
PHYSICAL REVIEW D VOLUME 8, NUMBER 7

q-X Mixing and Chiral-Symmetry Breaking

1 OCTOBER 1973

B. Q. Kenny*
Research School of Physical Sciences, The Australian ¹tional University, Canberra, Australia

and Department of Physics, University of Virginia, Charlottesville, t/'irginia 22901

(Received 22 January 1973)

Certain properties of the pseudoscalar mesons and the strange scalar mesons are dis-
cussed in the context of the chir al-symmetry-breaking model of Glashow, Weinberg, Gell-
Mann, Oakes, and Renner. In particular, the approach of Glashow and Weinberg is fol-
lowed, with particular attention being paid to q-X mixing. In order to obtain reasonable
agreement with experiment, it is found that unequal wave-function renormalization con-
stants must be assumed for the fields which belong to the representation breaking SU(3}
x SU(3) symmetry. The g-X mixing angle is predicted to be zero and this result is com-
pared with predictions of other authors. Mechanisms other than g-X mixing are conjectured
for the enhancement of the decay rate q 2y.

I. INTRODUCTION

Following the pioneering work of Qlashow and
Weinberg' and Qell-Mann, Oakes, and Renner'
on chiral-symmetry breaking, numerous authors
have investigated certain properties of the pseu-
doscalar-meson nonet. Other authors, using spe-
cific models for the chiral-invariant part of the
Hamiltonian, have also analyzed the conjectured
scalar-meson nonet.

In this paper, we assume no specific model for
the chiral-invariant part of the Hamiltonian. The
approach of Qlashow and Weinberg is followed to
a large extent. In their work, the wave-function
renormalization constants for the various mesons
were assumed to be different. With such restric-
tive assumptions, it is difficult to make many spe-
cific predictions.

A simple and economical approach is adopted in
this paper in attempting to obtain predictions in
reasonable agreement with experiment. Initially,
a simple model is assumed for the renormaliza-
tion and mixing of the mesons. Then restrictions
are applied to the simple model. This is done in
a step-by-step process in order to finally arrive
at a point where agreement with experiment is
reasonable. In other words, we try to derive the
least complex model of the Qlashow-Weinberg
type that seems to agree with experiment.

In Sec. II, we discuss the assumption of the
equality of the wave-function renormalization con-
stants Z„=Z~ =Z„=Z, and attempt to derive all
possible consequences of this assumption. Else-
where, we have suggested' that this assumption
is correct to a good approximation.

In Sec. III, we introduce the g and X, neglect
g-X mixing, and assume Z =Z„=Zx. We are able

to calculate a reasonable value for f~/f, and m„
but make an incorrect prediction for mx.

In Sec. IV, g-A' mixing is assumed together with
the equality Z =Z„=Z~, and mx is no longer pre-
dicted. We predict a reasonable value of m„, but
an unreasonable value of fr/f „

In Sec. V, g-X mixing is assumed, but the con-
straint of equal wave-function renormalization for
the singlet state is dropped. Since this introduces
an unknown parameter, we make an assumption
about the unmixed g mass in order to derive pre-
dictions. The value used for the unmixed mass is
a value which is naturally suggested when not only
the SU(3) breaking of the interactions is consid-
ered, but also the SU(3) breaking of the vacuum.
Making this assumption enables us to make pre-
dictions for f«/f „and m„ in good agreement with
experiment, and a prediction for f„/f „ in good
agreement with an independent estimate of this
quantity. Surprisingly, however, zero g-X mixing
is predicted. We conclude by comparing this re-
sult with related results of other authors, and
conjecture mechanisms other than g-X mixing for
the enhancement of the decay rate g- 2y.

In Sec. VI, we summarize the paper and make a
few additional comments.

II. SOME RESULTS OF CHIRAL-SYMMETRY BREAKING

We follow numerous authors in writing the
strong-interaction Hamiltonian density as"

K 3C0 600'0 E' 80' 8

3C, is SU(3) &&SU(3) invariant, and we assume that
0, and 0, are local scalar fields belonging to the
18-dimensional (3, 3) + (3, 3) representation of
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8U(3) xsU(3). We further assume that the various
scalar o, and pseudoscalar v, (i =0, . . . , 8) are
good interpolating fieMs for the scalar and pseudo-
scalar meson nonets.

Both pion and kaon PCAC (partially conserved
axial-vector current) for the axial-vector currents
(i= 1, . . . , 7) and PCVC (partially conserved vector
current) for the strangeness-changing vector cur-
rents (i =4, 5, 6, 7) follow naturally from the as-
signment of (e,o, + e,o,) to the above representa-
tion, and the assumption that the fields belonging
to the representation may be identified with the
scalar and pseudoscalar meson nonets.

If we define f~, f» and f „ through

s„A),'"=f«m«'4»'

s„y),'"=if„m '(t ~

where (I),+, Q»+, and (I)„+ are renoxmalizedinter-
polating fields, then we may relate f„f», and f„
to &, and e, . We shall assume equality of the
wave-function renormalization constants:

j,=i jd'x(0(T(B„A'„'"(x)y, (0)) (0) (8)

Integration by parts leads to

~~f =
3

& o)+(-')'"&2
(9a)

A similar treatment of the K-meson and z-me-
son propagator. ~ leads to the relations

and

~&f = &o.)- —(o.)
2 1

6

u Z f„=—(-,')'" (o,) .

(9b)

(9c)

(o,) and (o,) are the vacuum expectation values of
the fields o, and o, .

For Eqs. (9) to be consistent, we must have the
relation

f»=f.+f . (10)

If we combine the consistency conditions, Eqs. (4)
and (10), we find

Z& =ZK =ZK = Z (3)
f m« —m„

f )( m.„™»
The consequences of this approximation, which we
summarize below, have been shown elsewhere' to
be reasonably good. Using the Hamiltonian densi-
ty, Eq. (1), we may compute the divergences of
the currents A& ", A'„'", and V'„'". A compari-
son of these results with Eq. (2) leads to the con-
sistency condition

f»m» fern. +f.m.-', (4)

together with the independent relations

Z'"e = —(-')'"f m '

Z"'e, = (-,')'"(f»m»'+-,' f, m, '),
(5)

To proceed further, we make the pole approxi-
mation for the meson propagators, i.e., the in-
verse propagators are only linear in the square of
the momentum. From the definition of the propa-
gator in momentum space, e.g. ,

b, ,(p'} =i d'xe ""(0
~
T ( j+((»))y„(p)$ ) 0),

m, '=i d4x 0 T ~+x ~-0 0 (7)

(6)

we find at zero momentum transfer, making use of
the pole approximation,

The a.bove result:s are essentially contained in
the work of Qlashow and Weinberg', who consider
the more general case of unequal renormalization
constants. In addition, using techniques similar
to the ones we have discussed above for the two-
point function, Glashow and steinberg' investigate
the three-point function for the Km@ vertex. By
assuming smooth behavior for this function in the
momentum of the various parb. cles, they are able
to show that4

v 2f, (0) =1 (12)

in the case where the renormalization constants
Z„Z„, and Z„are all equal, i.e. , f, (0) assumes
its exact SU(3) value. This possibility is rejected
by Glashow and Weinberg because of expected re-
normalization effects due to the existence of vec-
tor and axial-vector mesons. We have shown re-
cently, ' however, that Eqs. (4), (10), and (12)
seem to hold to a good approximation. This sug-
gests that the assumption Z„=Z~=Z„ is a good ap-
proximation in nature, despite the above-men-
tioned renormalization effects which could destroy
the equality.

Throughout this paper, we shall assume this
equality together with all its consequences, which
we summarize here as

Using the definition of PCAC in Eq. (2), we rewrite
this as

f»m»' =f~ m~'+f„m„',

f» =f.+f.
(4)

(10)
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~f m „'—m2'

f, m„' —m»' '

~2f, (0) =1. (12)

Zl/2f m 2 e ( )1/2e
7J 0 vt 3 0 2 8 (18a)

In the literature, there are many authors who

implicitly or explicitly assume equality of renor-
malization constants but do not treat the above re-
sults as necessary theoretical consequences of
this theoretical assumption. All of these results
must be used in conjunction with one another in
order to be theoretically consistent. For example,
under our assumptions, there is only one unknown
in the above relations, e.g. , f»/f„ f„/f„or m„.
Qnce we have fixed one of these quantities, the
others are also fixed and may not be varied.

Before concluding this section, we note that Eqs.
(9}lead to the relations

X/2 2=—2Z fxmx =~3&8 (18b)

From Eqs. (4), (5), and (18), we see that

3f „m„'=4f«m»' -f„m,' (19a)

fxmx'=- ,'&2f„-m„'. (19b)

Equation (19a) is clearly a modification of the
usual Gell-Mann-Qkubo mass formula, and re-
flects the fact that we have taken into account the
SU(3} noninvariance of the vacuum. SU(3) invari-
ance of the vacuum implies that

Z'/'(o ) = (2f +f,),1 (o8) =0, (20}

from which we deduce

In the notation of Mathur and Qkubo, '
(14)

in which case we would have f„=0 and f„=f« =f „
[see Eqs. (9) and (23) below] under our assumption
of equal wave-function renormalization constants.
In this case, Eq. (19a}would reduce to the normal
Gell-Mann-Okubo formula for the unmixed mass
of the q.

In order to proceed further, we consider the two-
point functions

8 =Eh a. —
(15)

d4xO T8~ 8x „0 Oe'~'"

It is necessary to consider the pseudoscalar
mesons g and X to obtain further results. We
first consider the simplest case where q and X are
not mixed and have the same wave-function renor-
malization constants as m, E, and g.

III. NO q-X MIXING

i dx 0 T epAa~x xO 0 e '~'".

We integrate the two-point functions in Eq. (21) by
parts (at zero momentum transfer), making use of
the definition of B„A„ in Eqs. (16) and (17). Making
use of our assumption of no q-X mixing we find

Using the Hamiltonian density, Eq. (1), we may
compute the divergence of the current A. &. It is
given by

and

Zl/2f (g ) (2)1/2 ((y ) (22a)

Q8 [( )1/2g (—)1/2e ]» + ( )1/2g»
p p 3 p 3 (16)

(22b)

which means that we do not have simple PCAC as
we did for the m and K mesons. Guided by the def-
initions off„, f», and f„ in Eq. (2}, we define f „
and f» by

Making use of Eqs. (9},we conclude that

3f.=4f» f. -
and

(23a)

8 1 s8 „A„=~f „m „Q„+~f» m» Q» . (17)

We shall assume in this section that the wave-
function renormalization constants for the g and
the. X are the same as those for the n, K, and ~.
%e then have the relations

fx=-.-~~f . (23b)

and

(4f» —f 2)m0' =4f «m»' —f,m, ' (24a)

Combining Eqs. (19}and (23), we have the rela-
tions
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m2m2X

From (24a) we find

f„m„'-m, '
f 4(m „'—m„') ' (25a)

To estimate f«/f„, we use average masses for the
«and K. (Numerically we use m, '=0.0190GeV',
m»'=0. 2456GeV', m„'=0.3012GeV'. ) We find
from Eq. (25a) that

f»/f. =I 274. (25b}

K

~2f .(o)f. (26a)

This is in excellent agreement with the experi-
mental value'

K

( )
—1.27 + 0.03 . (26b)

If we combine this with the fact that our theoretical
assumptions force us to use the exact SU(3) value
for f, (0) (see Sec. II), then we make the theoret-
ical prediction

IV. q-X MIXING

In order to construct a more realistic model,
we must take account of q-X mixing. We suppose
that the physical states

~ q& and
~ X) are linear

combinations of pure octet and singlet states
~ q2&

and (Xo&:

( 7i& = cos8( ri2& —sin8(XO),

I X& = cos8
1 X,& + sin812I2&,

(30)

where 0 is the mixing angle.
We assume, as in the previous section, that the

wave-function renormalization constants for the

g and X are equal to those for the n, E, and z. We
integrate the two-point functions [Eq. (21)]by parts
(at zero momentum transfer), making use of the
definition of B„A„ in Eq. (16). In this section,
however, we take account of q-X mixing. We find
that the inverse propagator (at zero momentum
transfer), which is the mass-squared matrix M2,
satisfies

(2 )1/2(o
&

(1)1/2(o &-
—(2)1/2~ ( l)1/2e-

(2)1/2 (O &
(2)1/2e

(31)
From Sec. II we have the result

f»=f. +f,
so that from Eq. (25b) we find

f„/f „=0.274,

(10)

(27)

From Eq. (30) we see that in the r/2-X2 basis

m„'cos'8+m»'sin'8 (m»' —m„') sin8cos8~
(m»'-m„') sin8cos8 m»'cos'8+m„'sin'8

(32)

f» m„—m2

f, m, ' —m»' '

we are able to predict

m„=1030MeV.

In addition, we conclude from Eq. (24b) that

(26a)

which is in good agreement with an independent
estimate" (0.30) we have made of this quantity.
Combining Eq. (25a} with the theoretical relation
(11)

P —dmx'
tano =—

CX —CSZX

c, d, a, and P are given by

1c =3~~(4f„-f,),

(33)

From Eqs. (31) and (32), together with the defini-
tions of e„e„(o,& and (o2& given in Sec. II, we
find that the mixing angle 6 satisfies

A —CPS g

P —dm„' '

m =m, =1030MeV.

We know from experiment that

rnid
= 960MeV,

(26b)
d 2(f»= -f.), -

1n= ~(4f»m»2 —f,m, '),

while an analysis of K-m scattering data indicates
that the most likely interpretation of the data sug-
gests a broad S-wave (or») resonance in the vicin-
ity of 1100MeV.

In summary, then, this naive model makes quite
reasonable experimental. predictions. The model
is, however, wrong because of its incorrect pre-
diction of the X mass. The next logical step in im-
proving the model is to take account of g-X mixing.

P = —,'(f»m»' —f,m, ') .—

f«/f 2 = 1.434, (35a)

It is possible to eliminate the mixing angle from
Eq. (33) and determine f»/f „. There are two solu-
tions for f»/f „and two corresponding solutions
for the mixing angle 0. The smaller of the two
solutions for f»/f 2 is
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The results we obtain in this section are very
close to those obtained by Carruthers and Hay-
maker, who examine this problem in detail using
an SU(3) o model. They obtain

m, =910MeV,

0 =2.4,
a = -0.919,

b = -0.210.

(39)

The slightly different values they obtain for these
quantities can presumably be ascribed to the
slightly different input values they use for the w,

K, g, and X masses. Although not explicitly stat-
ed in their paper, they obtain a value of f~/f, (1.40)
ver close to our result.

Analyses of the K-n scattering data' indicate an
alternative, less likely, interpretation to the one
described in Sec. IQ, namely, a sharp S-wave,
I= 2 (~) resonance at about 890MeV. The theo-
retical prediction Eq. (37) is in good agreement
with this result and, by inference, supports the
value of fr/f, = 1.434 obtained in this section [Eq.
(35a)j.

corresponding to a mixing angle

6=3.5 .

(We reject the larger solution, fz/f, =1.78.)
This mixing angle is small compared with the

normal Gell-Mann-Okubo quadratic mixing angle
of 10.4'. It corresponds to an unmixed mass of
551 MeV for the q which is very close to the phys-
ical mass of 549MeV.

From Eq. (11), we find that the value fr/f,
= 1.434 implies that the g mass is

nz „=875 MeV .
The results expressed in Eqs. (35)-(37) are quite

sensitive to the input values of the masses. Aver-
age masses for the n and K masses were used. In
order to compare with other authors, we used the
following numerical values for the squared masses:
m ~=0.0190, m~~ =0.2458, m„~=0.3012, mK
=0.9168, in units of GeV'. In terms of the param-
eters a and f/ [see Eq. (15)]we have

a = -0.921,

b = -0.224.

However, this value of f~/f, is higher than one
would expect. In fact, remembering that our basic
theoretical assumptions force us to use &2f, (0)
=1, we find

= 1.434,
&2f,(0)f, (35b)

in complete disagreement with the experimental
value'

(0)f
—1.27 + 0.03 (26b)

In summary, the assumptions made in this sec-
tion have led to the following predictions:

(1) m„=875MeV, which is not in conflict with
present data on K-m scattering;

(2) a mixing angle 8=3.5', indicating that the

g is very weakly mixed with the X;
(3) a prediction for fz/f, which cannot be rec-

onciled with experiment given our basic assump-
tions in Sec. II.

We must, therefore, reject the hypothesis made
at the beginning of this section, that the wave-
function renormalization constants for the q and X
are equal to those for the n, K, and z. Equally we
must reject any models appearing in the literature
which explicitly or implicitly lead to equality of all
wave-function constants.

V. UNEQUAL RENORMALIZATION CONSTANTS

In order to improve upon the predictions made
in Secs. III and IV, we must assume now that the
wave-function renormalization constants are not
all equal. In Sec. II, we indicated that there was
good evidence for the equality Z„=zz=z„. The
most reasonable and simple assumption we can
make about nonequality of renormalization con-
stants is that all octet renormalization constants
Z„, Z~, Z„, and Z„are equal but different from
the singlet renormalization constant Z~ .Kp'

The mass-squared matrix M'describing g-X mix-
ing may be written as usual in the form shown in

Eq. (32). However, Eq. (31) is modified to

(2)1/2(o ) (1)1/2(o ) I (2)1/2 e (1)1/2~
0 (Z)l/2 (O ) ( 2)1/2e

(40)

where

m„2cos28+mz2sin28 Z0 '/'(m+2 —mv') sin8cos8
Z, 1/2(m~2 —m„') sin8cos8 Z, '(m„'sin'8+m~2cos'8) (41)

Z0=Z„/Z~ .
This means that Eq. (33) is modified to

(42)
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n —cm„'
tane=z, "'—

p m g
(43a)

It is clear that if we equate the expressions {47)
and (48b) for tan'8, we must conclude either

P —Z 'dm '
ta 0 Zli2 0»

0 Q —cmx 2 (43b)

However, as we pointed out in Sec. III, this formu-
la assumes that the vacuum is SU(3)-invariant,
i.e., (o,) =0. In Sec. IV, it was observed that the
mixing angle 8 was quite small and quite different
from the prediction of the Gell-Mann-Qkubo for-
mula. This, presumably, reflects the fact that we
are taking account of SU(3} noninvariance of the
vacuum in this paper.

If we are to be consistent in considering the
SU{3}-noninvariance of the vacuum, then we must
use the correct formula for the unmixed mass of
the g which takes this into account. This formula
was given in Sec. III. From Eq. (24b) we find that
the correct formula for the unmixed mass is given
by

, 4f»m»'-f, m„'
4f»-f.

where n, P, c, and d are defined in Eq. (34).
It is not possible to do anything with these two

equations other than obtain a relation between the
three unknowns f»/f „Z„and 8. In order to make
some predictions, we must put in further informa-
tion. The most reasonable input would seem to be
the mixing angle 6 or, equivalently, the unmixed
mass of the g. The usual formula for the unmixed
mass of the q(mo) is the Gell-Mann —Okubo formula,

3m '=4m ' —m '..

(a) Z,-'m„=Z, -m ',
which means that Zo is infinite, since m „'pm~',
or

(b) 4f m„' —f m, '=(4f —f,)m„'. (50)

If Zo is infinite, we conclude from Eqs. (40) and
(41) that

f» m&2 —tpl~2

4(m„'- m»')
(5i)

which is exactly the solution, Eq. (25a), we ar-
rived at in Sec. III. From Eqs. (43) or (47), we
deduce the remarkable fact that g vanishes. From
(43b) we find that

2 -1 2
mK ~0 ~'X (52)

where m„ is found from Eqs. (11) and (51) to be
given by

m„=1030 MeV,

just as in Sec. III. %e conclude, therefore, that

2 f»» tw w

4f f
which is what we assumed for the form of mo in
Eq. (45}. In order to obtain a nontrivial result, we
must turn to alternative (b) above. We find from
Eq. (50) that

Now the mixing angle 8 satisfies Zo= 0.8V. (53)

m2 —m 2

tan29 =
Plx Pl 0

(46)

where m, ' is given in Eq. (45). We therefore have

(4f m ' —f m ') —(4f —f )m„'
tan'0 =—

(4f»m»'- f„m„')—(4f» —f,)m»'

(47)

From Eqs. (43) we have

lx —cm ~ P —Zo dmx

P —Z, dm„o, —cm»

(4f»m»' —f„m„')—(4f» —f )m q'

(f m ' —f„m ') —Z '(f —f„)m„'

(f m ' fm„') —Z '(f„--f }m '
(4f»m»' —f,m, ') —(4f» -f,)m„' '

(48b)

using the definitions of o., P, c, and d given in

Eq. (34).

In summary, the hypotheses made in this section
lead to the following predictions:

(1) The wave-function renormalization constant
for the singlet pseudoscalar meson is slightly dif-
ferent from the octet renormalization constants
(z,,/z„=z, -' = i.i5) .

(2) The ratio f»/[~& f, (0)f, ] is predicted to be
1.2V4, in good agreement with the experimental
value' 1.2V a 0.03.

(3) The ratio f„/f„ is predicted to be 0.274, in
good agreement with independent' theoretical pre-
dictions of 0.30.

(4) The mass of the» is predicted to be 1030
MeV, in reasonable agreement with analyses of
the K-m scattering data.

(5) The q-X mixing angle is predicted to be ze-
ro.

The last prediction is at first sight a puzzling
one, in view of the fact that one is used to the idea
of a mixing angle of about 10'. It should be re-
membered, however, that the idea of a mixing
angle arises only from a desire to make the Gell-
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Mann-Okubo formula exact. In fact, it was pos-
tulated' that the deviation from the Gell-Mann-
Okubo formula observed for the pseudoscalar oc-
tet was due to mixing between the g meson and a
heavier unitary singlet pseudoscalar meson before
the discovery of the Xrneson. In this sense, one
could regard the idea of nonzero mixing as a theo-
retical prejudice rather than a theoretical neces-
sity.

Recently, many authors, "using chiral Lagran-
gian techniques, have found a mixing angle 8 very
close to zero. Their estimates of 8 have varied
slightly by one or two degrees only because of dif-
ferences in the input masses of the pseudoscalar
mesons, i.e., whether the charged, neutral, or
average masses of the v and Kwere used. (It
should be noted, however, that some authors seem
to assume equal renormalization constants for the
pseudoscalar nonet. If this is so, then from the
arguments presented in Sees. II and IV, a consis-
tent treatment of their work would lead to an un-
acceptable prediction for f~/f„. )

One could regard this calculation as more exact
because it does not depend on the actual numeri-
cal values of the masses and, therefore, a logical
extension of some of the previous calculations as
far as the estimate of 0 is concerned.

It was noted by Carruthers and Haymaker' in
their work that the q seemed more purely octet
than expected, and they ascribed this to higher-
order corrections. (We would prefer to say that
the g is pure octet when one takes account of both
octet breaking in the interaction and octet break-
ing of the vacuum. ) In this connection, it is inter-
esting to note that, in a recent paper, Gursey and
Serdaroglu" used a nonlinear realization of SU(3)
&& SU(3) for pseudoscalar mesons, and obtained a
mass formula for the pseudoscalar mesons differ-
ent from the Gell-Mann-Okubo formula. In their
work, the symmetry-breaking term for the masses
contained not only an octet part, but also a part
transforming as the 27 representation of SU(3).
The formula they obtained was

2 4 2 2m 3 Slg Pl

which leads to a mass of 550 MeV for the g using
the average squared masses for m, ' and m~'
quoted in Secs. ID and IV. It is reassuring to find
that different calculations using different chiral-
Lagrangian techniques all predict a mixing angle
6 very close to zero.

Let us finally turn our attention to the main
problem" that seems to confront a theory which
predicts zero p-X mixing —or for that matter any
of the numerous theories that predict a very small
mixing angle. This problem is the enhancement
of the q 2y rate comp-ared with the SU(3) predic-

tion of this rate from the a -2y rate. Tradition-
ally, this enhancement is explained by invoking
q-X mixing, despite the fact that the absolute de-
cay rate for X-2y is not known and the mixing an-
gle is not known from experiment. However, other
explanations can be envisaged.

(I) There may be a substantial violation of SU(3)
for I' -2y decays. A possible mechanism for this
could be given as follows: In the presence of elec-
tromagnetism, the neutral PCAC equations con-
tain a normal term [see Eqs. (2) and (17)] together
with an anomalous term" which is mainly respon-
sible for &'-2y decay. One may apply the Suther-
land-Veltman ' theorem to the "normal" terms in
~„A'„and ~„A&, concluding that the normal terms
lead to vanishing amplitudes as the meson masses
go to zero. However, when one extrapolates from
zero mass to m„, it is quite possible that one may
obtain a significant contribution' from the normal
term to the decay rate q-2y. This may be con-
trasted with the decay rate tt -2y, where the con-
tribution of the normal term seems to be insignif-
icant compared with the anomalous contribution.
In this way, the considerable mass difference be-
tween the w and the g could lead to a significant
violation of the SU(3) prediction.

(2) In addition to conventional electromagnetic
interactions, there may be a term in the Hamil-
tonian density, Eq. (I), proportional to 0, which
would violate isospin invariance. The existence of
such a term has been used by Coleman and Glas-
how" in order to calculate electromagnetic mass
differences. Such a term has also been used in
certain theories" which attempt to determine the
Cabibbo angle. Oakes's theory, in particular, uses
such a term not only to determine the Cabibbo an-
gle, but also to determine" the decay rate p -3n
(without invoking q-X mixing), to a good approxi-
mation. The existence of such a direct isospin-
violating term may also be used to enhance the
q-2y decay rate above the usual SU(3) prediction.

(3) A combination of the above mechanisms may
be responsible for enhancement of g-2y above the
usual SU(3) prediction.

VI. SUMMARY AND DISCUSSION

Certain properties of the scalar and pseudosca-
lar mesons have been investigated assuming the
(3, 3)+ (3, 3) model for chiral-symmetry breaking.
In particular, the approach of Glashow and Wein-
berg has been followed.

In order to obtain reasonable agreement with ex-
periment, we found that the constraint of equal
wave-function renormalization constants for both
the singlet and octet pseudoscalar interpolating
fields had to be dropped. In order to make predic-
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tions, an assumption was made about theunmixed
mass of the g taking into account both octet break-
ing of the interactions and octet breaking of the
vacuum.

From this assumption, it was concluded that
predictions for f~/f, and m„could be made in good
agreement with experiment, while the prediction
for f,/f„was in good agreement with an indepen-
dent theoretical estimate for this quantity. The
g-X mixing angle was predicted to be zero, and it
was noted that various authors have recently pre-
dicted a mixing angle close to zero.

It was argued that the main problem to be faced
by a zero mixing angle at the present time was the
decay rate g- 2y. Mechanisms other than g-X
mixing were conjectured for this enhancement.

The reason for the complete decoupling of the X
from the other pseudoscalar mesons (a decoupling
which is hinted at in the works of other authors) is
not answered here. In the SU(3)-symmetric limit
such a decoupling would occur, but it is not clear
why it should occur when SU(3) symmetry is bro-
ken. It is quite possible, of course, that this con-
clusion is incorrect (a) because the model we as-
sumed is too simple and therefore wrong or (b) be-
cause the assumption made for the form of the un-
mixed mass of the q is incorrect.

Support for the conclusion of zero mixing would
. follow if reliable calculations of '0-2y and g-3w
could be carried out, perhaps along the lines sug-
gested. Such calculations, however, have proved
notoriously difficult in the past.

It is sometimes thought that the ninth pseudosca-
lar meson is the E(1422), which may have the same
quantum numbers as the q (see Ref. 8). This
would in no way change our conclusion that the g
is decoupled from the singlet. The only change
would be in the value of the renormalization con-
stant for the "X"(Z„/Zs=l 4, which is interest-
ingly close to the value of I 2 suggested by Gla-
show' on quite different grounds).

An additional complication would arise if both
the E and the X had the same quantum numbers as
the q. The existence of ten pseudoscalar mesons
seems theoretically unpalatable but could be pos-
sible.

It is hoped that in the near future experimental
and theoretical work will clarify the situation.
Certainly it seems an important matter to mea-
sure the absolute decay rate X-2y, and to deter-
mine the quantum numbers of the X and the E with
certainty.
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