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A model for current-hadronic interactions is constructed which satisfies (a) Mandelstam analyticity, (b)
crossing symmetry, (c) scale invariance in the deep-inelastic region, (d) Regge behavior in all channels,

(e) resonance poles in the unphysical sheet, (f) generahzed vector-meson dominance, and (g) SU(3)
structure of the currents. There is a fixed pole in the charged photon-proton scattering amplitude, so
that the Dashen-I'ubini-Gell-Mann and Adler sum rules are satisfied. Good fits are obtained for
Compton scattering at energies above 5 GeV for a11 experimentally available values of —q', and also

for all deep-inelastic electroproduction data. By fixing all parameters with these fits, and with

preliminary data obtained from deep-inelastic experiments on production by neutrinos, we are able to
make parameter-free predictions of p and oP photoproduction and electroproduction, which agree well

with the data.

I. INTRODUCTION

Bjorken's' observation that the inclusive electro-
production and neutrino-scattering structure func-
tions might obey a simple scale-invariance law in
the deep-inelastic region and the experimental in-
vestigations of this proposal" have stimulated
much theoretical work in the past few years. Some
models, such as the parton model' and the related
light-cone algebras, ' attempt to explain the scale
invarianee on the basis of an underlying constituent
structure of the proton. Another approach is to
take scale invarianee as given, and to concentrate
on satisfying additional fundamental requirements.

Although the division between the two approaches
is ill defined, we might include various Begge,"
dual, ' and vector-dominance models in the second
category.

In this paper we present a model for inclusive
electroproduction, Compton scattering, neutrino
scattering, photoproduetion, and eleetroproduction
of vector mesons from a nucleon. The essential
feature of the model is Mandelstam analyticity,
which is obtained by extending an analytic, cross-
ing-symmetric K-m amplitude" "to the case
where two of the external legs are off-mass-shell
currents. Within this framework, we find it possi-
ble to incorporate Bjorken scale invariance and
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vector-meson dominance. The model possesses
Begge behavior in all channels and resonances in
the direct channels; the correct crossing proper-
ties are also incorporated. A discussion of the
Adler sum rule in our model shows that it cannot
be accounted for by the Regge part, but must arise
from the Dashen-Fubini-Gell-Mann" fixed pole.

We obtain good fits to the scale-invariant elec-
troproduction structure functions I, and I,", as
well as the difference fpF, —= (F t —F",), which is im-
portant for the proton-neutron mass difference, "
and the ratio R=F,"/F2~. We simultaneously fit the
total Compton cross section v(yp) and the scale-
invariant neutrino-scattering function (F,"~ +F,"~)

on the assumption that the vector and axial-vector
currents contribute equally in the scale-invariant
limit. Our results are consistent with the prelim-
inary data from the CERN bubble-chamber exper-
iment. '

%'e find that vW, must contain a q'-dependent
function which corrects the q' behavior of the vec-
tor-meson propagator, thereby allowing reason-
able fits to the scale-breaking behavior of vS",.
Once this is fixed for inclusive electroproduction,
we obtain parameter-free predictions for the pho-
toproduction and electroproduction of p' and &'

mesons, which are in excellent agreement with

experiment.
The plan of the paper is as follows. In Sec. II

we discuss notation, kinematics, and scattering
amplitudes. Section III treats the crossing and
isospin properties of the invariant amplitude. Our
model for the amplitude T, is presented in Sec. IV,
along with a discussion of its features and applica-
tions to electroproduction, neutrino scattering,
Compton scattering, and vector-meson photopro-
duction, and electroproduction. Section V deals
with the Dashen-Fubini-Gell-Mann and Adler sum
rules. We describe our fits to experimental data
and predictions for vector-meson photoproduction
and electroproduction in Sec. VI, and summarize
our work in Sec. VII.

II. NOTATION AND KINEMAT1CS

We consider the scattering of a vector boson off
a nucleon of mass M. For simplicity, we treat the
nucleon as spinless. This is physically reasonable
for the structure functions, which are spin-aver-
aged, and at high energy for photoproduction and
electroproduction. Our process is B,(q, } N+(P, }-~,(~.)+~(P.).

The invariant T matrix is connected to the S ma-

FIG. 1. Definition of kinematic variables for current-
nucleon scattering.

trix by

Sfq —5fq +l(2w) 5 ((fq(+pg —(f) —p()Tfq y (2.1)

and, in the c.m. system, the differential cross
section is

dg

dQ q
—= —If(q, 8)I', (2 2)

( )
16m'MT

(2.3)

and q and q' are the initial and final c.m. momenta.
The Mandelstam variables are

s =(e, +P,)'=(e. +P,}',
~=(e, —a', )'=(P, —P,)',
~ =(e, -P,)' =(P, —e,)'.

(2.4)

The variables s, t, and u satisfy the relation

s+t+u=2M +q, '+q22.

From (2.2} and (2.3), we have

dv (27T)F0~2 (f

dQ 4s q

(2.5)

(2 6)

The covariant current correlation function for
the two-current process shown in Fig. 1 is given by

Ta'„'(q„P„q„q ) = '(qs)' f 0 s"' q(s )(P',
) [ ya(s')*, y(0)] (P ) s (Polynomials in q), (2.7)
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where the V„'(x) (i =1, . . . , 8) form an SU(3) octet of vector currents and the hadron target is assumed to be
a proton, unless otherwise indicated.

We also define the electromagnetic amplitude

)';.(~., (;,q, t) ((»)='f&'«'" *&(*'')(p.l(z„* (*) z'„(o)) I),)+(p»v»»~R)S» S)

and the weak amplitude

(2.8)

T„*„"(q„p„' q„p, ) = i(2&)' Jt d'x e"2'"e(x') (p, ( t&'„(x),&„'(0)]
~ p, ) +(polynomials in q) . (2.9)

Here we assume that the hadronic electromagnetic
current is given by

yg(p~p) (1((V,V) ~ +y(V, V) I V

JP(x) = V„'(x)+ V„'(x).
1

(2.10)
+iT &,

"'&e P Q'/2M'+

Hence, (2.10) gives

(2.18)

We also assume that sin'8~ is negligible, where t9~

is the Cabibbo angle, so that T =T3'+
2

1
T 38+ 1 y83+& y88

3 2 P (2.19)

4 '„(x)=4'„(x)a iJ,'(x),

J„'(x)= V„'(x) —A „'(x),

(2.11)

(2.12)

and similarly for T
The gauge condition for T„*„ is

q, TPV=q2 &PV =0. (2.20)

and A„'(x) (i = 1, . . . , 8) form an octet of axial-vec-
tor currents.

The amplitude 7'„*„"may be expanded in kinemat-
ic-zero- and singularity-free amplitudes. Assum-
ing parity conservation, we have

At 4 =0 this gives the usual gauge-invariant de-
composition

&„".(~, (;a) )=-(a,.— '.')»(~, 0, q*, ~')
q

T)(„"=-T,g„„+T, ~, +T,"Q„Q„
2

x T~(s, 0, q, q ). (2.21)

where

+gqoh~AV,

p =-,'(p, +p, ),
Q =-'(q, +q.),
& =(q, —q.).

(2.14)

We re(luire (2.17) to reduce at q,
' = q,

' =0 to the
gauge-invariant form"

M~„= -[(q) ' q2)g~ p
—q)~q2„]Bq

1
+ ~2 l (qg q2)I') &v + (I' Q)'g„,

—(P Q)(qg„&. +P„q,.)]B., (2 22)

which is the physical Compton amplitude. This
gives

(2.15)

Time-reversal invariance gives the result

T", (s, t, q,', q, ') = T", (s, t, q, ', q, '),

T,*'(s, t, q,', q, ') = T,"(s, t, q, ', q, ') .
(2.16)

The amplitudes T„*„and T„*„'"may also be ex-
panded in invariant amplitudes:

The T„" (0=1, . . . , 10) are functions of the kinemat-
ic invariants T. =(q, q. )B.

at q' =O. We therefore adopt the general form

T2(s) t) ql s q3 ) —-(qi q.)A(s, t, q» q. )

+B(s, t, q,', q, '), (2.24)

&(, ) &( . ) &(.. )
zv' j.A

where B is the Born term. We assume that A is
free of kinematic zeros and singularities, and sat-
isfies a Mandelstam representation.

By (2.12), we can write, in an obvious notation,

PPPV
~pp ~gg pp+ ~2 ~2 (2.1V) ~(p.p) +(P,p) +(P,P)

2 2V + 2A

(2.25)
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The gauge condition for T,~"' is"

T',", '(s, t, O, t) =T',"„'(s,t, t, O)

4MF, (t)
2s —M

(2.26)

where v=p q/M. Then the cross section for in-
clusive electroproduction e+P- e+ hadrons is giv-
en by

d2
g7 p q2 +2+7 p q2 tan2 0

Mott

where F„(t) is the isovector form factor which sat-
isfies E~(0) =-,'. Hence, we write in general

T 2q'" (s, t, q, , q~ ) = —(q, q2)A y
' (s t q, , qm )

+F '"i(s, t, q,', q, '), (2.27)

(2.36)

Here E' is the energy of the outgoing electron in
the lab frame, and 8 is the lab scattering angle.
Also,

where E is the fixed-pole term (which contains the
Born term). We see that (2.26) is satisfied when 4 E cos (2.37)

E "' (s, t, 0, t) =F "'(s, t, t, 0)

4MF„(t)
s —M

(2.28)

In terms of the photoabsorption cross sections of
longitudinal and transverse virtual photons a~ and

o~, we have

For the general amplitude T," we have

T,"(s, t, q, ', q, ') = -(q, q, )A;~(s, t, q, ', q, ')
W(v q )=, v+ o'»1 q'

(2.38)

to

2
V 2

Tg(vq q ) = —
2 T2(v& q ) q

q
(2.30)

(P e)'
T, (s, t, q, , q, ) = — „,T 2 (s, t, q, , q2 ) .

(2.31)

The spin-dependent Compton differential cross
section is given by (2.6),"' with

2

T(s t qf q2 ) (2 )
em e] Tp (q„p„q„p,)

+C;,(s, t, q, ', q, '), (2.29)

where C;& contains the Born term and fixed pole,
and A. ;, is assumed to have a Mandelstam repre-
sentation. For T', , we generalize the Compton
relation'

vw, (v, q')= —,(I+ )(q*f( ", ', ).
The real photoabsorption cross section reads

a(yN) = lim, [ v W2(v, q')].4m 2(y

q2
(2.39)

Finally, the cross sections for the inclusive pro-
cesses

v, +P- I +hadrons,
(l=e or p, )

v, +P- l +hadrons

are given by

d&( v, v)
W~2"'i (v, q ') cos'(-,'8)2' 2

+ 2 W", "'(v, q') sin'(-,'8)
(2.32)

where c," and e2" are the polarization vectors of the
incoming and outgoing photon, respectively, and
T„*„ is defined in (2.8). Using (2.30), the unpolar-
ized cross section at 6 = 0 reads where

+ W~3'"'(v, q') sin'(~8)
E+E'

(2.40)

do vM2+2 (p q)' 1

dt sqq' M'q ' 2

A simple generalization is

dg w M'c4' (P Q)' 1
dt sqq' M4(q, q )' 2

(2.33)

(2.34)

W "(v q')= —ImT ' (s, o, q, q )

(i = 1, 2, 3) . (2.41)

III. CROSSING AND ISOSPIN PROPERTIES

which we assume to hold for small
~ t co.

The electroproduction structure functions are
defined by

W;(v, q') = —ImT;(s, 0, q', q') (i =1, 2), (2.35)
1

Because the amplitude A;, , defined in (2.29), is a
Lorentz invariant, it has the simple transforma-
tion properties of a spinless amplitude under
crossing. In the following we investigate the con-
sequences of the constraints of crossing and iso-
spin invariance on A;&.
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Assuming that isospin is conserved, the ampli-
tude A„. may be decomposed into amplitudes of
definite isospin I, denoted by A';&. Now A';&, in
general, receives contributions from resonances
and nondiffractive Hegge exchanges, as well as
from the Porneron, which is responsible for dif-
fractive scattering. Therefore, we shall assume"
that

A J&(s t&& ql & q2 ) F&J(s& t& ql & q2 )

E,",'(s, t, u) = ,'-[a-F 3~3(s, t) +bF ~3(u, t) + cF„"(u, t)]

+2[aF3~3(u, t)+tlF ~3(s, t)+cF ~"(s, t)].
(3.6)

The coefficient of E ~3(3s, t) in (3.6) must be zero
Then, by absorbing the constants a and ~c in
E~'(s, t) and E'„'(s, t), respectively, we obtain

E",,'(s, t, u) =E ~'(s, t) + ', F3~-(u, t) +',E„"(-u, t),
(3.7)

5&( » ql & q2 )& (3 1) E ,",'(s, t, u} =F„"(s,t) —-', E„-(u, t) + -', E ',3(u, t) .

where I' is the nondiffractive contribution and P is
the Pomeron contribution.

First, consider i =j=3. Our treatment is simi-
lar to that in Ref. 11. We have

P33 (s t u) =P33 (s t u)

= A33(t, s)+A", (t, u). (3.8)

The construction of the Pomeron part follows the
discussion of Ref. 11. We have

A33(S» ql & q2 ) —3A313 ( » ql & q2 )

+-".A,",'(s, t, q, ', q, '),

AF(s& t& 'ql & q2 ) =
3 A33 (s& t& ql & q2 )

(3.2)

For the case where i =j=8, we find that

E,",'(s, t, u) =E„"(s,t)+E„"(u,t),

P,",'(s, t, u) = Ag~(t, s) + Ag~(t, u) .

For i=3, j=8, we get

E,",'(s, t, u) =F'„3(s, t)+E'„'(u, t).

(3 9)

(3.10)
+ 3 A33 (S& t& ql & 'q2 ) &

A~(s, t, q, ', q, ') = 2A,",'(s, t, q,', q, ') .
(3.3)

We shall suppress q,
' and q,

' whenever there is
no danger of confusion. The nondiffractive ampli-
tude F33 ls assumed to have resonances lying on
the nucleon trajectory in the s channel and t chan-
nel resonances on the exchange-degenerate p-P'-
A., trajectory. Similarly, E3,"has s channel
resonances on the 4 trajectory and t channel res-
onances on the p-P'-A, trajectory. The diffrac-
tive parts, P,",' and P",,', have a Pomeron ex-
changed in the t channel and no s channel reso-
nances.

With these assumptions, our amplitude E3$ may
be written as

In the latter case, the t channel has I=1, so there
is no Pomeron, and the term contributes with op-
posite sign to proton and neutron scattering. Time
reversal, given by Eg. (2.16), implies that

E,'3'(s, t, ql', q, ') = E,',"(s, t, q,', q, ') . (3.11)

With the help of (3.2) and (3.3), the Compton and
neutrino amplitudes for scattering off protons be-
come, using (2.19),

A33(s, t, ql, q2 ) = Ap (t, s, ql, q2 )

+ 3 Al& (t& S, ql, q2 )

+ 3 E
3& (S& t& ql & q2 )

+3F&3(S, t, ql, q2 )

+3 F3& (S, t, ql, q2 )

F,",'(s, t, u) = aE 3~3(s, t) +bE 3~3(u, t) +cF„"(u, t),
(3 4)

where it is assumed that E~(s, t) has s channel res-
onances lying on the b, trajectory and that E„(s, t)
has s channel resonances on the nucleon trajectory.

In order to determine a, b, and c and to con-
struct the I=—,

' amplitude, we use the isospin s-u
crossing relations and crossing symmetry, which
give

~i[ [EN'( & t& ql & q2 )

+E '„'(s, t, q, ', q,')]

+ (s —u),

A~(s, t) = 2A3,'(t, s) + 2A p(t, u) + ,E„'3(s,t)—
+-', E",(s, t)+2E", (u, t),

A'(s, t) =2A "(t, s)+2A'„'(t, u)+2E "(s, t)

+ 23E~'(u, t)+-,'E„"(u, t).

(3.12)

(3.13)

(3.14)

From (3.4) and (3.5), we have

(3.5)
The neutron Compton amplitude is given by

(3.12), with the sign of E'„' reversed.
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IV. MODELS FOR THE AMPLITUDES

The following models for the Pomeron and Regge
amplitudes are based on the analytic model of
Refs. 10 and 11. Let us consider A~', which is
given by

A ~'(i, s, q, ', q, ') = y ~~'(t) in[ 1+(1 —e')"']
x w p(u) ')"p ' ' 5 (q,', q, ')

lim
]q2 j ~ oo

S

where x is the usual scaling variable

(4 6)

q, is a constant, and a is a positive constant. The
function x, has a cut on the real q,

' axis in the re-
gion q,

' &q,' «, and similarly for x,. %e note
that for q, '=q, '=q',

x D,(q, ')D, (q, ).
The variable ~' is defined by

u&' =1+x,x,(s —s,),

(4 1)

(4.2)

s —M'=1+
~q

The function (1 —~')'" is defined by

x, )u2(x )1&2(s, —s

(4.6)

(4.7)
where

x =[a+(q ' —q ')'-"] ' (i=1 2),

s, is the inelastic s-channel threshold,

(4 3)

(4.4)

The residue y~', propagator D„etc., are dis-
cussed in detail later in this section.

For 4~8 we take a function which differs from
(4.1) only in its residue function and q' depen-
dence:

A2J2(t, s, q, ', q, ') = y ~2(t) in[ 1+(1 —&u')'"] w~(e') "1"'~ ' F(q,2, q, ')D,(q,') D,(q, ') . (4.8)

For the nondiffractive part, we have

F„"(s,t, q, ', q, ') =-[y„"(s)I'(2—n„(s))w p(f) "' +y",p(f)I'(2 —n p(t))co„"((o') p" '] &(q,', q, ')D, (q,')D, (q,')

+g (satellites) . (4 9)

Here, provision has been made for satellites.
Our function Ez is similar to I' „":

E~'(s, t, q1' q ') =-[y~'(s)1'(2 a~(s)-)u1 p(t)"&' +y2'p(t)I'(2-n p(t))gy~'(&') p ' ']P(q '
q ')D, (q,')D, (q,')

+g (satellites) . (4.10)

The nondiffractive contribution to the scattering of isoscalar photons is given by

&&'(s, ~, q1', q, ') = [»'( )sI-( 2 a~(s)) —p(~)"""+yp'(f)I'(2 —n p(f))u,"(~') p'" '1 6'(q, ', q.')D.(q,')D.(q.')

+g (satellites) .

Finally, the A2(isoscalar-isovector) contribution is

F'„'(s& f, q, ', q2 ) =-[y„'(s)1'(z -a„(s))zop(t) &' +y1p(t)1'(2 ap(f))20, „((u-')"p '

+y2'p(t)1'(2 —n p(t))2v, „(co')"p ' '] P(q, ', q2')D2(q, )D2(q2')+g(satellites) .

(4.11)

(4.12)

Here we have explicitly included a satellite for
the A, .

%e list the residues, trajectories, etc. , and ex-
amine some of their properties.

(2) Residues. The Pomeron residue y2&2(f) is s,
suitable real analytic function (with possible uni-
tarity cuts and poles on the second sheet). ~e re
Quire that yp(&)-0 as f- + . For small ~t~,
y~(&) has the approximate form

(4.13)

I

The residue y2~2(t) is similar, with y p' replaced by
y'„. For y', 2p(t), we take

„J33 e S~ p (0.'p(t) —y/2)
33 (tb & 1P
1P( ) —

[ 1 + (4M2 t)1/2/A ] 'p '

where in (4.13) and (4.14) gp, gj, , A p, and qp are
constants. The residue function is real analytic,
has poles only on the second sheet, and possesses
the elastic unitarity cut. The constant Ap is cho-
sen large, so that, for f near threshold (4.14) may
be approximated by its numerator. The residues
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y222(t), y P (t), y, (t), and y2&(t) are similar, with

z p rePlaced by y 2 p P p p P j p
and y,"j0, resPec-

tively. For y",~(t) and y'2~(t), we also replace gp
. bygA ~

The direct-channel residue is given by

A, &0, B, &0, C, &0,

0 &C;'+48, (A, +8, )&C. ,. '.
(i =N, 1N, 2N, p)

(4.21)

~N
[1+(,— }'"/A ]". (4.15)

(3) Trajectories. Our Pomeron trajectory is
given by

w~((u') =A J, +8~(u'+C~(1 —(a')"2. (4.17)

Because of (4.7), the function ill~(to') has a cut in
s beginning at the inelastic threshold. The con-
stants A~, B~, and C~ satisfy the following condi-
tions:

This is a real analytic function, has poles only on
the second sheet, and has the inelastic unitarity
cut. We have

yN(s) 0 as s (4.16)

Again, A„ is chosen large so that y'„'(s) = y„" for
s near threshold. The residues y~2(s}, y„"(s), and
y'„'(s) are similar in form to y„"(s), and have the
property analogous to (4.16).

(2) lc functions. For the Pomeron we take

np(a~) =1 —b~tlp. (4.23)

The exchange-degenerate p-P'-A, trajectory n~,
and the nucleon and b trajectories, n„and oiz,
are given by

b, t c, (4M'——t)'"
(1+[(4M' —t)/b, p]'"}' '

NS —CN(St —S)
N( } N J I [( )/t jl/2 }2 t

(4.24)

(4.25)

This has a cut beginning at the t-channel inelastic
threshold, and satisfies

g~&0, Bp&0, Cp&0)

0 &CP +48', (AP+BP) & CP . (4.18)

bgs —cg(sl —s)
(1+[(s,—s}/t ]"'}'' (4.26)

The conditions (4.18) ensure that lc~(&a&')"l' ' ' is
analytic in s for fixed q,

' and q~'.
Proof. I et z = (s, —s)'". Cuts are generated

when all, (a') =0. This has the solution

These trajectories are real analytic, and have
poles only in the second sheet. The p trajectory
has the elastic unitarity cut, while n~ and n& have
the inelastic cut. In the asymptotic region nN(a~)
is given by

-C, + [C,'+48, (A, +8,)]"'
28J,(x )"'(x —)"' bNnN= (4.27)

For the choice of conditions one~, BI„and C~ de-
scribed above, and in the physical qy and q2'

sheets, we have Res & 0, so the cuts occur only in
the second sheet of the s plane. Similarly, the
function in[1+(1 —&u')"'j is analytic in the first
sheet. It can be shown that lc~(e') l'~') ' and
in[1+(1 —a')"'] are analytic in q,

' and q,', sepa-
rately, for s & s, , but that for s & s, , cuts appear
in the physical q,

' and q,
' sheets. However, when

q,
' = q,

' = q', then they are analytic in q' for all
values of s.

For the remaining M functions, we take

and similarly for n &. In what follows, we shall
assume that n ~(0) = 1 and that n (0) =-', .

(4) ProPagators. Vector dominance in our model
is manifested by the appearance of the isovector
and isoscalar propagators D, and D„respectively.
The propagator D, represents the contribution of a
vector meson, which we take to be the p, to iso-
vector photon scattering. Our model, which is
based on a p-dominance model for the nucleon
form factor, "is given by

D,(q') =[ q' —m p' —I', (4m, ' —q')'"] ', (4.28)

lll2N2((u'} = AN +BN(u'+CN(1 —ld')"',

lc "((u') =lc "((u') =w "((u')

W lN (R ) = A lN +8 lN R +C lN (1 —R )

~2N(~ ) =A2N+82N~ +C2N(1 ~ )

(4.19)

where

BZpr p

(m ' —4m ')'" ' (4.29)

For the isoscalar propagator, we have

D,(q') =[q' —m„' —I",(Qm, ' —q')'"] ', (4.30)

where

(4.20)2ll&(t) =A~ B~t+Cz[+(2M +)'m—t]"'.
Constraints analogous to those in (4.18) hold here:

m~I
(m.' —Qm, 2)'i2 . (4.31)
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We have chosen the ~ to dominate isoscalar photon
scattering, and have therefore neglected the con-
tribution of the Q meson and other intermediate
states. This simplifies our model considerably,
and also allows us to predict photoproduction and
electroproduction of p and co mesons in Sec. VI.
The propagators D, and D, have poles only on the
second sheet in q'.

Our q'-dependent function 8' is given by

~(q, ', q.') =I+f (q,')f (q.'),
where

eq'(rn '-q')
[g p(q 2 q2)&/2]o '

(4.32)

(4.33)

The constants a and q, are the same as in (4.3) and
c is a parameter. We will assume that the power
n&4, so that

masses, arising from D, (qo) and D,(q'). The poles
lie in the second sheet and provide for the correct
p and ~ widths.

(ii) Resonances in the t channel and s channel
are manifested as poles in t for u~(t) =2, 3, 4, . . . ,
and poles in s for u»(e) = 2 2 . , and for u~(s)

As discussed in item (3) above, the
poles lie in the second sheet. The Born term (nu-
cleon pole) is added separately, as in the discus-
sion following (2.29) of Sec. II.

(iii) For large s at fixed t, there is Regge as-
ymptotic behavior. For instance, provided that
q„=bpap, we have

Z»"(s, t, q, ', q,') +F'»'(u, t, q, ', q, '}

wy, (t} s "p 1+e '
p

r(u p(t) —1) so sinwu ~(t)

lim 8'(q', q') =1.
I q2 ) -+ oo

(4.34) »(q, ', q.')D.(q, ') D.(q.'), (4.35)

The function F(q,', q, ') is analytic in q,' and q, ',
with cuts in the region q,

' «q, ' « ~ (i = 1, 2).

where

s, =(IB»Ix,x, ) '. (4.36)

We are now in a position to enumerate the prop-
erties of our Compton amplitude (3.12).

(i) It has poles in q,
' and q,

a at the vector-meson

The combination (4.35) appears in the Compton
amplitude, and has the correct signature factor.
The result for the Pomeron amplitude is

y 33(t) e ol~(f) 2

ln (1+e '""& '
) —iwe "~& ' 8'(q, ', q, ')D, (q, ')D, (q, ') (4.3V)

2 S0P I&,Is„

where so~ = ( IBJ I xylo)

(iv) The model possesses Regge behavior at fixed
s for large t. If q~ =b„b,~, then in the Regge limit

-w y „"(s)(-t/t,)"»"

x 8'(q, ', q.')D.(q, ')D.(q.'),

(4.38)

where t 1o/'I&p I.
(v) The amplitude A», defined in (3.12), is

s—u crossing symmetric.
(vi) It was assumed in Sec. II that the amplitudes

(3.12), (3.13), and (3.14) satisfy a Mandelstam
representation. By employing the discussion in
item (2) above, it is easy to show that our model
satisfies this requirement provided that q, '& q,

'
and q, & q, . However, if for instance q, &q, ,
then the function (1 —e')"2 is not a real analytic
function of s, and, as a result, our model ampli-
tudes are not Mandelstam analytic. The model is
also analytic in q' for all values of s, t, and u.

Let us discuss the application of our model to
various physical processes.

where

= Izv»(cu') Ie"~& (4.40)

y (td')=tan ', ) .C~(&u' —1)'"
A. ~ +8~(o' (4.41)

Therefore, upon taking the absorptive part in

A. Structure Functions

The structure functions for electroproduction and
neutrino scattering are defined in (2.35) and (2.41),
respectively. For T, (s, t, q', q'), the discontinuity
across the positive s axis b,,T2(s, t, q', q') is given
by

14, Ta(s, t, q', q') = —.lim [ T,(s +it, t, q', q'}
0

—T,(s —ie, t, q', q')].
(4.39)

For q'&q, ', we have

w~(a' + is) = A~+B~&u' viC~(&o' —1)"'
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(3.12), we obtain the electroproduction structure function

vW, (v, q') = vW, (v, q')+vW, (v, q')+vW,"&(v, q')+vW,"~(v, q')

+ (Born term) + (resonances) + g (satellites),

where

W.'(, q') = — 6'(q', q') [y "I.D.(q')]'+ l y "[D.(q'}]']

(4.42)

x (—,
' In(cu') sin(Q»(co')) —tan '[(v' —1)"']cos(p»(~'))]. Iw»(&u') I

I'3 2
v W2' (v, q') = ' &(q', q') [(y", +2y.")[D.(q')1'+y "[D.(q')1']»n(24»'(~')) ls»'(~')

I
"',

(4.43)

(4.44)

I'3 2
v W,"2(v, q') = 6'(q', q')y", ~ D,(q')D, (q'} sin(kQ', »'(co')) lu ',«(&') I (4.45)

2 I'32
vW,"2 (v, q') = 6'(q', q'}y,'8~D, (q'}D,(q') sin(2$, » (co')) Iw2»'(~') I (4.46)

Here p»"(~'), p~»'(e'), and Q,'»'(u&') are the equiva-
lents of (4.41) for the Regge terms.

We expect vS', to be scale-invariant in the
Bjorken limit -q2-~, v fixed. For any fixed e,
s-~ and because of the property (4.16) of the res-
idues, the direct-channel resonance terms, as
well as the Born term, vanish in the Bjorken limit.
Furthermore, by (4.5) the variable &v' reduces to
the scaling variable v. Upon taking the limit in

(4.42) and neglecting satellite terms, the scale-
invariant result is found to be

E,'(~) = -y&»in(-'4»'(~)} I~»'(&) I

'" (4 49)

E."2(~)= -y„~»n(-'4l»(&)) ll»(~) I
"'~

(4.50)

E,"2((u) = -y„~ (u sin(2$,'»8((o)) Im,'»8((u)
I

(4.51)

Here, we have made the definitions

y33+ 88

2wM

vW, (v, q') = E,(+)

where

E, (u)) = y»u) (-,' In(co) sing»((o)

=E, (u)) E+, (~)+ E2(u2))+ E2(u2)),

(4.47)

3~(2) lk 33 2 33 & 88My' 2mMi. y p+-. y.p+-y, )

r(-.')
W3~M y'~'

(4.52)

—tan '[(u) —1)'"]cosP»(~)].

x Iw»(co) I
(4.48)

By using (3.13) and (3.14), we easily obtain the
sum of the scale-invariant neutrino and antineu-
trino structure functions

Em/(u&) +E,"„(e)= y ~ ( 21n(u&) sing»(e) -tan '[(cu -1)'~'] cosP p(&u) } lw»(e) I

3'
(y",p +2y,"p)(u sin(2&'»'(u))) Im'«'(u))

I

"'. (4.53)

B. Compton Scattering

Using (2.39), we obtain the following result for
the total photoabsorption cross section:

v J, = 4wn vy, (—,
' In((u') sing»((u')

—tan '[(&u' —1)'~'] cosQ»(&u') j

g(yP) =v»+v«+o„+o„~ +(Born term)
2 2

+ (resonances) + g (satellites), (4.54)

where

x lw»(u)')I

v». = -4wn vy«, sin(2$«'(&u')) Iw«'(~')
I

(4.55)

(4.56)
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3 Here, the Compton residues are defined by

x (w
38 (~t)

i

-0/2 (4.57)

..= y';I D.(0)]"-'.";[D.(0)]',
(4.59)

x )w2])[(a ) ~
(4.56)

' —y."p D.(o)D.(0)»n(24.'~(&')}A2 3 2p 0

, —I'(-') ( (.-'",, +r,",)[D.(0)]'+l", [D.(0)]'j
The differential Compton cross section is given

by (2.34). If we neglect the direct channel reso-
nance terms, our model for T, reads

y (s, t0, 0) =-,(0, 0 )I(y "(t)[D,(0)]'+-', y "(t)[D,(0)]'))s[1+(1—ts')'t']s (ts')"

—[(-'yl', (t)+-'y,",(t)) [D,(0)]' ly", (t)ID,(0)]']I'(2—,(t)) -( ')" '" '

y,",(t)D,(0)D.(0)i'(2 -n, (t)}w'„'(~')"p"' '

yl's(t)D, (0)D,(0)r(0 —sss(t))M,",(ts )s'" 'I+('s-s). (4.60)

The neglect of resonances should not be too important at high energy, where the Begge terms dominate.

C. Vector-Meson Photoproduction and Electroproduction

Because of our vector dominance assumption, we may treat vector-meson photoproduction and electro-
production by taking the residue at the pole q,

' = m~' in (3.12). If we denote the Compton amplitude by
T,(yy) and the p photoproduction amplitude by T,(yp), this means that

T2(yp) = lim, », T2(yy),
q

2 0,(q, j em''
1

Q 2~m
P

(4.61)

where f p
is the p-meson-photon coupling constant. By the limit as q,'- m p', we mean that one should go

to the pole in D„although m p' is taken real in T, (yy) Thus tho.se amplitudes which do not contain D, (q, ')
vanish in the limit, and we obtain

T, (yP) = — ' ', f p
y' (tp)D, (0) in[1+(1 —(u')"']w~((u')"&"' '(q, q, )

P

-('-y", , (t) +-'y,",(t))D.(0)l"(2 —n, (t)) w "( ')"p"'-'

y1'p(t)D, (0)r(2 —n p(t))w', „'((d') P"~ '

2p—y2'p(t)D, (0)1"(2 —n p(t))w,'„'((d') p"' ' +(s—u), (4.62)

where we have neglected the resonances. Similar arguments furnish the ~ photoproduction amplitude:

T (y(d) = — ' ' f;y "(t)D (0)in[1+(1 —(d')"']w (~') &"

-sy '(t}D,(0)1 (2 n(t)}w])[-(&u') p'" '

3
y",, (t)D.(0)1"(2-,(t))", ( ')" "' '

y,"p(t}D,(0)I'(2 —n p
(t))w2„'(u)')"p"~ ' +(s —u) . (4.63)

The differential cross section for vector-meson photoproduction is obtained by substituting (4.62} or (4.63)
for T~ in (2.34).
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The cross section for production of vector me-
sons by means of virtual photons may be separated
out from the cross section for electroproduction of
vector mesons, "e+P- e+P+p or cu, much as the
virtual Compton cross section is separated out in
inclusive electroproduction. We may use (4.63)
for virtual ~ photoproduction, but (4.62) must be
multiplied by F(q,', m ~') to obtain the virtual p
photoproduction amplitude. In both cases q,

' is
spacelike.

V. ADLER SUM RULE

In this section, we briefly discuss the role of the
Adler sum rule' in our model. We denote the am-
plitude T2v —T2v by T2v, which has I =1 in the t
channel and is odd under s-u crossing. In the
scale-invariant limit, the Adler sum rule for the
vector current may be written, in an obvious nota-
tion, as

(5.1)

T~,„(v, q') = — „,ImT~2~~(v', q'),
J Ij

(5.3)

where x= 1/e.
The Pomeron does not contribute to T,~, and

for pure Regge behavior the dominant high-energy
contribution should be given by the p Begge pole.
In our model, the p trajectory has intercept o'. ~(0)

so that

T',„'(v, q') =0(v "') for large
~ v~ . (5.2)

Therefore, provided that T,~ is analytic, it satis-
fies an unsubtracted dispersion relation

where v, is the inelastic threshold. By using (5.2),
we may derive from (5.3) the superconvergence
relation

dv ImT', ~(v, q') =0.
Pg

In the scale-invariant limit this may be written as

(5.4)

(5.5)

~r
ds ImT';, '(s, t, q,', q, ') = 4mMP, (t),

Sg

or, equivalently,

8MFv(t)
S

(5.6)

(5.7)

When we fix q,
' = q,

' = q' and t =0, and take the
scale-invariant limit, (5.6) reduces to

'dx
(5 1)

0

which is the Adler sum rule. It is well known"'"
that the Dashen-Fubini-Qell-Mann sum rule may
be satisfied by a fixed pole at J=1 in the angular
momentum plane, and it is the fixed pole term E
in (2.27) which reinstates the Adler sum rule. As
an illustrative model for the fixed-pole contribu-
tion, we take

which contradicts (5.1). Thus the pure Regge term
does not contribute to the sum rule (5.1).

Because it is analytic and has the asymptotic be-
havior (5.2), our model for A~~"~, defined in (2.27),
leads to the result (5.5). However, we require
that the full amplitude T,~ must satisfy the
Dashen-Fubini-Gell-Mann" sum rule

O. I 2

O. I 0—

0.08—

c: (v 0.06—

I

0.04—

0.02

0

0.02 0
I I

O. I 0.2
I I I I I I I

0.3 0.4 0.5 0.6 0.7 0.8 0.9 I.O
x = I/(4

FIG. 2. The difference E'~2 -E2 plotted versus x; the data are from Ref. 3, and the solid line is our fit.
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E~"'~(s t q
'

q ') =+4M E( 'hp(
2 M2 —s

Ev(qi')Ev (q.') —1/2Ev(t)
(a+5(q I

q 2)1/4(q 2
q 2)1/4 y(s s)1/2)2 ( ) P (5.8)

where a and b are positive constants. The model
(5.8) has the following properties:

(i) It is antisymmetric under s —u.
(ii) For q,

' and q,
' in the first sheet, it is ana-

lytic in q,
' and q2' except for cuts in the region

qt2(ql2(~ qt2 «q22& ~ It ls analytic in s on the
physical sheet, except for poles and cuts on the
real s axis.

(iii) The gauge condition (2.28) is satisfied by
(5.8).

(iv) The Dashen-Fubini-Gell-Mann sum rule
(5.6) is satisfied.

(v) In the scale-invariant limit, the contribution
of (5.8) to the structure function E~2„~(x) is given by

2b x"'(1 —x)" '
E~-~~x~

)&~x~4 P&»~
7p (1 +52x x)2

(5.9)

VI. COMPARISON VEITH EXPERIMENT

This function satisfies the Adler sum rule (5.1).
Because the fixed pole does not occur in the

Compton amplitude, we feel that E," -E,' and
E2~/E2~ may bear little resemblance to the elec-
troproduction structure functions E2~ —E," and E2~ /
E,", respectively. Therefore, one cannot draw
conclusions about the validity of the Adler sum
rule from the threshold behavior of E, and E,"." no =2(og +op~) ~

2 2
' (6.1)

where o„and o„are defined in (4.54). Provided
2 2

we neglect the resonances and satellites, this is

~ 0.025.
The fit to the ratio E", /E~„shown in Fig. 3, de-

termines the parameters for the Pomeron and P'
in (4.47); they are given by y~ =0.17, A p = 1.0001,
Cg = 0,52 yp = 0.29, A„=2.08, and C„=2.11. The
resulting scale-invariant proton and deuteron
structure functions are compared with the data in
Fig. 4, and the individual contributions of the Pom-
eron, P', and (A, +A,') terms are shown in Fig. 5.
Although each of the contributing terms has
square-root threshold behavior which does not
agree with the data, they combine to produce
threshold behavior which is closer to the (&u —1)'
suggested by the Bloom-Qilman22 sum rule. Kith
the choice of parameters given above, there is a
positivity violation in E, for 1 ~ ~ & 1.0001 because
the Pomeron term is negative in that region. This
violation is connected to unitarity, and in principle
our model could be unitarized" to remove it, al-
though such a program is beyond the scope of the
present work.

(2) ComPton scattering and neutrino scattering.
The proton-neutron difference ho =o(yP) —o(yn) is
given by

I.O

In the following, we confront our model with ex-
perimental data on structure functions and cross
sections.

(1) Structure functions for electroProduction. To
begin, we assume that the electroproduction struc-
ture functions vR', and vR'2" have already reached
their scale-invariant limits E, and E,", within a
few percent, for -q'~ 2 (GeV/c)'. We then fit the
preliminary SLAC-MIT data, ' subject to the con-
straints (4.18) and (4.21). Without loss of gener-
ality, we may fix B~ =B„=B,„=B2„=-1.The A,
and A2 contributions are fixed by fitting the data
for the proton-neutron difference 4E2 E2 E2
using the form (4.47). With the values y„=-0.462,
A. ,„=5.8, C,„=9.0, y„, =0.175, A.,„=2.99, and C,
=3.0, we obtain the fit shown in Fig. 2. It should
be noted that, because of the superconvergence
property of the Regge terms in our model, AE2
must pass through zero at least once. In fact, our
fit in Fig. 2 is negative in the region ~ & 40 or x

0,9

0.8—
0.7—

0.6—

0.5
I

ofw 04—

0.3

0.2—

O. I

0 I I I I I I I I

0 O. l 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 I.O

X = I/Qp

FIG. 3. The ratio 9'z/~z plotted versus x; the data
are from Ref. 3, and the solid line is our fit.
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8 = 5.988' and 10,00'
I.O— ' PROTON

DEUTERON

06— ix'
gl
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04
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0
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I
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I

I7.0
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I

25.0
I

290

FIG. 4. The scale-invariant proton and deuteron structure functions plotted versus ~. The data are from Ref. 3, and
the solid lines are out fits.

determined from AE, once the scale-breaking pa-
rameter (a+q, ) is fixed. The fit to the data" in
Fig. 6 is obtained with (a + q, )' =1.24 (Gev jc)'.
Now, in principle, the Compton residues y~, and

yJ, , could be determined by a fit to the total pho-
toabsorption cross section, which would then pre-
dict the neutrino combination ( E2~+E~~) given in
(4.53). In practice, the Compton data are not pre-
cise enough for a prediction; therefore, we in-
clude the preliminary neutrino data" as input. In
particular, we require (E,'g+E,'~) to tend smoothly
to zero near threshold, as the electroproduction
structure functions do, and furthermore the value
of f(E,'~~(x) +E,'~~(x)) dx should agree with experi-
ment.

By determining the Compton residues y~, and

y~, , and combining (4.59) with (4.52), the resi-
dues y~' and (y", +2y,"~), which appear in the neu-
trino-scattering structure function (4.53), may be
determined. With the values y~, =2.66 GeV ' and

y~., = 4.52 GeV '
a,s well as m

p
= 760 MeV, I'p

= 120 MeV, m = 784 MeV, and F = 10 MeV, "we
obtain the fit to the total photon-proton cross sec-
tion data, '2 shown in Fig. 7, and the asymptotic
behavior displayed in Fig. 8. We restrict our fits
to v ) 7 GeV because we have neglected resonances
which become important for v(7 GeV. Sirnulta-
neously, we obtain the neutrino-scattering struc-
ture function shown in Fig. 9. It has the correct
threshold behavior, and

If we assume CVC and chiral symmetry"'"

E(,;")(x) =E(,'„'(x), (6.3)

then

1

(E,'~(x) +E,'~(x)) dx = 0.968,
0

(6.4)

0.4

0,2

~POMERON

P
O. l

-O, l

-0.2
I ~~~ I i I L I

I.O 2.0 4.0 6.0 8.0 IOQ 120
I 1 I

14.0 16.0

which is consistent with the experimental value'
0.98 + 0.14.

J
1

(E,' (x)+E,' (x))dx=0. 484.
0

(6.2)

FIG. 5. The proton structure function I"'2 along eath
the I'omeron, P', and (A.2+A2) contributions given by
(4.47) plotted versus ~.
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ro-
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FIG. 6. The difference o.(pp) —ahn) for physical photons plotted versus the photon energy E in the Begge region. The
data are from Bef. 24, and the solid line is our fit.

Our results are quite sensitive to variations in

m~, l ~, m and I' when the other parameters
are held constant. The reason is that for values
of m ~ and I'&, which are consistent with experi-
ment, the propagators D3(0) and D,(0) are nearly
equal, and the isovector and isoscalar parts are
not strongly differentiated in (4.59). However,
provided that D,(0)xD,(0), it is still possible to
obtain simultaneous fits to the photoabsorption and
neutrino scattering data by varying the parameters
y~, and y~, slightly.

(8) ComPton differential cross section. To apply
the Compton amplitude (4.60) to nonforward scat-
tering, we need to know the trajectories n~(t) and

n~(t). In (4.22), we take b p =0.3 (GeV/c) ' and h~
= 10' (GeV/c)', so that for small j t ~, b~ is the
slope of an effectively linear Pomeron trajectory.
Similarly we choose A~ =10' (GeV/c)' in (4.24).
We also take c~ =0.1 (GeV/c) ' and require that
a~(0) =-, and n~( m~') =1, which fixes a~ and b~
Aside from the parameters g~, g~, and g„,, the
amplitude (4.60) is now determined. With the val-

g~=7.0, g~ =-0.5, and g~ =3.0, we obtain the
fits to the Compton differential cross section data
shown in Fig. 10, and for the near-forward scat-
tering shown in Fig. 11. Note that our fits display
the slight shrinkage of the diffraction peak inherent
in a Regge-pole model.
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FIG. 7. The total photon-proton cross section for physical photons plotted versus the photon energy E in the Regge
region. The solid line is our fit and the data are from Refs. 24 and 26.
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FIG. 8. The same data and the same fit as in Fig. 7, plotted to display the predictions of our fit up to E = 1000 GeV.

(4) Scale breaking We neg.lect the resonances
and satellites in (4.42) to fit the scale-breaking be-
havior' of vS', . Figure 12 shows our fit for vS',
vs -q' at fixed values of u, and for v ~ 5 GeV. We
do not feel justified in attempting to describe the
data for v&5 GeV for, as in Compton scattering,
the resonance contribution is significant at low
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FIG. 9. The neutrino-scattering structure function
&g'+S't'v plotted versus x.

FIG. 10. The differential cross section «/dt for p-y
scattering plotted versus —t. Four values of lab energy
v are sholem: {a) 5.5, {b)8.5, {c) 11.5, {d) 17 GeV. The
solid line is our fit and the data are from Ref. 28.
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energy. For the parameters defined in (4.33), we
get n=6, c=4.1 (GeV/c)', and a=0.12 GeV/c.

(5) Vector me-son photoproduction. Once the
vector-meson-photon coupling constants are given,
the p- and &u-photoproduction amplitudes (4.62) and
(4.63), respectively, are fully determined. We use
the latest storage-ring values, "

I,O

0,5

u= 8 GeV

(a)

f p
/4v=2. 56+0.27,

(6 5)
0.2

f '/4v=19. 2+2.0,

to obtain the parameter-free predictions for the
p' photoproduction data"'" shown in Fig. 13, and
for the e photoproduction data" shown in Fig. 14,

Both the normalization and slope of the p' photo-
production predictions are consistent with experi-
ment. The ~ photoproduction prediction is consis-
tent with the data, at 9.3 GeV, but falls slightly
below the data for 4.7 and 7.5 GeV, possibly re-
flecting the fact that we have neglected the pion,
which may be exchanged in the I; channel. The pion
is expected to contribute to the energy dependence
of the differential cross section at low energy, but
because n „(0)& 0, it should not be too important
for v&5 GeV.

(6) yzrfugf pgotoproduction In Fig..15, we show
our prediction for the p' meson virtual photopro-
duction differential cross section data" for three
values of q', the (mass)' of the virtual photon at
a c.m. energy W =2.5 GeV. We also show our pre-
diction for the real photoproduction data ' at W
=2.48 GeV. Of special interest is the q' depen-
dence, which is consistent with the data. Figure
16 shows the comparison of our prediction with the
latest data" for the q' dependence of o~(W, q'}/
o„,(W, q'), where o~(W, q') is the cross section
for p' production and

o~.~(W q') =or(W, q')+«&(W, q') (6.6)

Here, the polarization parameter e is the ratio of
longitudinal to transverse polarization of the virtu-
al photons. Since e is near unity and 0~ & 0.2o~,
we may approximate (6.6) by

o„,(W, q') =or(W, q')+a~(W, q'), (6.7)

which is given by (2.38}. To obtain o~ we integrate
doq/dt for -f & 3.0 (G'eV/c)~. Our model is not ex-
pected to be applicable for

I t I
& 3.0 (GeV/c)' be-

cause only two of the invariant amplitudes are re-
tained in our treatment; however, since the differ-
ential cross section falls off rapidly for large I t I,
contributions from this region are probably small.
The error bars in Fig. 16 do not show the esti-

I

Al

O

Ol
C9

I.O—
&= l6 GeV

(b)

0,5
'I=

0.2

O. I I I I

0 0,04 0.08 O.I2 0.I 6 0.2 0

(GeV/c) ~,

FIG. 11. do/dt plotted versus —t for small values of
-t. The solid lines are our fits and the data are from
Ref. 28. The lab energies are (a) 8, (b) 16 GeV.

mated 16% systematic uncertainty" in oz/o „„the
photoproduction data are taken from Ref. 36. The
prediction is made for W =5.0 GeV, and is consis-
tent with all data points except the one for the
highest value of Iq'I.

For completeness, in Fig. 17 we show our pre-
diction for the q' dependence of o„, given by (6.7}.
The data are from Ref. 37, and we have taken W
=3.5 GeV.

VII. CONCLUSIONS

We have constructed a model for current-hadron-
ic interactions which possesses Mandelstam ana-
lyticity, crossing symmetry, scale invariance,
vector dominance, Regge behavior, and reso-
nances. The model is "unified" in that it is appli-
cable to several processes over a broad range in
s, t, q,', and q, '. It gives good fits to electropro-
duction, neutrino scattering, and Compton data in
the high-energy region, as well as predictions for
vector-meson photoproduction and electroproduc-
tion, which are also consistent with experiment.
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section plotted versus
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at 4.7, 7.5, and 9.9 GeV. The
data are from Hef. 32, and the solid lines are our pre-
dictions ~
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Because of unitarity violations, we have not used
the data to test the low-energy, resonance-domi-
nated behavior of our amplitude, although this can
in practice be rectified. Another possible draw-
back is the omission of the Q meson from our vec-
tor dominance assumption; the $ is expected to
contribute to processes involving isoscalar cur-
rents, but there is nothing, in principle, that pre-
vents us from including it in the model.

The threshold behavior of our model requires
some comment. The fit to the scale-invariant
electroproduction structure function, shown in
Fig. 4, results from the sum of the Pomeron and

Regge terms. Figure 5 shows that our Begge
terms have threshold behavior; for instance, the
Pomeron contributioa is not the constant function
one would obtain from a "pure" Regge form, and
it is this which allows us to fit the structure func-
tion down to ~ = 1. In contrast to some models, ' in
which the threshold behavior is put in by hand, our
threshold behavior does not disappear as q'- 0,

O.I4

O.IO—

0.08—
O
b 0.06—

0.04—

0.02—

I0 0

p~p p p

o BULOS et al.
n BALLAM et al.

DAKIN et Gl,
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2 2

IOO *—

IO
= 2.48 GeV

FIG. 16. The ratio 0.
&( W, q )/0;,(5, q ) plotted versus

-q'. The virtual photoproduction data (closed circles)
are shown for 3.1 & W &5.5 GeV and are from Ref. 35.
The error bars do not include the systematic error in
the data. The real photoproduction data are for 4.2 & W
&5.0 GeV and are from Ref. 36. The solid line is our
prediction for W= 5.0 GeV.

~ I

IO

q (0.5
(GeV/ )

q&0.8 (GeV/ )
2 2

and for physical Compton scattering the properly
unitarized resonances must contribute significantly
at low energy.

To check the generality of our results, it would
be interesting to have more data for inclusive neu-
trino scattering, and also for processes involving
photons which are even farther off-mass-shell than
those currently available.

l50--
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FIG. 15. The p virtual photoproduction differential
cross section plotted versus -t. The data from Ref. 33
(closed circles) are shown for 2.0 &cu &2.7 GeV and for
various values of (-q2). The solid lines are our pre-
dictions for W= 2.5 GeV and values of (—q2) in the mid-
range of the experimental values. The photoproduction
data from Refs. 31 and 34 for 5'= 2.48 GeV are shown
as open circles and the solid line is our prediction.

0 I

1.0
I

2.0

—q (GeV/q )
2 ' 2

I

30 4.0

FIG. 17. The total virtual Compton cross section
plotted versus -q2. The data, from Ref. 37, are for
W between 2.8 and 3.8 GeV. The soli.d line is our pre-
diction for W= 3.5 GeV.
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