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Typical results can be seen in Figs. 6 and 7.
These curves show features typical of radiative

corrections in other processes, ' which is not sur-
prising since it is primarily a classical effect,
At fixed lab angle and fixed incident neutrino en-
ergy, the spectrum of the muons is decreased by

about 10% at the high end and increased by about
10% at the low end. We note again that the approxi-
mations of the calculation are valid only in the
scaling region with all momenta dot products much
bigger than the corresponding masses.
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Under the assumption of gentle behavior of higher cumulants or correlation moments, we discuss how
the multiplicity distributions approach the Gaussian (normal) or approximately Gaussi. an distribution at
high energy. This is an analog of the central-limit theorem. A detailed comparison with experiment is
made based on this formalism and shows that such an approach may be useful. It is pointed out that if
the 2-prong inelastic cross section in the pp reaction is identified with the lower end point of the multi-
plicity distribution, then a deviation from the Gaussian form is necessary at the present energy. The
asymptotic relation (1/t/2e)cr;„, i/cr = y =

& (n —&nl)'»'i is well satisfied by experimental data,
where cr and y stand for the maximum of the topological cross sections and the width of the
limiting Gaussian form, respectively. If the ratio of the width y and the modal multiplicity m

approaches a nonvanishing value at infinite energy, then we obtain a scaling of the distribution
function, the scaling function being of approximately Gaussian form with the scaling variable n/m.

I. INTRODUCTION

For a long time, the Poisson distribution has
been a favorite model of physicists for describing
the high-energy multiplicity distribution. Recent
experiments, ' however, indicate a departure from
it by exhibiting nonvanishing correlation moments.
It has been pointed out, in fact, that the asymptot-
ic multiplicity distribution seems to approach a
normal distribution' ~ as energy increases. Such
a phenomenon resembles the central-limit theorem
in statistics and was proved by Haldane some time
ago in the case of a continuous distribution on the

interval (-~, ~). The assumption that leads to
this result is that the higher cumulants do not grow
too fast, a condition which is met by multiperiph-
eral models, ' field-theoretical models, ' and a gas
model. '

In this article, we elaborate on the Haldane
theorem and present it in a form suitable for ana-
lyzing experimental data. In Sec. II, the central-
limit theorem is exhibited for the Poisson distribu-
tion so as to be useful for discussions of the later
sections. Section III presents the definition of
various moments and their relationships. In Sec.
IV, we prove the Haldane theorem for a discrete
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distribution on the interval (0, ~) and derive the
asymptotic expansion formula. Using the result
of Sec. IV, we discuss the asymptotic limit of the
distribution function and various asymptotic rela-
tions among the parameters which describe the
distribution function. A possibility of scaling of the
distribution function is pointed out in Sec. V. Com-
parison with experimental data and discussion fol-
low in Secs. VI and VII.

II. THE POISSON DISTRIBUTION
AND ASYMPTOTIC FORM

It is a result of the central-limit theorem''
that the Poisson distribution

and

1
m = a —~ — + O(1/a'),

24a

y = Wa 1+,+ O(1ja')48a'

p = Wa 1 — + —,+ O(1,/a')1 1

( 1)a-i
y(y 1) a~&2-~

(2k —l)(k —2)
( /, )48a'

(2.9)

(2.10)

The coefficients a, are related to b~ and given by
a"

r(n+1) (2.1)
a3 = 1 ' 5

approaches the normal form in the limit a- ~. In
order to see this more explicitly, we transform
Eq. (2.1) into the form

a»= b»= — 1—,+ O(1/a»)
1 7

4 4 12a 24a'

1 9
1

fl

(n -I)' r (~
—m)'

(2.2)

(2.3)

a =b+ —'b2
6 6 ~ 3

1 ———,+ O(1/a')
1 12 5

72a
I

5a 24a'

a, =b, +b, b, =—,&, 1 ——+O(1/a')
1 12

' 4 72a'~' 7a

(2.11)

This can be done by using the asymptotic expansion
of the I' function a, =b, +2b»'+b, b, = 44, [1+0(1/a)],1440a'

lnr(n+ 1)= (n+ —', ) inn- n+ —,
'

ln(2w)

+, + O(1jn'), (2.4)

a, = b, + —,'b, '+ b, b, + b,b,

1 63
1296a'i ' 5

and the formulas

8 lnP„
Ff= 78

82 lnP„
Bn

(2.5)

(2.6)

(2 7)

a3~ » si 2 3i -=
o. (a-". ') (2.12)

Equations (2.2), (2.3), and (2.9)—(2.12) give us an
idea of how the limiting normal distribution is
approached as the average value a increases.

The normalized cross section P„has the maxi-
mum value 1/42m P at n=m, which is called the
mode or modal multiplicity. " The width pa, rameter
y and P have the same limit va, but y approaches
the limit faster than P does.

y 8 lnP„
kt Bn

(2.8)
III. MOMENTS AND CUMULANTS

Leaving the details of the calculation to Appendix
A, we write down the asymptotic solution for the
parameters,

A statistical system with correlations is conve-
niently discussed in terms of various moments.
They are defined through the characteristic function
(c.f.)
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y(t) =Pe*"'I„
n=O

~ ( .(it)"
u~

exp
kf

F,(e" 1)'-
0=l

g f.(e" )'-
kl

,(„1 I,~d«(tt)'

(3.1)

(3.2)

It follows from Eqs. (3.3) that the first iwo cumu-
lants are positive definite. The correlation mo-
ments f« are cumulants of the factorial moments
F~, and therefore the relationship between E~ and

f« is identical to that between (1, and «, . The latter
is given in Ref. 9.

IV. ASYMPTOTIC EXPANSION IN TEMPERATE-
CORRELATION MODELS

Inverting Eq. (3.1), we obtain

K, =f, = (n) = )1, ,

«2=f, +f,=d, ,

K2 =f, + 3f2+f2 = d»

K4 =f1+Vf2+ 6f2+f4 = d4 —3d2

K, =f, +15f,+25f, + 10f,+f, =d, —10d,d, ,

(3.3)

K@= Ck' l &
(3.4)

where

I !a.!
'

I, !k'+0 + ~ ~ +0 =02 l

otherwise .

(3.5)

where p« ——(n ), K«, E« ——(n(n —1)~ ~ .(n —/2+ 1)), f«,
and d, =((n (n))") are moments, cumulants, ' fac-
torial moments, correlation moments, "and dis-
persion moments, "respectively.

All these moments are related to each other.
Some useful relations are the following:

1 "" . K (it)'
exp -int+, dt

(g a,(-D)')

j / 7l'

exp[ —i(n —K, )t —,K,t ']dt, —
2r - ~

(4.1)

where the abbreviation

(4 2)

is used. Obviously, such a formal manipulation is
not permissible for an arbitrary distribution P„
or a c.f. Q(t). Very roughly speaking, it should
be allowed for a distribution which is sufficiently
smooth and vanishes sufficiently fast as n- ~.
The latter condition is also necessary for all mo-
ments or cumulants to exist. In any event, we re-
strict ourselves to a class of distributions which
permit this manipulation. For practical applica-
tion in physics, this restriction does not seem a
serious hazard. In particular, in the case of
multiplicity distributions, conservation of energy
requires a cutoff of the distribution for n &No-&s

Now the integral in the last term of Eq. (4.1) is
computed as follows:

)((n) ==— exp[-i(n —K, )t —,K,t ]dt—1 j 2

2m --.

(n —K,)' 1 "", i(n —K,)= exp —— '- — —~ exp ——,'g. t+ — '--- dt
2K2 27K a„" K2

(n K )2" 1 ( K2/2) / LK+ ((n-K1)/K2 ]
e 'dt

(21TK2) „ i K2 &7( ( K /2)1/ 2 f„~(„K)/ K

exp[-(n —K,)'/2K2] ( K,
' ' i(n —K,) (4.3)



ASYMP TOTIC MULTIP LICITY DISTRIBUTIONS AND ANALOG. . . 2141

where the error function is defined by

X 1 x

erf(x) = ~ e ' dt ~ 1 —— [1+0(1/x')].
7T Qp x ~co 7l x (4.4)

Thus we have the asymptotic form for X(n),

exp[- (n —K,)'/2«, ] 2 ' ' exp(- k«(w' —[(n —«, )/K, ]')—in(n —«,)) (4.5)

Notice that the second term in the brackets of Eq.
(4.5) vanishes exponentially in the limit K,- ~ as
long as the condition

as a temPerate correlation model. We further
divide the models into two cases: If

n —K

K2
(4 5)

(A) —k are bounded (k ~ 3),
K2

so that

is satisfied.
From Eqs. (4.1), (4.3), and (4.5) it then follows

that

= 1e= -0 as K,-~,
K2

(4.8)

D)k
= exp k

0=3

(n —K,)'
(2m«, )'i ' 2«,

x 1+0 exp (--,' K,(v' —[(n —«,)/K, ]'})
Kk

(B) y„,-=,'„=O(e'-2), ko3

(4 7)

The first term of Eq. (4.7) is of the form used by
Haldane in his analysis of the mode and median of
a nearly normal distribution with given cumulants, "
and is an exact formula for a continuous distribu-
tion in the interval (-~, ~). In other words, the
problem of obtaining the asymptotic distribution
function in terms of cumulants for the case of dis-
crete distribution in the range (0, ~) is identical
to that for the continuous distribution in the range
(-~, ~), apart from the terms that vanish exponen-
tially, for the range of n which satisfies the condi-
tion (4.6). This amounts to saying that we are
restricting ourselves to a class of functions in the
interval (-~, ~) which vanish sufficiently fast (ex-
ponentially) in the range (-~, 0) as K,- ~, so that
the contribution from the unphysical region may
be negligible. If that is not the case, the formal
manipulation which we have used is not permissi-
ble.

If, moreover, we assume that

we have sneak-correlation models, while those
models which satisfy condition (B) with a small
but finite e may be called moderate-correlation
models.

A special case of the former is the so-called
short-range-correlation models, ' ' the name of
which originates from the behavior of correlations
in rapidity variables. In such models, the energy
dependence of cumulants or correlation moments
ls

K„=f„=O(lns) . (4.9)

On the other hand, long-range-correlation models
lead to

K„=f, = O((lns)" ), (4.10)

1.e.y

Kp
y& 2

=-
~& 2 are bounded .

K2
(4.11)

The condition (B) further requires that y, be suc-
cessively smaller as k increases.

Assuming condition (A) or (B), we use O(e) and

O(1/«, 'i ') synonymously, unless otherwise stated
explicitly, since the asymptotic expansion formulas
are the same for the both cases. The rates of con-
vergence are different, however.

Then, using the definition of the Hermite polyno-
mials

with e a small number, we can derive an asymp-
totic expansion for Eq. (4.7) following the method
of Haldane. " We may refer to the assumption (B)

r
a (x) =(-I)"e" ' —e "' '

dx

we obtain"

(4.12)
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ex ——'x'
[1+ 3l y,H3(x) + ~'~y+4(x) ++3y,H, (x)+,—'3 y, H3(x) ++4y,y+, (x) +»'33y, H, (x) + O(1/»3')], (4.13)

2ll »3)

where y3 is defined in Eq. (4.11) and

8 —Kx= 1 (4.14)

Equation (4.13) enables us to derive an asymptotic form which is similar to Eqs. (2.2) and (2.3). Alter-
natively, we may use the expression

P„=exp -(», —m)D+-, (», —y )D + »3( D)-
A=p

x exp —,1+01 (n —m)' exp(-3y'fw' —[(n —m)/y']'})
v2g y 2 y

(4.15)

which can be easily understood from the way for-
mula (4.7) was derived, or from the identities

1 K3 3 K3 K4 1 K5 7 K3

12/ / 24/"2 2 2 2

exp(aD)f (n) =f (n + a) (4.16) +o(», ' ')

(4.17)

[Equation (4.16) is a formal expression of the Tay-
'lor expansion, and Eq. (4.17) can be proved by
taking the Fourier transform of both sides. ] In
Eq. (4.15), m and y' can be arbitrary, but later
we will identify them as the mode and the correct
width.

Using either form (4.13) or (4.15), we derive
the asymptotic form

1
"~2vP

1

K2ll P

(m -m)* ~ (n
-m )'

4=3

(4.18)

-:-'(', ) ~'(. )'
(4.19)

n —d3
exp( —,'bD') exp—

2Q

c ' ' (n-d)'
exp —,c &0, b+ c &0.b+c 2 b+c

a =b =———— -+O(» )
1 V4 1 tC3

4 4 24a2 8~3
2 2

1 &5 I K3K4 1 K3

120»"' 12»'/' 6»,'/'

1
a, =-,'b, -'+O(», ') =——', +O(», '),

a, = b, b, + O(», '/')

1 K3K4 1 K3 (
144 » 7/3 46 » 3/3

(4.21)

anti

a, =O(»3 '),

a, =
3 &

b,' + O(», '/ ')=1

3l -4, 31-3,3l O(»3 ) (4.22)

31 -5/2
1296 K2

The order of magnitude of the coefficients a~ and
b~ is represented by

where the parameters are computed in Appendix
8;

and

b, = O(», -&'/'-'&) b 3 (4.23)

P=M» 1 ———+——+O(» )
1 K4 1 K3 2

12 ~3
2 2

(4.20)

y=v» 1-——1 K4

4z'
2

+ ——+O(K )
1 a3' -2

3 2
2

m=» — + ———— +-—+o(» ),1 K, 5 ~3' 1 Z3 2

2~, 8~' 12 ~,' 4I(. 4 which are analogs of Eqs. (2.12) and (2.10).
Expressions (4.20)-(4.23) contain the asymptotic

forms (2.9)-(2.12) for the Poisson distribution as
a special case, i.e., the former reduces to the
latter if one puts a~=a. We notice that the speed
of convergence to the limit for the parameter y is
not necessarily faster than that for p unless K2K4
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—K~, in contrast to the case of the Poisson dis-
tribution.

Finally, we present a simple example which does
not satisfy condition {A) or (B). Consider a dis-
tribution (continuous, for simplicity)

1P„=
&

for 0&n&2&n),

V. ASYMPTOTIC LIMIT AND SCALING

Assumptions (A) and {B)correspond to very dif-
ferent physical models, although we can use simi-
lar asymptotic expansions, as was mentioned in
the preceding section. The difference between the
models lies in the behavior of the parameters as
functions of energy.

for n) 2&n&.

The c.f. is expressed as
f.2&n&

P(t )=, e'"'dn
2&n) .',
,(„),sin&n&t

&n)t

g (2(n&)'
(,t )a

{k+1)!

which gives the moments'~

(4.24)

(4.25)

(4.26)

A. Weak-Correlation Models

I.et us assume that

x,= &n) = O(lns) (5 1)

x, =f, = O((lns)~)

where p is a positive constant.

(5.2)

The Asymptotic Limit

The asymptotic expansion (4.18) will approach
the limiting Qaussian form

and consider a case that is a little more general
than Eq. (4.9), e.g. ,

In order to find the cumulants, take the logarithm
of Eq. (4.25),

in/(t ) = t&n&t+ ln
sin&n)t

and

1 z, 1m- &n) ———'+0-
2K,

I'„=exp[- (n —m)'/2y']
42m p

where

(5.3)

(5.4)

for &n)t & w, (4.27)

where B» is the Bernoulli number, " V2r &m
(5.5)

(5.6)

„,2(2k)! 1
B,„=(-1)"

(2w)" ~ n~
n=l

It is easy to see that the cumulants are

x, =&n&,

x, = —,
' &n)',

(2&n))' II

and

and therefore we have

(4.28)

(4.29)

However, the present energy is not sufficiently
high to realize such a limit. This may be under-
stood from the fact that the cross sections for
small multiplicities are still not small and there-
fore the condition for using the simplest asymptotic
limit, Eqs. (5.3)-(5.6), is not satisfied. As a
matter of fact, the normal distribution (5.3) with
the condition P =y implies that the distribution is
normalized (automatically) for the range (-~, ~)
but not for the range (0, ~). We may notice, how-
ever, that the para, meters P and y approach their
limiting value with different speeds, as is seen
from Eq. (4.20). A simple modification, keeping
the normal distribution, would be to impose the
normalization condition

as k- ~, (4.30)

which violates the condition {B). In this example,
absence of "smoothness" in tIie distribution func-
tion is related to the violent behavior of cumulants
as shown in Eq. (4.30).

P= =- e -(n -m) 2/ 2y 2
dpi

where

g(x) = 2x[1+erf(1/v 2 x)] .

(5.7)

(5.8)
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It is easy to see that the asymptotic form of the
function g(x) is

X2
g(x) ~ x — e '~'"'ll+O(x')j

-',x+ —+ O(1/x'-), (5 9)

and the inequality

1 P—& —(]
2 r (5.10)

is satisfied.
The analysis based on Eqs. (5.3) and (5.7) was

carried out in Refs. 2-4, and shows that a reason-
able agreement with experiment is obtained as
long as the two-prong events are neglected.

Z. Correction to the ¹nnal Eorm

The question of how the 2-prong events should be
treated is a difficult one. If the total 2-prong
events are to be included, the Gaussian limit will
not fit the experimental data. This is because
the elastic cross section at high energy is mostly
of diffractive nature and is too large to be ex-
plained by a Gaussian distribution or any other
simple distribution which is supposed to cope with
inelastic events. It would be more natural to use
a model consisting of two components, one for the
diffractive and the other for the nondiffractive
(inelastic) component, as was elaborated by Quigg
and Jackson. " The difficulty is, however, that
we do not have a theoretical idea which enables us
to make a clear-cut separation of the elastic am-
plitude into the diffractive and nondiffractive com-
ponents.

The simplest possible assumption is to identify
the inelastic 2-prong cross section with the termP„,. This would imply that the nondiffractive
component in the elastic amplitude is quite small
at high energy. This is compatible with a remark-
able constancy of the elastic cross section in the
energy range 50-300 GeV (see Table I). Adopting
this assumption, we see that comparison with
experiment rules out the asymptotic form, Eqs.
(5.3) and (5.7); the cross section of the 2-prong
events is too small to be fitted by a Gaussian dis-
tribution. In other words, an asymmetry around
the modal point becomes evident and a correction
to the normal form is definitely needed. In par-
ticular, the a, or b, term which is the dominant
one in the brackets of Eq. (4.18) or (4.19) should
be included. Notice that a, =b, ~ I/x, ' ', while the
coefficients a„or b~ of all the other terms are at
most of the order I/v„according to Eqs. (4.21)-
(4.23). In fact, we would expect to have a positive
value for a„ in order to explain a, lower value for
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the 2-prong inelastic cross section.
We are thus led to use a modified asymptotic

form,

1+~ ™1 2 n-m 3

v'2w P y
(5.11)

or

fPl—=g —+ ' ~ 2+ —, e ''&". -(5.13)
m m ~pm y'

3. The Asymptotic I.imit of the Ratio y/m

Let us define the quantity

lim —=lim ' =d.y
s~~ m s~~ K&

(5.14)

If we were to use the normalization equation (5.7)
or (5.13), we would be led to conclude that

(5.12)

instead of Eq. (5.3). Around the modal point both
formulas, Eqs. (5.11) and (5.12), give roughly the
same prediction, while away from the modal point
they may differ from each other. That will be
reflected in the determination of a, when experi-
mental data are fitted with these formulas. Which
of these two should be used is a question of effi-
ciency in reproducing the data, since they are
equivalent if one takes into considera, tion the infi-
nite terms.

There are some advantages to using formula
(12): (1) It is clearly positive definite, and (2)
convergence may be more efficient, as may be
indicated from the comparison of Eqs. (4.22)
and (4.23), should a few more terms be included.
Nevertheless, we will use formula (5.11) in our
analysis of the experimental data for the following
reasons: (1) This is the way the formula has been
derived (see Appendix 8); (2) a, is small and the
accuracy of the present experiment is not suffi-
cient to select either form, and (3) it is easy to
handle the normalization condition, which reads

B. Moderate-Correlation Models

2. The A.symptotic Limit

In this case, the asymptotic expansions which
are to be compared with experiment read

-P(n -m) / y j/ 2

"~2sP
n-pn 3

x 1+a, + O(e') (5.18)

m = ~, — ' [1+O(e')],
2

(5.19)

P =~i, [1+O(e')],

y = v'x2 [1+O(e ')],

(5.20)

(5.21)

a, = —,'&, [1+O(e')],
6a,3/'

etc .

(5.22)

These are the same formulas as in weak-correla-
tion models, but have a very different meaning.
(1) All the asymptotic relations (5.4)-(5.6) are
valid only approximately, even at infinite energy.
(2) In particular, a, is small (order e) but does not
vanish as s- ~. (3) Most importantly,

dition nor Eq. (5.16) in its derivation.
It is possible that, because of several limiting

processes involved and approximations made in the
discussion of the preceding section, we may be
forced to a false conclusion. In fact, the precise
normalization condition is a discrete sum' of a
finite number of terms (due to energy conserva-
tion). It is also worth noting that the contact of the
function y =g(x) and y =x is of infinite order at the
origin x=O, and Eq. (5.7) and the asymptotic rela-
tion P-y are asymptotically compatible as long as

(5.17)

If d is nonvanishing, we have a scaling of the dis-
tribution function, as will be discussed in the next
subsection.

d=0, (5.15)

since at infinite energy we have P =y and a, =0,
and the equation x=g(x) has the unique solution,
x=O. Equation (5.15) restricts the value of the
exponent p in Eq. (5.2) to

0&p&2. (5.16)

This is a somewhat surprising result, in view of
the fact that our asymptotic expansion should sat-
isfy the normalization condition automatically (it
is built in) and we have used neither such a con-

(n) —m = ' = O(e)v ~, —~. (5.23)

In weak-correlation models, the quantity corre-
sponding to Eq. (5.23) approaches a constant. Al-
though we use the same formula for analyzing
experimenta. l data, the behavior of various param-
eters decides which of the models is the correct
one, as was pointed out earlier. Incidentally, we
remark that Eq. (5.17) should be valid as long as
e is small.



2146 YUKIO TOMOZ A WA

2. Scaling of the Distribution Function

In moderate-correlation models, the limit

Weisberger obtained an asymptotic relation'

1
lim MK~ P&„& =

~ (5.32)

lim —= lim '
I I+ O(e')] = d

1 3 2
(5.24)

~ -(1/ 2g2) (n/ m-z)" ~2mb

3

x 1+—' ——1 + O(e')
Ml

(5.25)

ol

1 1 nmP„= exp —,——1
~2&& b 2d' m

need not vanish. If that is the case, we obtain a
scaling law

for the case

~~ ~ lns . (5.33)

Equation (4.20) permits us to calculate a correction
term to Eq. (5.32),

v~, P&„&= 1+——,———,+O(e ) . (5.34)
1 K4 5 K~ 4

8»,' 24», '

Using the empirical values of cumulants of the
multiplicity distribution for the 303-GeV PP colli-
sion (Table II and»~ = 6.0 a 4.8 from Ref . 1), we
make an estimate of correction in Eqs. (5.31) and
(5.34):

where

3

+—' ——1 + O(e')ds m
(5.26)

and

1
&t», P =~2(1 —0.005+0.03) (5.31')

b = lim —= d(1+ O(e')) .s~ m
(5.27)

The energy dependence of Eqs. (5.25) and (5.26) ap-
pears only through the modal multiplicity. This is
similar to the Koba-Nielsen-Olesen (KNO) scaling"
in that the scaling law is given by

&n&P„= q(n/&n&).

Our scaling law is, instead,

m P„=&t) (n/&n),

(5.28)

(5.29)

where the scaling function y is approximately
Gaussian.

The two scaling laws coincide at infinite energy,
provided that

)im ™=)im i — ' [)+O&e')&I~-- &n& ~-- 2», »,
(5.30)

C. The Asymptotic Relation at the Mode
and the Weisberger Relation

Equation (5.5) or its original form in Eq. (4.20)
may be written in the following form:

~»2 P~:&t»2 ™
O'Inc(

1 1 »4 1 », '1+——', ——'. +O(e')
2&& 8»,' 12», (5.31)

On the other hand, using the saddle point method,

is a finite constant. Equation (4.10) is a sufficient
condition to realize such a case. Equation (5.26)
is then equivalent to the formula which was used
by Slattery" in his analysis of the experimental
data. Olesen, on the other hand, used the Gaussian
scaling function" in a similar analysis.

1
&i», P„=~2 (1 —0.06+0.05) .

42m
(5.34')

The a.symptotic relation (5.31) is equivalent to the
Weisberger relation (5.32) in weak-correlation
models, while the latter needs correction terms
to be added in moderate-correlation models.
Equations (5.31') and (5.34') may indicate that the
convergence to or the approximation of the asymp-
totic relation at the mode, Eq. (5.5), is better
than that of the Weisberger relation.

VI. COMPARISON WITH EXPERIMENT

We analyze the experimental data for pp collision
with 50—300-GeV jc lab momentum based on the
formula given by Eq. (5.11) [or (5.18)] with or with-
out the constraint

P„,= the 2-prong inelastic cross section.

(6.1)

We consider the negative-charge multiplicity dis-
tribution in order to take care of charge conserva-
tion, (n = —,'n,„—1).

The y' fit of the data is shown in Fig. 1 and the
parameters thus determined are listed in Table I.
Also given in Table II are the values of cumulants
obtained from the experimental data. ' Figures 2
and 3 and Table III are presented in order to show
the energy dependence of some of the parameters
and the validity of the asymptotic relations among
them. Case I (II) of Tables I and III corresponds
to the analysis with (without) the constraint (6.1),
and its best fit of the experimental data is repre-
sented by solid (dashed) curves in Fig. 1. Inciden-
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FIG. 3. Test of the asymptotic equality a3 = ~3/6K2
(Case I).
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FIG. 1. The negative-charge multiplicity distribution
in the pp collision. The solid line and the dashed line
represent the g fit with and without the 2-prong inelastic
events, respectively. (a) 50 GeV; (b) 69 GeV; (c) 102
GeV; (d) 205 GeV (the dashed line coincides with the
solid line); (e) 303 GeV.
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FIG. 2. Energy dependence of the parameters in Case
I. The asymptotic equalities read p= y= v~& and (n) -m
= I(3/2~2. The solid line is an eye-fitted linear curve with
gradient 2.

tally, we did not use the normalization condition
(5.13), since it must be approximately satisfied
by the X'-fitted solution, anyway.

Summarizing the result of the analysis, it may
be said that the asymptotic form (5.11) well repre-
sents the experimental data up to 300 QeV. In par-
ticular, should the 2-prong inelastic cross section
be included in the analysis, the necessity of the
a, term is evident, as was anticipated. However,
an improvement of the X'/N ratio for the case II
at 69 and 303 QeV might suggest a possibility that
the constraint (6.1) is too stringent. Some portion
of the elastic amplitude may be identified as non-
diffractive and be added to the inelastic cross sec-
tion or some of the inelastic events with small
multiplicities may be identified as diffractive,
although their magnitudes are unknown. An alter-
native way of decreasing the II'/N value is to intro-
duce a few more correction terms. Should the ac-
curacy be improved in future experiments, this
would be a useful approach. Ne may point out also
that there is some irregularity in the experimental
data at 303 QeV which contributes to a high X'

value.
If Case II is preferred, then the existence of the

a, term becomes inconclusive. Nevertheless, it
should be pointed out that even in such a case, a
small value for a, changes the value of the param-
eter y significantly. Compare the values of y in
Table I and those given in Ref. 4. Let me mention
also that the a, term dominates the first term of
Eq. (5.11) in the prediction of high-multiplicity
events. Moreover, the values of y obtained in this
article are more appealing than those of Ref. 4,
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TABLE II. Experimental values for c;umulants.

50 GeV 69 GeV 102 GeV 205 GeV 303 GeV

Kg =fg= (n )

K2 =fg +f2 1 67 + 0 11 2 09 + 0 07 2 56 + 0 12 3.77 + 0.22 4.79 ~0.26

1.66 + 0.07 1.95 + 0.04 2.17 + 0.07 2.82 + 0.08 3.43 + 0.08

Ks=f&+3f2+f3 1.39 +0.32 2.06 +0.21 2.70 + 0.56 4.46 + 0.88 7.11 + 1.06

K3/2K2

K3/6K23'2

1.29 + 0.04 1.45 + 0.02 1.60 + 0.04 1.94 + 0.06 2.19 + 0.06

0.42 +0.12 0.49 + 0.07 0.53 + 0.13 0.59 + 0.15 0.74 + 0.15

0.107+0.028 0.114+0.017 0.110+ 0.031 0.102+ 0.029 0.113+0.026

in the sense that (1) they are close to those deter-
rnined locally around the modal point and (2) they
better satisfy the expected asymptotic relations.
The former point should be taken seriously since
the asymptotic expansion (4.18) or (4.19) is the
best approximation around the mode. The latter
point will be discussed in the next section.

VII. DISCUSSION

%e discuss further aspects of our analysis.

A. Asymptotic Relations

Both the asymptotic formulas P, y, v x, ———„'. Ins + constant .

The asymptotic relation

(V.3)

~ =1+o(~')
y

are in reasonably good accord with those in Table
IH. In particular, the convergence of Eq. (V.l)
seems much faster, while Eq. (V.2) is satisfied in
Case I but the departure from it is somewhat lar-
ger in Case II.

The energy dependence of the parameters /3, y,
and v g, , shown in Fig. 2, indicates a linear in-
crease in lns, with a slope of approximately —,',
1.e.)

=1+o(~')
IC2

(V. 1)
2@3lim ((n) —m) =

g~ aQ K2
(V.4)

TABLE IH. The ratio of various parameters.

50 GeV 69 GeV 102 GeU 205 GeV

P/~K2

p/v

p/m

7/m

1.04+ 0.07

0.91+ 0.12

1.06 + 0.10

1.17+0.19

0.93 + 0.01

1.12+ 0.02

1.20 + 0.02

0.96 + 0.05

1.12 ~ 0.10

1.16 + 0.09

Case I

1.04 + 0.02 1.03 + 0.07 1.02 ~ 0.06

0.97 + 0.03

0.96 + 0.05

1.00 + 0.04

1.03+ 0.06

0.97 + 0.05

0.90 & 0.05

0.92+ 0.05

((n) -m

K3

3/2
K2

K3

K2
0.95 + 0.53

0.34 + 2.8

1.24+ 0.24

0.68+ 0.17

1.34 + 0.52

1.06 + 0.47

1.29 + 0.50

1.02 -~ 0.41

1.24+ 0.43

0.86+ 0.33

P/K,

p/v

p/m

7/m

1.07+ 0.07

0.85+ 0.09

1.22 + 0.10

1.43 + 0.22

1.05+ 0.03

0.87+ 0.02

1.29+ 0.04

1.48+ 0.04

1.08+ 0.07

0.78+ 0.07

1.43 + 0.19

1.82+ 0.29

1.02 + 0.05

0.96+ 0.03

0,96+ 0.05

1.00 + 0.04

1.07+ 0.07

0.88+ 0.10

0.97 + 0.09

1.09+ 0.06

1.26 + 0.67 1.57 + 0.31 1.83 + 0.71 1.29 + 0.48 1.35 + 0.44
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is also consistent with the values given in Table
III or Pig. 2, although larger errors which origi-
nate from those of K, do not permit us to draw a
definite conclusion.

Figure 3 and Table III (case II) show the validity
of the asymptotic equality

a,=,'&, Il+O(e')j as s- ~.' 6K,'~' . (7.5)

We may notice that the quantity as/6z, ' ' is roughly
constant over the energy range 50-300 GeV. If
this constancy persists at higher energy, we will
be forced to choose moderate-correlation models
over weak-correlation models and will have scal-
ing with an approximately Gaussian scaling func-
tion. This is a view consistent with the analysis
of Slattery.

If that is the case, what is the magnitude of the
expansion parameter e'? At 303 GeV, we have

form and suggest that correlations among the pro-
duced particles at high energy are not strong.

ACKNOWLEDGMENTS

It is a pleasure to thank Professor S. D. Drell
for his kind hospitality at SLAC. The author is
indebted to M~. R. Vfeiss for her assistance in
computer programming and for allowing him to
use her PRAXIS program. Thanks are also due to
J. D. Bjorken, R. Blankenbecler, M. -S„Chen,
and M. Kugler for useful discussion, and to R. ¹

Cahn, J. L. Newmeyer, and %. J. Pardee for
reading the manuscript.

APPENDIX A: ASYMPTOTIC EXPANSION
FOR THE POISSON DISTRIBUTION

From Eqs. (2.1) and (2.4), it follows that

&=~—'= -- 4 =0.39~0.38.K4

y, va, i«,
(7.6) a 1 1

ln ———+—,+O(n ')=0, for n=m.
n 2n 12n2

Unfortunately, this does not tell us much because
of the large error which is due to that of K4. %e
should point out, however, that the convergence
is better than what Eq. (6) might indicate, because
of numerical factors. In order to see this, the
first few coefficients of the asymptotic expansion,
Eqs. (4.18) and (4.19), are calculated using Eq.
(4.21):

a, = b3=- -3~2
— =0.11y0.03,1

2

Substituting the solution of the form

m=a+Q +—+—+'
a a'

in Eq. (Al), we obtain

(o., + 2) —+(n. —2o., ——.o, ——„)—.

+ ((X~ —A~A~+ 3 lX~ —2@2+ 2Qg + «Ag)
2 'a

(A2)

a4 = b4 = -0.047 +0.028,

a, = b, = 0.024+0.030,

a6 = 0.006 y 0.003,

a, = -0.005+ 0.005,

a~ = 0.0002 + 0.0001,

(7.7)

+ O(a «) =0, (A3)

which gives

1
o.2= —24, and (y3=0. (A4)

Using Eqs. (A2), (A4), (2.6), and (2.7), we get the
expressions

where we have neglected the term which contains
K).

B. The Analysis with Eq. (5.12)

In order to see a difference between using Eq.
(5.11}and using (5.12}in our analysis, we made
the X' fit of the 303-GeV data with the assumption
of Eq. (5.12). The parameters thus obtained are
given in the last column of Table I (case III), while
the best-fit curve for the distributiori function is
almost identical to the solid curve of Fig. 1(e).
As is seen also from Table I, the fit is not signifi-
cantly different from that of Eq. (5.11), except
the value of a, .

In conclusion, asymptotic multiplicity distribu-
tions seem to approach an approximately Gaussian

1 1 1 1
+y' nz 2m Gm

1 — —,+O(a «)
1

a 24a'

and

1 1=—exp =- +O(a ')
~g 24a

(A6)

The coefficients b~ in Eq. (2.3) can be computed
using Eq. (2.8):

—=exp mlna —(m+ —,) lnm+m —a — +O(m )
1= 1 -3

12m
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k

&a=—(-1

( I)k-1

k(k —1)

„,(k —2)! (-1)'(k —1)
m" ' 2m'

I+;+o(a-')1 k

12m" ~

(k - 1)'
+ o(~-')

(-1)" ' 1 (2k —1)(k —2)
=k(k I).~ '-- 48" (A7)

It is easy to see that a„are given by Eq. (2.11).
In order to obtain the order of magnitude for a~,
we observe that the dominant contribution in a~ is
given by the term b, ,A, or b„„b,', since b, is the
largest of all the coefficients. Then, by induction,
we can prove Eq. (2.12).

APPENDIX 8: PEP IVATION OF THE ASYMPTOTIC FORM,
EQS. (4.20) -(4.23)

Defining the quantities
n m

y
8

D =—
y

I(:j
—'fn

we may express Eg. (4.15) as"

g~(D~) 1 q2 )2
~ @=1.

where the extra term which vanishes exponentially
as a, ~ was dropped. In Eq. (B2), m and y should
be determined in such a way that Eq. (B2) coincides
with Eg. (4.19). Anticipating that

2
K2 —y

y'

go 3

= 0(» '~"') k~ 3

Eg. (B2) can be expanded as"

P„= e +~2 1+ASH, (y)+ —, (X~ +A2)H2(y)+ —(A3+3AP~yk~3)H~(y)+ —(34+OP~)H~(y)
1 8/2 1 1 1

/2n y

+—(X,+ 5X+, + IOX P, + IOA P,')H, (y) + —,A.,'He( y) + —,(35k ~A ~ + 70k, ,2A. ,)H~(y)
10 ~ 1

+, ~,'H, (y)+o(y-') .280

The assumption X, =O(y ~), instead of O(y '), is justified a posteriori, and is expected also from the solu-
tion for the Poisson distribution. [Otherwise, we would have to keep a few more terms in Eg. (84). Ex-
plicit calculation, then, shows that the assumption is correct. ] In order to simplify the algebra, we use
this assumption from the outset.

The explicit forms of the relevant Hermite polynomials are given below:

H, (y) =y,

H, (y) =y' —1,
H, (y) =y'-3y,

H, (y) =y' —6y'+3,

H, (y) =y' —10y'+ 15y,

H, (y) =y' —15y4+ 45y2 —15,

H7(y) = y —21ys+ 105ya —10 5y,

H8(y) =y —28y +210y -420y'+105,

H9(y) = y9 —36y7+ 378y' —1260y'+ 945y .

(S5)

X~ ——(X3+ 3A.+~+A.,~)

+ —,(X, + 5K~X, + IOA, P, + 10K+,2)
3

—,'(X, +Z,') ——,(X,+e.P,)+, ~,'=0.6 450
(B7)

The condition that the terms linear and quadratic
in y are missing in the brackets of Eg. (B4) leads
to two equations,
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The solutions for X, and X2 which are of the form

X, =aX3+bA4+cA. 5+&32+ eX+4+fA33+.O(y 4),

1K lg'
a I--~+-~ =&(~ +sing +~')

& Z2 6&3
2 2

A.k=b'A. 4+c'A. 5+d'A. 32+ e'Xp 4+f9.33+O(y 4}

(BS)

(89}

—
~~~ (A5+ 5X4A3+ IOA. Q2+ IOA. +12}

+-,L(25m,X,+ 7', 'Z, ) - IX,3

=&X, -~X, +g~p, -~X,3

5' =0, c' =0

d=0, f=0, e=~5,
(810)

d' = --,', f' = e' = 0,
l.e.)

are sought by substituting them in Eqs. (86) and

(87). We thus obtain

1 &3 1V ~KK 1

19———,/, +O(K, '/'),
2

1 150
a4 =—(A. 4+ Q.P1}— A. 3

=& x, -&x,'
K, -m

y

= 2 X3 —+2X5+ +5K/4+ O(y ),
2

y'

= —,'~, ——,'x, '+ o(y-')

1 z 1K3'=-~ -- ' +o(y ')—
2y4 2 y6

These equations can be solved easily; we get

1z 1K'
y'=K ——~+—~+o(K ')

2K 2K2 2

and

1 K 1 K 1 K3K4m=K ——-a+ —~-— ' '+O(y ')
8y4

(811)

(812)

(813)

1 K, ix—' ——~ +O(K ')
24 I(; 8z2 2

a, =—(x5+ 514K, + 10k p2+ 10k,Q, ')

=~~ -~x z +&x '
120 5 12 4 3 8 3

3
K5 1 K3K4

120 5/2 12 7/2 6 2/2 ( 2 ) 1

K2 K2 K2

10 2

=—~+O(K ')1 K
3 2

2

a 24(A4A3+2A3X1}35X3

144 X4X3 45Ã3 + O(K2 )

(816)

1 z 1 z 5 z3z4 1 K
= K ——~ + —~ ——' ' +—~4 + O(K ') .

2K, 8x' 12 K2 4K

(814)

From the value for n =m (y =0), the parameter
is determined as follows:

1 1—=- I - —,'(Z,2+x,)
y

+&(~,+up, )-, ~,'+o(y ')
4

=- [I+&~,2- &~,]

1 K3K4 1 K3

144 /7/ 48 K2

a, =o(K, '),
1' 1296 3

31 -S/2
2/2 + O(K2 ) ~

K2

which lead to the expressions of Eq. (4.21). The
dominant term in the parameter a» (b ~ 6) is given

by A, ~,A. 3, and its general form is shown, by in-
duction, to be

c.e.,

~+1 1 z

y 8a, 6)c,

-i /2a31-4, 31-2,31 ( 2 ) ' (817)

The coefficients b» in Eq. (4.19}are related to a»
through the relations in (2.11), and therefore must
behave like

1 K 1 K
P=MK I--~+—~+O(K -') . (815) O(K

-(k/2 1)) (816)

The parameters a~are given by the coefficients
of y~; explicitly written,

at most, otherwise it would upset Eq. (817), ac-
cording to an argument similar to that given at the
end of Appendix A. Q.E.D.
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A model for current-hadronic interactions is constructed which satisfies (a) Mandelstam analyticity, (b)
crossing symmetry, (c) scale invariance in the deep-inelastic region, (d) Regge behavior in all channels,

(e) resonance poles in the unphysical sheet, (f) generahzed vector-meson dominance, and (g) SU(3)
structure of the currents. There is a fixed pole in the charged photon-proton scattering amplitude, so
that the Dashen-I'ubini-Gell-Mann and Adler sum rules are satisfied. Good fits are obtained for
Compton scattering at energies above 5 GeV for a11 experimentally available values of —q', and also

for all deep-inelastic electroproduction data. By fixing all parameters with these fits, and with

preliminary data obtained from deep-inelastic experiments on production by neutrinos, we are able to
make parameter-free predictions of p and oP photoproduction and electroproduction, which agree well

with the data.

I. INTRODUCTION

Bjorken's' observation that the inclusive electro-
production and neutrino-scattering structure func-
tions might obey a simple scale-invariance law in
the deep-inelastic region and the experimental in-
vestigations of this proposal" have stimulated
much theoretical work in the past few years. Some
models, such as the parton model' and the related
light-cone algebras, ' attempt to explain the scale
invarianee on the basis of an underlying constituent
structure of the proton. Another approach is to
take scale invarianee as given, and to concentrate
on satisfying additional fundamental requirements.

Although the division between the two approaches
is ill defined, we might include various Begge,"
dual, ' and vector-dominance models in the second
category.

In this paper we present a model for inclusive
electroproduction, Compton scattering, neutrino
scattering, photoproduetion, and eleetroproduction
of vector mesons from a nucleon. The essential
feature of the model is Mandelstam analyticity,
which is obtained by extending an analytic, cross-
ing-symmetric K-m amplitude" "to the case
where two of the external legs are off-mass-shell
currents. Within this framework, we find it possi-
ble to incorporate Bjorken scale invariance and


