2) of the text.

II. THEORETICAL ASPECTS OF COUPLING-CONSTANT
SUM RULES

We begin this section by reviewing a method for
deriving coupling-constant sum rules that has gen-
erally been the basis of previous studies. ' Suppose
SU(3) is broken by one or more terms in the Ham-
iltonian which transform as the isoscalar member
of an octet. Then the coupling g(n+P-y), where
the states n, P, y belong to SU(3) representations
p, &, C, respectively, is no longer given by its
SU(3)-invariant value. Additional parameters are
needed to describe it. We may generate expres-
sions for these by analyzing T„ the symmetry-
breaking part of the transition operator, taken be-
tween the states n, P, y. If, in the matrix element
(C(y)i T, iA(n)B(P)), we assume that the states
n, P, y are correctly given by their original SU(3)
assignments, even though the symmetry is broken,
then application of the Wigner-Eckart theorem im-
plies the following formula:

1+
2 1151

(am) /I
0.1

g(n+p-r)=Z, (,)c( np-+r)

(C8 Nt ABN
+ x„i ——

i

———."ir0r) n p r (6)

5
2

1383

1798

1865

118

101

0.085

0.049

0.054

The X~ are the additional parameters, mentioned
above, needed to describe g(n+P-y) in the pres-
ence of symmetry breaking, and the quantities in
parentheses are SU(3) isoscalar factors. The in-
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dex N runs over all SU(3) representations contained
in the Clebsch-Qordan series of both ASB and
CS8. Indices representing the possibility of I', D
type couplings have been suppressed. If we are
considering a set of. m couplings, and n is the num-
ber of independent parameters needed in (6) to de
scrj,he them. then there are m-n sum rules. A
useful sum rule involving pion emission from
—," baryon resonances has been given in Eq. (5).
Here is another, describing the ~ -~" baryon
transition with pion emission

2g(=' "-~»)+g(X'z»)

—g(y, ' V',*w) -l3 g(I' Y'„*m) =0. (7)

The primed bar;ons have spin-parity —,
' . One must

be careful to allow for the presence of singlet-octet
mixing in the ~ isoscalar states. There is prob-
ably good reason to believe in the sum rule (I). We
discuss this point further in Section IV.

Sum rules (5) and (7} may be shown to follow from
the decomposition of g(cy+ P- y ) given in Eq. (6).
The main assumption underlying the derivation of
Eq. (6) is that each particle state transforms as a
member of a particular SU(3) multiplet even in the
presence of symmetry breaking. Although certain-
ly popular, this kind of assumption is not above
criticism. Sometimes it can lead to difficulties.
In the following, we discuss two examples of this.

Despite the model calculation of Ref. 4, it ap-
pears from experiment that the pseudoscalar decay
constants are not equal', evidently E~ and I', differ
appreciably. These decay constants appear in the
matrix elements

energy density 0",

8 = 0 +no+ cu8+ 5,
and for the energy-momentum trace,

8=(4 —d)(u, + cu, )+45.

(9)

(10)

In Eq. (9), 8'0 is an SV(3) x SU(3) singlet, 5 is a
c-number contribution to the energy density, and
the constant c determines the amount of SU(3)
breaking present. In Eq. (10), the constant d is the
dimension of the symmetry-breaking operators
u„u, . Our point is to show that by using the naive
SU(3) states freely in certain meson and baryon
matrix elements, it is possible to obtain a contra-
diction in the evaluation of the dimension. First,
consider the rigorous energy density and trace
equalities for baryons

(P, a( 8"~P, a)-, ,= (P, a~8[ P, a)

=M, , I=1, . . . , 8 (1 la)

(p, a
~

8"[p, a)-, = ( p, a ] 8)p, a)

=2m, 3, a=1, . . . , 8. (lib)

&p', I I8Ip, a&=5.P.(t)+d. .E.(t) (12)

The trace constraint relation of (lib) implies for
(12) that

By applying the Wigner-Eckart theorem (without
justification) to matrix elements of both 8" and 8
as in (11a) and (lib), one can deduce that 2 =3.
Alternatively, let us employ the signer-Eckart the-
orem (again, without justification) in a soft-meson
analysis of 0 meson matrix elements of the trace

(o~a& (0)~p, (k)) =fr.'6., &", (6)

where A", is an axial-vector current, P~ is a pseu-
doscala. r meson, and a, 5=1, . . . , 8. If we assume
that the vacuum is SU(3)-invariant, ' that the states

~ P, (k)) transform as members of an octet, and use
current algebra to describe how the A", transform,
then SU(3) rotations may be used to show E„=F»
E„. This unwanted result is produced directly by
the assumption that symmetry breaking does not
affect the SU(3) description of

~
0) and

~ P, (k)).
A more interesting, although somewhat more

involved, example of the pitfalls which can occur
when SU(3) properties of hadron states are as-
sumed, is shown by analyzing matrix elements of
the energy-momentum trace operator, 6I. The out-
look that hadron physics might be elegantly de-
scribed in terms of broken SU(3}xSU(3) symmetry
has attracted much attention recently. It is popular
to suppose" that the symmetry is broken by oper-
ators u„u, belonging to the (3,3)+(3,3) represen-
tation of SU(3) xSU(3). Thus, one can write for the

Z, (0) = ~(m, '- m»'),

Z, (0) =-', (m„'+2m„') .
(13)

where I; is the decay constant of meson a, and the
v, may be related to the current divergences
B„A,",

W2+ c
ByA~ = — —:— v~, a=1, 2, 3. (15)

By substituting Eq. (13) into Eq. (14), we obtain the
familiar relation c= 2v 2 (m, ' —m»')/(m, '+ 2m»').
Then by substituting Eq. (15) into (14), we finally

However, we may use a soft-meson analysis of
Eq. (12) to show that

E,(0) = —- (0
~ v. (0)

~ p, a),
(4 -d)c

(14)

Z,(0)=-~ p &Olv. (0)II, a),
l2 (4-d)

a
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get d = 2. In this model, the dimension should have
a unique value, so there is an inconsistency be-
tween the two analyses just performed. It is prob-
ably attributable to the free use of the Wigner-
Eckart theorem throughout the calculation.

At the very least, these examples indicate that
we must be careful in using the SU(3) wave func-
tions. Although the SU(3) assumption might be val-
id in some cases, it is likely to cause problems in
others. Thus, derivations, such as the one which
led to Eq. (6), are not rigorous unless supported
by additional dynamical knowledge.

For the rest of this section, we shall examine a
simple model, "based on the concepts of scale and
chiral symmetries, |n which a coupling sum rule
emerges. The model is of interest because as-
sumptions regarding the transformation properties
of states do not directly appear. Furthermore, the
idea that symmetry breaking in coupling constants
is likely to accompany that which occurs in masses
is readily made.

We begin by defining an off-shell vertex function
T, (q', p'; t ), which describes the coupling of pseu-
doscalar mesons to the energy-momentum trace,

T, (q' p';t) =i" ', '; d'xd'ye"' ' '"(0~ T&qA, (x)&,A, '(y)e(0)~0).
a g

In (16), a= 1, . . . , 8 and is not summed over, t=
= (P —q)', m, is the mass of the 0 meson carrying
index a, and E, is defined in (8). We adopt the fol-
lowing representation for T, (q', p'; t):

X+ I'(q2+ p2) +Zt
(17)

where X, Y, Z are constants to be determined by
dynamical considerations, and m, is the mass of
an I=Z=0 meson, the c. Our use of the pole dom-
inated formula (17) is motivated by the assumption
that the scale-invariant symmetry limit, in which
all on-shell matrix elements of 8 vanish, is ac-
companied by the presence of a zero-mass scalar
meson, c. If the symmetry is not too badly broken,

T, (m, ', m, ', 0) =2m, ',
T, (0,m, ', m. ') = (4 —d)m, ',
T, (0,0; 0) = (4 —2d)m, '.

(18a)

(18b)

(18c)

In deriving Eqs. (18a)-(18c), we have used Eqs.
(9) and (10). The dimension d appearing in (18b)
and (18c) is common to the operators u„u„and
8~A.,~, a= 1, . . .8. Inserting the pole representa-
tion (17) into Eqs. (18a)-(18c), we get

then Eq. (17) is thought to be a reasonable approx-
imation to T, (q', P', t) for moderate values of mo-
mentum transfer, say,

~
t~ .~m, '. We can use soft-

meson theorems to gather the following con-
straints:

(4 —2d)m, ' m, '+ (q'+ p')m, '(d —1) + t [m, '+ (d —4)m, ']
m~

(19)

The physical matrix element of the trace operator
taken between single 0 meson states with index a
is obtained by passing to the on-shell limit q'= p'
=m, '. The form factor so defined contains an e-
pole, with residue

Res T, (m, ', m, '; m, ') = m, ' [m, '+ (d —2)m, '].
(20)

This residue contains information on the coupling
between the 0' meson e and the 0 meson with index
a. Let us define coupling-constants g(eww), g(c KK),

g(eqq) with the Lagrangian

(0(e(0) ~~) =m, 'F, . (23)

Itis also of interest to exhibit the values of these
couplings in the SU(3) limit. We have

g=g eM-M

Equating Eqs. (20) and (22) for each value of a, we
find

g(eww) = (m, '+ (d —2) m, ')/2F, ,

g(~K K)= (m, '+ (d 2) m, ')/r, , —

g(eqq) = (m, '+ (d —2) m „')/2 F, .

gi =g(Eww)E w w+g(E'g'g)f 7' +g(eKK)6 KK. (21) =goc(w w+q'+ 2KK) . (26)

We may express the residue of T, (m, ', m, ', t) in
terms of these couplings,

Res T, (m, ', m, '; m, ') = m, 'E, o,,g(caa), (22)

where o,,= 2 for a= 1, 2, 3, 8 and ~, =1 otherwise,
and E, is defined by

Thus, the SU(3)-symmetric couplings are g(eww)
= g(~no) =g(«K)/2= g..

The first thing to note about the relations in (24)
is that if the masses m„, m~, m„are nondegener-
ate, tnen so are the couplings g(eww), g(eqq), and

g(eKK)/2. Mass and coupling-constant breaking
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appear simultaneously in this model. Moreover,
the masses are squared, so that if we have a Gell-
Mann-Qkubo mass formula,

f=T, cos 8r+T, sin 8r,
f'= —T, sin Br+T, cos 8r,

(28)

3m '=4m~' —rn ',
then we obtain the coupling sum rule

3g(eq71) —2g(eKK)+ g(eww) =0.

(26)

This sum rule can also be derived from Eq. (6).
Evidently, the dynamical assumptions involved in
the model just discussed (particularly single-par-
ticle dominance) are equivalent to those underlying
(6).

In Sec. III, we shall perform a phenomenologi-
cal analysis of several coupling sum rules, em-
ploying as input empirical tensor-meson coupling
constants. The sum rules to be used are obtained
from Eq. (6), even though, in this section, we
have questioned the rigor underlying this approach.

We conclude this section with an observation per-
taining to the concept of broken scale invariance.
It has been pointed outing that Gell-Mann-Qkubo
mass relations can be generated in a model con-
taining e-pole dominance and SU(3)-invariant cou-
plings of the e meson. This latter feature turns
out to be unnecessary. A discussion of this point
is presented in Appendix A.

III. PHENOMENOLOGICAL ANALYSIS
OF TENSOR-MESON DECAYS

Gathering the data, necessary for evaluating cou-
pling sum rules is not easy. As mentioned earlier,
the most forthright method for obtaining couplings
is from the decays of resonances. If the multiplet
to which the resonance belongs is too light in mass,
then some of the particles involved in the sum
rules occur as bound states in certain of the "de-
cay" channels. Unfortunately, only a very few cou-
plings which occur as residues of bound state
poles have been determined from 8-matrix theo-
ry. At the other extreme, if the multiplet of reso-
nances has too large a mass, accurate experimen-
tal data are invariably lacking. This can be blamed
partly on the sharp increase with energy in the
hadronic density of states. As the energy ap-
proaches 2 GeV, sorting out individual resonances
becomes a significant problem.

The tensor mesons with positive parity are one
of the few systems likely to be amenable to analy-
sis. There are nine of them —f(1269), f'(1514),
A,(1310), and Kr(1421)—"forming an octet and a
singlet in the SU(3) limit. The physical f and f'
states exhibit singlet-octet mixing. For want of a
better approach, "we adopt the follow'ing mixing
parametri zation:

+g(KrKq)(Kr Kq+H. c.)

+g(K, Kw}(K, 7K w+H .c ). . . (29)

We have suppressed the spin and momentum struc-
ture of the 2'-0 0 couplings. A particular choice
for this is given in Eqs. (30) and (31) which also
define the SU(3)-invariant couplings for the octet
and singlet tensor-meson states,

Z, (TP P) = W& g,d;q, T";"P; &„s„P„
and

Z, (T, PP) =g, T~,"Z a„s„P, , (31)

where all repeated indices are summed over and

i, j, k=. 1, . . . , 8. Notice that as defined in (30) and

(31), all coupling constants have the dimension of
inverse energy. There is no rationale underlying
this except that the choice of kinematics in (30) and
(31) seems a "natural" one. Other, equally plau-
sible, definitions will be considered later in this
section. The relation between decay width I' and
coupling constant g, which follows from (30) and
(31) is

I"=C~-4~m' ' (32)

where q is the decay momentum in the parent rest
frame, Mis the mass of the decaying particle, and
C is an isospin-dependent numerical factor. For
the transition f-ww, we find C =2/5.

Of the ten couplings in (29), only the qq decay

where T„T, belong to the singlet and octet multi-
plets, respectively. A fit to the Gell-Mann-Qkubo
mass formula gives' =30.6'. This value is not far
from the "canonical" mixing angle 8, = sin '(I/&3)
=35.3', which in a simple quark model, signifies
the decoupling of f'(1514) from nonstrange quarks.
This is consistent with current data, ' for which
only an upper bound for the decay width I"(f'w w)

exists. In this paper, we shall take T'(f'ww)=0.
The two most predominant decay modes of the

tensor mesons consist of two pseudoscalar (2'
-0 0 ) and one vector on—e pseudoscalar (2'-1 0 )
meson composites. Most of the analysis to follow
will be concerned with the first of these. %'e iden-
tify the various 2'-0 0 couplings by means of the
Lagrangian

2=g(fww)fw w+g(f'ww) f'w w+ g(fKK)fKK

+ g(f'KK)f'KK+g(fqq)fq'+g(f'gq)f'q'

+g(A2wq)A, wq+ g(A.,KK)A;K7 K
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mode of f(1269) and f (1514) is not sufficiently
well known to be of any use. Let us see how well
the data are fit by the SU (3)-invariant couplings.
Using (30), (31)and the mixing formula (28), we
can perform a least-squares minimization rela-
tive to the variables g, and g, . Doing so„we find"

g, =1.82 and g, =1.16. The root-mean-square per-
cent deviation of the empirical couplings in Eq. (29)
from SU(3),

U (3 )
1/

Zi 4i ZF )
&& 100

gg;
(33)

2—g(A, KK) + g(K rK—ii) = -g(KrKi}) +g (A, wq),3

(34)

g(KrKv) = -g(T, KK) +2 g(T8sw) + —g(A, KK)„

(35)

2g(Kr Kq) +g(TBKK) + —— g(A, KK)-

+ g(K rK7i) 2g(TSAR@) = 0-, (36)
2

3 3

is numerically about 8'%%uo. The agreement between
the empirical 2 -0 0 couplings and their SU(3)
counterparts is rather good. This lends hope that ex-
isting data are of sufficient quality to provide a
fair test of the coupling sum rules. Recall that the
&'-—,''0 decays, for which a sum rule is valid,
exhibit a mean square deviation from SU (3) of
about 15%.

Using the parametrization implied by Eq. (6), it
is possible to derive the following four sum rules
for 2'-0 0 decays':

g(A, KK) —g(TBKK) + 2g(T, mw)
9

= —4g(KrKq)+4g(A, mq) . (39)

The results of testing the sum rules (34), (35),
(38),(39) by inserting numerical values of the em-
pirical coupling constants is given in Table III.
From the second row of Table Illa, we see that
the percent differences between the left- and right-
hand sides of the four sum rules are 18.7%, 17.1%,
8.3%, and 24.8%.

A necessary criterion for the sum rules to be
judged successful is that they be obeyed to an ac-
curacy at least better than that of the SU(3)-invari-
ant fit. Clearly, the couplings defined in Eq. (32)
are not. There are several ways to interpret this
negative result. The most obvious of these is that
the data are not yet of sufficient accuracy. Another
is that the coupling constants being tested are not
being extracted from the measured decay widths
in the "correct" manner. We shall investigate this
latter point in the rest of this section, deferring a
discussion of the former until the Conclusion.
That is, we shall study the arbitrariness involved
in defining empirical coupling constants by consid-
ering the effect upon the coupling sum rules of
using different definitions. The key point to re-
member in choosing other definitions is the re-
quirement from special relativity that the lifetime
of a decaying resonance transform as the fourth
component of. a four-vector. Thus, the class of
allowed redefinitions can involve only masses of
the participating particles. Despite the apparently
bewildering freedom of choice, there are certain
of these redefinitions which appear more natural
than others. Two definitions which come to mind

are defined by the Lagrangians

3g(To qq) +g (T,ilaw) -2g(T, KK) = 0 .

As a check against errors in Eqs. (34)-(38), note
that these relations are consistent with the SU(3)-
invariant couplings of Eqs. (30) and (31). Unfortu-
nately, until the pp decay modes are measured,
the sum rules (36) and (37) cannot be tested. There-
fore, we are left with the two sum rules (34) and

(35). If desired, a linear combination of (34) and
(35) can be used to eliminate either of the A2KK
or E~&n couplings. Thus, we can also write

(41)

where we have suppressed the internal-symmetry
indices. These definitions are of interest because
the first gives a phase space containing only(aside
from numerical factors) the q' momentum depen-
dence,

(42)

ol

9
g(Kr Kii) = 4g(TB Viz') -2g(T KK)

+g(A, wg) —g(KrKq) (38)

and the second involves a dimensionless coupling
constant,

(43)
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From Table IIIa, we see that each definition leads
again to poor results. Although the root-mean-
square amount of symmetry breaking is not large,
10.2% for (40) and 10.6/o for (41), the coupling sum
rules are not obeyed to a reasonable degree of ac-
curacy.

It has recently been suggested" that for pseudo-
scalar mesons, the effects of SU(3) symmetry
breaking appear to be more naturally described by
the Duffin-Kemmer-Petiau (DKP) equation rather
than by the Klein-Gordon (KG) equation. The for-
mer is a first-order differential equation, analo-
gous in this respect to the Dirac equation, where-
as the latter is of second order. One can write in-
teractions similar to (30), (31), (40), and (41) in
terms of DKP field operators, instead of the more
conventional KG operators. This procedure intro-
duces certain mass factors into the coupling-con-
stant-decay-width relation. Naturally, the value
consequently attained by the coupling constant is
thus affected. In principle, this approach is af-
flicted with the same ambiguity as the KG formal-
ism; one is free to redefine coupling constants with
factors of the appropriate masses. However, we
have performed a numerical analysis of two cou-
pling definitions which seem reasonable candidates
to us. The interactions are defined by

L.=r,T" 'N(P„P. + p.P„)0

(a) A =0.0 fm

IV

SU(3)
gg

Z4

0.0
18.7
19.1
18.3
5.7

17.6

0.0
17.1
16.7
16.9
2.0

12.3

0.0
8.3
7.5
8.6
4.3

27.7

0.0
24.8
24.7
24.7

5.2
16.1

(b) B =1.0 fm

IV

SU(3)
gg
g2

g4

0.0
7.8
6.8
8.8

10.2
37.8

0.0
26.1
29.2
22.8
11.9

119.0

0.0
18.4
21.4
15.4
19.0

273,0

0,0
13.6
12.8
14.2
8.5

32.5

TABLE HI. Coupling-constant sum rules for 2+ 0 0
meson transitions. The column headings I-IV represent
the sum rules (34), (35), (38), and (39) of the text, re-
spectively. The row headings define the kind of constant
being analyzed; J~, . . . , P5 refer to the interactions giv-
en by Eqs, (30), (40), (41), (44), and (45) of the text.

Table entries give the magnitude, in percent, of the
difference between the left- and right-hand sides of a giv-
en sum rule. The symbol R, which distinguishes the re-
sults in (a) from those in (b), refers to hadronic radius
which appears in the barrier penetration factor of Eq.
(48).

(45)

where we again suppress internal-symmetry indi-
ces. The respective decay widths are given by

and

r( p- ) =c4'
4~ u, 'M. ~, (46)

r( p )
gR'5 l ( ~ -( cf™8)] (47)

My M~8
In (44) and (45), we have described the decaying
tensor meson in the usual (KG) manner. The oth-
er symbols are characteristic of the DKP formal-
ism and are discussed in Ref. 15. Note that g, is
dimensionless, whereas g, has the dimension of
inverse mass squared. The last two rows of Ta-
ble IIIa give the result of inserting the DKP cou-
plings of (44) and (45) into the four coupling-con-
stant sum rules. Before commenting on them, let
us first point out that the root-mean-square devi-
ation of the SU (3) fit is 32%%uq and 46% for these cou-
plings, respectively. This is substantially larger
than the symmetry breaking associated with the
KG couplings. The numbers in Table IIIa show
reasonably positive results for the DKP couplings
of Eq. (44), but not for those defined in Eq. (45).

In particular, despite the relatively large deviation
of the empirical coupling constants of Eq. (44) from
the SU(3) fit, the sum rules are obeyed to an ac-
curacy appreciably better than the other definitions.
We shall comment further on this in the Conclusion.

So far, we have considered only those redefini-
tions of coupling-constant sum rules which follow
from various effective Lagrangians, calculated to
lowest order. A rather different type of redefini-
tion involves use of a factor which explicitly takes
into account the extended spatial structure of
hadrons. For example, suppose hadrons are char-
acterized by some uniform size R. Then, if q is
the decay momentum of a two-particle composite
from some resonant state, damping of the decay
rate for those momenta obeying qB & 1 might be
expected to occur. This idea is a well-known one
in nuclear physics and is discussed in Refs. 1 and
5. We have incorporated this approach into our
phenomenological analysis with the following sub-
stitution in Eqs. (32), (42), (43), (46), and (47):

r -r[1+ (qf~)']-'.

The effect of a variety of sizes R has been exam-
ined. Representative of these are the sum-rule
values given in Table IIIb with R = 1 fm. Table IIIa
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corresponds, of course, to R=O. Generally, the
pure SU(3}fits with 8=1 fm are worse than those
with 8= 0. From Table IIIb, it is clear that the
success of the broken SU(3) sum rules is not im-
pressive. Incidentally, the effect of these consid-
erations on the 2+ -—,"0 sum rule (5) for 8=1 fm
is to worsen its agreement from about 4% to 7%.

Up to this point, we have not considered the de-
cay of a tensor meson into a vector and a pseudo-
scalar pair. This is done in Appendix B, where it
is shown that, because of kinematical consider-
ations, the coupling sum rules are not likely to be
testable.

IV. CONCLUSION

Our phenomenological analysis of tensor-meson
decays has yielded a rather diverse set of empiri-
cal coupling constants. The various classes of de-
cay kinematics which we employed gave SU(3) fits
ranging from a root-mean-square deviation of
about 8% to 56/p. None of the fits to the sum rules
can be considered outstanding, although one [see
Eq. (44) and Table Illa] appears to be better than
the rest. There are clearly three factors which
ean be blamed for any of the negative results in
Table III: invalidity of the sum rules themselves,
inappropriate definition of the empirical coupling
constants, or inaccurate data. Let us discuss each
of these in turn.

First, there is the problem concerning the over-
all validity of the coupling sum rules. This is
actually part of a larger question about the nature
of SU(3) and its breaking. The problem of under-
standing which internal symmetries are pertur-
bative and which are not is actively being studied
in various model calculations. '6 Even the Gell-
Mann-Okubo mass sum rules continue to be a
fertile area for theoretical investigation; the ques-
tion of linear versus quadratic sum rules for me-
sons has not yet been satisfactorily resolved. "
Although we expressed reservations in Sec. II re-
garding the derivation of coupling sum rules given
there, we feel that there is no compelling experi-
mental evidence against them at this time. The
model calculation involving broken scale invariance
was of interest in this regard. Further work on
the theoretical foundations of this subject is cur-
rently underway. "

Concerning the means by which coupling con-
stants should be extracted from decay widths, we
have taken the attitude in this paper that effective
Lagrangians such as Eqs. (30), (40), (41), (44), and

(45) are a kind of sophisticated bookkeeping which
generates the correct momentum and spin depen-
dence of the decay amplitude. Unless one is going
to completely solve the field theory, there seems
to be no a pro~i way of choosing between various

couplings. Of course,
'

when comparing these cou-
plings with the symmetry prediction, the various
definitions lead to very different results. The
search for a particular choice which works better
than the others is worthwhile because it may lead
to a better understanding of the underlying dynam-
ical processes. For example, there have been
claims'" that the Duffin-Kemmer-Petiau descrip-
tion of mesons displays a systematic superiority
over the usual Klein-Gordon approach in taking
symmetry-breaking effects into account. Of course,
one could employ the somewhat extreme approach
of constructing more or less arbitrary functions
of the relevant masses and letting a computer
search decide which choice of decay kinematics
fits the sum rules best. Unfortunately, this view-
point does not leave one with much physical under-
standing of the final answer; surely some theoret-
ical foundation to the phenomenology shouM be
present.

Interestingly enough, there are situations in
which the ambiguity problem in defining coupling
constants is greatly alleviated, if not entirely
absent. Recall that the &

-
& 0 sum rule contains

only pions as the decay mesons. There, the prob-
lem of mesonic kinematic corrections is not pres-
ent. Unfortunately, it is not possible to do the
same for the tensor-meson sum rules because
terms containing m, K, and g are unavoidably inter-
twined. The problem associated with kinematic
corrections is correspondingly a more difficult
one. For this reason, we mentioned in Sec. II that
the sum rule (7) (describing ~ - ~"0 transitions)
should be of special interest —aside from Eq. (5),
it is experimentally the most accessible sum rule
which contains only pions. Before it can be tested,
there must be improved data for each of the decay
modes in Eq. (7), particularly the =*(1820)
—=*(1530)v and Yf(1690)—Y*,(1385)w decays. When
this is done, the sum rule (7) could be a useful
indicator of the accuracy of the data.

To conclude our discussion of the broken SU(3)
sum rules and tensor-meson decays, we consider
the possibility that the data have not yet reached the
desired state of accuracy and stability. Perhaps,
there is a lesson to be learned from the —,

'+
—,
' 0

sum rule (5}. Over the past several years, cou-
pling constants defined as in Eq. (3) have fitted the
sum rule (5) to better than 1%. Changes in the
most recent data' decreased this excellent result
to about 4/0. Since the —', + baryons are probably the
best studied resonance system in the hadron spec-
trum, one should clearly be wary of over-inter-
preting analyses of particles such as the tensor
mesons. Thus, although the numbers in Table IIIa
show that the best fit to current data is with the
DKP formula (44), it might be premature for the
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DKP advocates to claim this as a success for their
method. In particular, a mystifying feature of the
preferred definition (44) is that its over-all fit to
SU(3) is substantially poorer than each of the KG
definitions (30), (40), and (41). Numerically, this
is due mainly to the large fnw contribution in Eq.
(33). Our choice off -f' mixing could be respon-
sible, but this is by no means clear. ' A final
caveat regarding the tensor-meson decay data
concerns the failure of the barrier penetration
factor of Eq. (48) to improve the R=O fits to the
sum rules. The idea that damping of large momen-
ta should accompany intrinsic hadronic structure

is an attractive one; the negative nature of the
8 40 values in Table IIIb is unexpected. It will be
of interest to follow this aspect of our results as
more data become available.
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APPENDIX A

The scalar-dominance hypothesis"" is simply the conjecture that matrix elements of the trace opera-
tor can be approximated by scalar-meson pole contributions for moderate values of momentum transfer.
For example, the elastic matrix element of baryon a is written

We have considered two I =J =0 mesons, e(IOO) and c'(1060), in (Al), in order to relate to previous cal-
culations on the subject. At zero momentum transfer, we deduce the following mass relations for the 2'
and 2' baryon multiplets:

i+ ~ 3+.
~ -g&NNF& +& NN+& & 2

g e AAFe +g c ' AAF~ '
p

gt gZF6 +g6 ' ggFE '

g 6 3 ZFf. +g6 R~~F6 ~

geh, d Fe +go'Ad, Fe' p

Yi g~r, rE~+g, ~~ ~F,

g~ ~ Wgg+F~ +g~p g +~ QF~f

g~ AQF~ +g~'AQ F~' p

(A2)

where the particle symbol represents the mass of that particle (e.g. , &=m„) . If the physical states c,e'
correspond to states v„&r, in the SU (3) limit, we can write

6 = o0cos 6 -o, slnO, ~8 cos 0+ 00 sino . (A3)

Substituting (A3) into (A2), we find (using obvious notation)

goBBF0++&BBF8 ~ (A4)

where the symboIB ranges over each of the baryons in Eq. (A2). The quantities I'O, I'8 are related toI'„E, ,

as c„o,are to ~, ~' in Eq. (A3).
Let us observe the consequence of assuming SU(3)-invariantcoupling constants in Eq. (A4). We denote

the coupling of &„o, to the &' baryons as g0 ",g& ', and the coupling of o0, 0, to the &'baryons as ~0",
h, (0) . Then,

1+ ~

2 ~ ~=a, g',"+ [(3-4n)/v 3 ] Z, g(o»,

A =E,g(oo» - (2n/W)y;g(BO»,

Z=Z«»+(2n/Wy «'»
(0» t(3 2~)/~3]~ (o»

3+
2 ~ F (g(0) F I (0)

0 0 & 8

F I (0) F I (0)
8

g Fy() 2FP()

(A5)

In (A5), n is the Il/D parameter occurring in the
coupling of o& to the 2' baryons. To repeat, Eq.
(A5) gives mass formulas for the 2' octet and ~'
decuplet under the assumption that the only source
of SU(3) breaking is in the mixing of the o'o, o,
states. The usual Gell-Mann-Okubo mass formu-
las are seen to follow,

3A+ Z
+ ~

2

—w4 Q

Thus, by incorporating the assumption of SU (3)-
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invariant coupling constants into a scalar-domi-
nance model, one is able to generate the usual
baryon-mass sum rules.

What we wish to point out here is that, if the re-
strictive assumption of SU (3}-invariant coupling
constants in dropped, but the broken couplings
employed obey sum rules of the type discussed in
this paper, then to a good approximation the Gell-
Mann-Okubo mass relations survive. To be spe-
cific, we study the effect of broken-SU(3) coupling
constants upon the &' system. We employ for a
given coupling h» the notation

Lagrangians are

g(T VP) =i gf, ~ @~a„~s T&'PB, B~VB,

Z(ToVP) = Z(T V P) =0. (82)

The latter two equalities follow from charge-con-
jugation invariance. There are seven nonzero
couplings contained in (81). When one allows for
symmetry breaking, these seven couplings may be
described in terms of four independent parame-
ters, so there are three sum rules:

(o) (& )
~gDD ~oDD+~aDD &

(A7) 3g(Kr p K) 2 ~3g(T8 Ky K) ~3g(K ~VBK)

where A, D~ is the sym'metry-breaking contribution.
The mass formula (A4) for the b baryon becomes

+2g(KrK„w) -g(A, pw) =0, (83)

g(Amp'') —2g(A, K„K)—2g(K rK~ p)

flo~gEO + ploggEO+ ll ggaE ]8+ABggE8
(o) (& ) (o) (i) (A8)

-g(Kr pK} —Wg(Kr V, K) =0, (84)
We have lumped the contributions in (A8) accord-
ing to the size we expect each to have (zeroth or-
der, first order, and second order). The first-
order contribution comes from two separate terms.
The other members of the &' system have similar
type mass relations. The coupling sum rules ap-
propriate to this discussion are

Ao~~ +go~~ —2gorr =0,(x ) (x ) (x )

oyr+@o~ 2h33 0(~ ) (i ) (~ )
(A9)

APPENDIX B

At first sight, it might appear that the decays,
2' -1 0, constitute an appropriate system for
studying coupling sum rules. The SU(3)-invariant

The couplings h, ~&, . . .etc, do not obey analogous
sum rules. In view of Eqs. (A4), (A8), and (A9),
the zeroth- and first-order terms give rise to ex-
act Gell-Mann-Okubo mass formulas. The second-
order terms do not. We can estimate the magni-
tude of the zeroth- and first-order terms, and

thus by inference, also the second order. The
zeroth order gives rise to the average mass of the
~' decuplet, M=1385MeV, whereas the first or-
der governs the magnitude of the almost equally
spaced splittings, 4M=-&47 MeV. From the small-
ness of the ratio 4~M—=0.11, we expect the sec-
ond-order contributions to be of the order of a
percent of the SU (3)-invariant contribution.

In summary, even if the scalar-meson coupling
constants are not SU(3)-invariant, if they exhibit
symmetry breaking of the expected type, then the
mass sum rules are maintained to a good degree
of approximation. Although we do not show it
here, the same result holds for broken baryon and
meson octets as well.

g(KrpK) g(KrKyw) ~g(KrKyq)

—W3g(KrVBK) =0. (85)

We have denoted the strangeness carrying vector
mesons by K~, and the octet isoscalar vector
meson by V, . The second sum rule (84) is clearly
not useful because of the presence of g(A, K~K);
the A, meson is a bound state in the &~& channel.
To analyze the first and third sum rules further,
we must determine whether the couplings
g(TSK~K), and g(KrV, K) are observable (the re-
maining couplings in these sum rules have been
measured). The physical states to which V, and

V, correspond are &u(783) and Q(1020). We shall
not have to discuss just how one should describe
the singlet-octet mixing of vector mesons. How-
ever, having chosen a mixing scheme, we would,
in general, need the values of g(fK„K) and

g(f 'K~K) in order to determine g(TSK~K). Un-

fortunately, there is no way of measuring
g(fK~K), so the evaluation of g(TBK~K) appears
doomed. A possible way to save the situation
might appear to lie in the equation (82) . The cou-
pling g(TOK~K) vanishes in the SU(3) symmetry
limit. If it identically vanished even with the sym-
metry broken, then a measurement of g(f 'K„K)
would suffice to give the information required to
evaluate g(TBK~K) . However, when Eq. (6) is used
to ana. lyze the broken symmetry structure of
g(TOK~K), we find that it is generally nonzero.
Thus, the sum rule (83) contains a nonmeasurable
coupling. The same argument applies for the cou-
pling g(KrVBK) . Thus, although there is an im-
pressive accumulation of data on the 2'-1 0 me-
sonic transitions, the sum rules (83), (84), and
(85) turn out to contain nonmeasurable couplings.
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Inclusion of baryon resonances in the current-algebra analysis of B B'~ and B B'p
decays explains both the mismatch of the s- and p-wave pion amplitudes and the nonvanish-
ing negative asymmetry parameter for Z+ pZ.

I. INTRODUCTION

Despite certain successes of the current-algebra
approach to the nonleptonic hyperon decays, ' '
two important problems remain unsolved. First,
the B-B'm s-wave amplitudes are mismatched
relative to the p-wave amplitudes, due to the s-
wave Suzuki-Sugawara' current commutator and
the p-wave baryon octet poles." Second, the
parity-violating amplitude is predicted to vanish
for the weak radiative decay 7'- py,

4 in contra-
diction with the large measured asymmetry pa-
ra, meter. '

It is the purpose of this paper to solve both of
these problems simultaneously by inclusion of

decuplet intermediate states along with the baryon
octet poles. Decuplet poles dominate the pion
photoproduction background amplitudes at low en-
ergy and therefore account for most of the anoma-
lous magnetic moment of the nucleon as expressed
by the current-algebra low-energy theorem of
Fubini, Furlan, and Rossetti (FFR)." The Adler-
Weisberger' (AW) background amplitudes in low-
energy pion-nucleon scattering are also dominated
by decuplet states." It is therefore not surpris-
ing that decuplet poles play an important role in
weak hyperon decays. However, in contrast with
AW, FFR, and the weak radiative decays B-8'y,
the decuplet poles in B-B'n dominate the axial-
vector current algebra background amplitudes.


