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~AS~=1 tensor density in the form l6'o &A). The

corresponding vector current density 88[6'(x)O„BA,(x) ]
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(6'o„g 5A), giving rise to the second-class current
density o8[6'(x)o~@&&A,(x)J. See Ref. 12.

VThj.s has a y probabj]. ity of 10 l . Several heuristic
attempts were made to include effects of correlations
between A. U, &~, and A& as well as influences of
possible systematic errors in the data. Minima always
occurred at e".sentially the same place in the param-
eter space, and in no case could we obtain a X~ prob-
ability better than 10 '.
It should be noted that we have used in this section
only experimental information about A beta decay.
Further constraints on exotic solutions like (9)
could be obtained by assuming SU(3) symmetry and

using additional information. from other decays. Here
we do not pursue this matter.
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A simple parton model is used to estimate the radiative corrections to neutrino-induced inclusive

processes. An application of the resulting expressions to v„+p p, + X at E„" = 100 GeV shows

that the muon spectrum is distorted by as much as 10% in some regions.

I. INTRODUCTION

The results from deep-inelastic, inclusive neu-
trino-nucleon scattering experiments which are
in progress or planned for the near future will be
an important input for current theoretical work.
The effects of radiative corrections must be con-
sidered in interpreting these experimental results. '

Unfortunately, it is impossible to calculate the
radiative corrections to an inclusive process which

is controlled by unspecified dynamics. There are
two reasons for this. First, the long-wavelength
photons are sensitive to changes in the large-scale
distribution of electric charges and currents.
This information is not available unless the gener-
al features of the hadronic final state are specified.
Second, the short-wavelength photons are sensi-
tive to details of the current distribution in the
interaction region. Again, this information is not
available in the absence of a theory for the basic
interaction. Thus, in order to estimate radiative
corrections, we need a model which specifies the
electromagnetic currents in some detail. %e will
use the parton model. '

In this model, the nucleon target is to be viewed
as a collection of weakly bound, relatively light

point particles. The neutrino is assumed to have
a weak interaction with one of these target partons.
In the deep-inelastic region, this parton gets a
large acceleration, and the leptonic system suffers
a large reaction. The other partons are assumed
to receive accelerations much smaller than that
of the leptonic system or the struck parton.

Classical intuition suggests that the charges
which are accelerated the most will make the
major contribution to the radiative correction.
Thus, we will consider only contributions where
the photon is attached to the struck parton or the
outgoing muon, and we will sum over the partons
incoherently as usual.

This is analogous to the usual practice of calcu-
lating radiative corrections by considering only
the proton in the target which is struck and then
summing incoherently over the protons in the tar-
get. This restriction of the number of Feynman
graphs is gauge-invariant so long as we ignore the
interactions between the partons.

For the purposes of this calculation, we will
assume further that the final-state interactions
which "dress" the outgoing parton give a jet of
outgoing physical particles which have the same
charge and essentially the same momentum as the
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parton. The very long-wavelength photons will
not be sensitive to the difference between a single
particle and a jet of particles with the same charge
and with small average momentum transverse to
the jet direction. ' The short-wavelength photons,
which see better, are coupled most strongly to
the region of the primary violent interaction of
the bare particles rather than to the relatively
smooth current distributions of the final state.
This primary interaction to which the high-energy
photons are most sensitive is taken to be a point-
like Fermi interaction between the leptons and the
parton.

This model is very crude. We stress that the
results which it gives should be considered semi-
quantitatively at most. The approximations of the
model are probably reasonable only for the very
long- and the very short-wavelength photons. How-
ever, it is these regions of the integration over
photon momentum which are most important.
Thus, we expect to reproduce the gross features
of the radiative corrections correctly.

The situation is somewhat simpler in electro-
production. There it is possible to separate out
the radiative corrections to the electron line in a
gauge-invariant way. The problem of radiative
corrections to the photon-parton interaction in
electroproduction has not been faced.

In Sec. II, we calculate the basic cross sections.
Sections III, Ig, and V calculate the contributions
from the self-energy, vertex, and bremsstrahlung
graphs, respectively. In Sec. VI, these results
are combined and numerical results for vp- p.

anything and vP- p, '+anything at E, =100 GeV are
given. When considered as a function of muon en-
ergy at fixed lab angle, the cross section is typi-
cally decreased by about 10%%uo at large muon ener-
gies and increased by about 10 fo at small muon
energies by the radiative corrections.

o(vcP) =cr(vcP)

for the spin-averaged cross sections. Note that
these relations hold even with a final-state photon
whose polarization has been summed over. Thus,
we need only calculate tmo cross sections:

o, =o(vX)

and

crrr =cr(v(P) .
We will describe the calculation of case I only.
Case II is very similar and we quote only the final
results.

After calculating the cross sections, we let the
parton momentum P, goto xP„where P, is the
target nucleon momentum, multiply each of the
cross sections by the parton distribution function
E(x) appropriate to that kind of parton, integrate
over x, and sum over parton types. (In electro-
production,

vW, (x) = x g f,E,(x), . .
parton types

f, being the charge of a parton of type i.)
We consider the scattering of a muon neutrino

v„of momentum k, off an X quark of momentum P„
mass m„and charge fe =- —,'e. The final state has
a p, of momentum k„mass m„, and charge e, and
a 6' quark of momentum p„mass m„and charge
f'e=(f-1)e=-—',e. Photons, real or virtual, have
momentum k. The graphs which contribute are
shown in Fig. 1. The graphs of Fig. 1(a) contribute
a cross section

II. BASIC CROSS SECTION

The calculation mill be carried out in the follow-
ing way: First, we assume that the partons are
quarks and gluons. The gluons are assumed to
have no weak or electromagnetic interactions.
The small size of sin'8&, „;».will allow us to ne-
glect the A. and X quarks. Thus, we are interested
in the o(vcP), &x(ver), cr(vcP), cr(v%), cr(vcP), o(vlf),
o (vIP), o(vX) neutrino-quark cross sections. Charge
conservation and the spectrum of quark charges
give

o(vcP) =o(vÃ) =o(vK) =o(vII') =0.
We will assume CP invariance and get

o(vK) =o(v%)

(a)

(b)

FIG. 1. Graphs contributing to v&K p, 6' with radia-
tive corrections.
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(2)

M=—absolute square of the matrix element for the
first three sets of graphs averaged over initial
spins, summed over final spins, and evaluated at
p2 Q k1 + p1 k2 This contains an m which
cancels the m„ in m after which we take m, -0.

The bremsstrahlung graphs of Fig. 1(b) contrib-
ute a cross section

1

2 ~O 2

FIG. 2. Feynman graph for the uncorrected process:
V~X p 6.

z( )
in 'd.

k
r"(8 4+m)-r.

4w' „k'[(p—k)' —m'] '

Z(p) is calculated by the regularization procedure

)
ia ",-y "(p - Q+ m)yp
4~' . k2[(p —k)'- m']

der(~ 1 & d'k
k-d.k =(„).) „

x e(g, k, )
1 ~l

(4)

ia ",-„y~(p —|i+ m)y„
A™ 4m' . (k'-x')[(p-k)'-m']
X~o

ia d-,k
y" (P —Ii+ m)y„

4r' (k ' —A')[(p —k)' —m']

and N=—absolute square of the matrix element for
the bremsstrahlung processes appropriately
summed and averaged over spins and evaluated at
P2= 4 —k.

With these preliminaries out of the way, we pro-
ceed with the purpose of this section which is to
calculate Mo, the contribution to M from the graph
of Fig. 2:

mo =—u(p2)y&(1 —y5)u(p~) u(k2)y (1 —y~)u(k~) .
42

The calculation must be carried out for P'cm'.
Only after Z(P) is inserted between the spinor' and
the propagator do we take p'=m'. As is usual we
write

Z(p) = A+ a(P —m)+ C(p —m)'.

A and B are numbers independent of P. C is a
4 x 4 matrix finite at A- ~ and p -m'. Thus, be-
tween a propagator 1/(p —m) and a spinor u(p),
the Q term will not contribute. A standard calcu-
lation gives

G2 1
0= 4 8k1'p1k 'p (6)

III. SELF-ENERGY CORRECTIONS

We square this, sum over initial- and final-state
spins, and divide by 2 for the average over quark
spins. (There is no dividing by 2 for the neutrino
since only one spin state contributes. ) The result
18

A= — ln —+ 4

n 9 A A.B=——4+ ln —+ ln —,
2w 4 m m'

The contribution from A is canceled by taking 5m
=A.

The contribution from the B term appears as
B(P —m) (P —m)u(P), which is undefined. This

In this section we consider the contribution from
the graphs of Fig. 3. The contribution which they
make to M will be 2ReK,*(9R,+%,+K,). We get
3g, from %0 by the replacement

u(p,)-,' ', [f'Z(p, ) —Om, ]u(p, ),
pl m 1

with FIG. 3. The self-energy graphs.
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——f —+ —in —+ in —+f ' —+ —in —+ in—9 1 A ~ " 9
m

' ' m m ' ' m m1 1 2 2

+ 8 + 2ln -+ln — M0. S
V/rp Alp J

IV. VERTEX CORRECTIONS

FIG. 4. The vertex graphs.

is resolved, as usual, by identifying the wave-func-
tion renormalization in this order and taking
B(p —m) '(p —m)u(p) =-,'Bu(p). Thus, the contribu-
tion to M from the self -energy graphs is

In this section, we consider the graphs of Fig. 4.
These contribute to M in the combination

2 Re/go (Kg + Ã5+ 3R6) ~

We will sketch the treatment of Sg„3R4 and , , are
very similar.

G -iof' ~ 1 1 1
4m' k' (p —k)' —m ' (k + k)' —m '

xu(pz)y" (pz —ti+mz)yz(1 —y5)u(p, ) xu(kz)y&(kz+ jV+m&)y (1 —yz)u(kz) .
Its contribution to I is

with

inf' -4„1 1 1
4zz' k' (p —k)' —m ' (k +k)' —m '

T, =- ——
& l »h"(1 y,)9.+—m.)y" (p'. —0+m, )y~(1 —y,)(8,+m, )l

x 4 Tr[y (1 —y, )()'iz+mq)yq(k, + /+md)y (1 —y, )k,].
M, contains both infrared and ultraviolet divergences. %e regulate by taking

1 . 1 1
y2 y2 y2 y2 A2

X~0
as before. The use of Feynman parameters gives

with

D, =-(x, +x,)C„ C, =-(z, p, -z,k,),

32
T', = 8k, p, M, —8k'M—, —8D, 'M, +—,k, p, (m&'D;p, —m„'D, k, +2D;p,k, p, —2D, k,k, .p, )

=—A+ O'B.

After doing the k integration, we find that
~1 rl 1 i 1 r 1

M, = ——Re-,' f ' dz, dz, 5(l —z, —z,) dx,dx,dx, 6(1 —x, —x, —x, )
7t +0~0~0

A
(1 —x,)'C, '+ x,) ' —in

(1 —x,) C, + x,A —ze

(1 —x,)zc5z+ x,A.
z —i e

We now carry out the x, and x, integrals and change variables to x= 1 —x, . A can be separated as A =A,
+ xA1+ x A2. The result is

M, = — ,f'Re ' dz, dz, 5(1 —z,———z,) ', . ' ——,A» . in, . —B in — ——, +Bin
g2 A C, -se

C —ie C —ic C -ie m m m2m
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At this point, we take advantage of the fact that we are interested in a kinematic region in which kA kB

AmB w th kA and kB typical momenta. Thus, we drop terms with masses and identify

a= -SM„
A0 = Bk2.P2M0,

A + —'A = -8(z +z )k .P M —4C, M,
and

A, + zA, -8(z, +z2)k2 p, MO

5 5

After integration the first term goes like M, ln(k, p, /m, m„), while the second is, of course, just -M, . We
will make the approximation of dropping terms which are of order one relative to terms of order ln(k„kz/
m„mz).

The result is
1 rl — A2C2

M, = — f' Re — dz, dz, 5(1 —z, —z,)M, 21n —2ln
F +0 Q0 mym2 mym2

k,.p, x' 2k, p,
C, —ie C, -ie C, —ic

These integrals must be evaluated with great care. The correct procedure has been given by Yennie,
Frautschi, and Suura. ' The result is

M, = — f' 2ln — +
A'

mpm2 .0 ~0

with C, =—z,P, + z,k, . Similarly,

Cy, 1 A
M4= — ff' —yln—

7T m lm

dz, dz, 5(1 —z, —z,) ',' ln, M„,
k p A.

1 2 1 2 C 2 C 2

~,

mlm2 „0 „0 C4 C4

(1Oa)

(lob)

l . A'
M = — f —-', ln—6

7l mpml
—~ ln ' ' — dz, dz, 5(l —z,—z,) ',' ln, Mo,

mpm2 g 0 ~ 0 C6 C6
(10c)

Terms of order (o/m) 1M, have been dropped.

V. BREMSSTRAHLUNG CONTRIBUTION

In this section we consider the contribution from
the graphs of Fig. 5:

3 u(P2)r z(1 rs)(2& Pg ——N)u(pg)

x u(k, )y "(1—y, )u(k, ), (11a)

G e
s

~g (k +k)2 —m ' u(P, )rz(1 -y, )u(P, )

x u(kz)(2ek2+ Pk)y "(1—y5)u(kz) . (11c)

At e = k, X, +%2+%,= 0 demonstrating the gauge
invariance of the graphs.

Squaring this amplitude, summing, and averag-
ing properly over all spins gives

(11b)

K,=, k, , u(p, )(2e p, ++)y~(1 -y, )u(p, )

x u(k, )y~(1 y, )u(k, ),

(k' -2k.p )' (k'+ 2k.p,)' (k + 2k k,)'

2 'U4

(k' —2k P,)(k'+ 2k.P,)

2fU,
(k —2k p, )(k'+ 2k k, )

2f 'U,
(k'+ 2k p, )(k'+2k k,)

FIG. 5. The bremsstrahlung graphs.

This is to be evaluated at O'=A. ' and p2= 6 —k. In
the denominators, the dot products are of order X

when k, is of order A. . Thus, since O'=A. ', we can
drop the k' in the denominators and also in the U's.

The result is
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4(k p, )' 4(k.h)2 4(k.k,)'

2ff'U4 2f U, 2f'U,
4k.p»k ~ 4k p»k'k2 4k &k k2

with (from now on M, =MD~2, ~)

U» = 8m» Mo+ U» U4 = 86'p»Mo+ U4 ~

U, = 8m, 'M, + U» U, = 8k2'p»

U~ =8m~ Mo+ U3, U2 =SI(. kPI2+ U2.

do'Ig d(T Ig 4F I@
IR F

odsk 2odsk + 2od~k
2 2 2

(12)

The U's have at least one power of k and thus give
infrared-finite contributions. Complete expres-
sions will be quoted in Sec. VI. This identification
of the infrared-divergent and infrared-finite parts
suggests that we write

m, = xM~, and M~ is the mass of the nucleon:

d+IR ~ » 1
2() 2 dx E(x)

"d k m4NIR
x a[(s. —k)' —m, '] e(a, —k, )k, k, p,

(14)

where k, =+ (~k~2+ X')'~ '. We begin by splitting up
t e fdlkl:

( d'k d[kfda;fkf'
„k, =J

/k /2
dlkl+ dlkl df12

~)I O o

with A. «e, but e -0 after A. -0. Thus, in the sec-
ond integral, we take X =0 with no problem. Then,
k»dZIks/d2k2 =I, +I„with

where o IR is computed with

m4N = m4N'R

2 2 I2 2 2

(k p,)' (k a)2 (k.k,)'

2ff'aP, 2fk;p, 2f'a k,
k.&k p k"k2k p» k.r&.k2

I =
~o

p

1 " d k
dx E(x), „5[(a—k)' —m, ']

"Ikl &4 O

4N IR

x e(a, —k, ) „1 1

d'k
dx E(x), „O[(~—k)' —m, ']

"
1k l&4 0
02= 0

and o F is computed using the U 's.
Now we must extract the infrared divergence

from

dg IR dg IR

' d'k ' d'k
2 2

where k»do', "/d2k2 is now evaluated with p, = xP„

m Nxe(a, -k,) „1 1

I» is evaluated by using the 5 func tion to do the x
integration. We can then set k =0 except in the
denominators of N'", parametrize these denomina-
tors, and carry out the f)k)&422 y2d k, .

For I, we have

E(x) 1 " "() 6 —m k mN'
(2v)' (~2 ') ' ' 2(~'- k ~) ' k .p
E(x) 1 ~ k 2m4NIR ~~ g —m22

since k,2m4N'R/k, p, is independent of k, . The evaluation of I, is begun with a further split: I, =I~+I~,
where

1 " k m4NI k m N
4 p

1 1 " k2 'N" a'- m, '
d&, = dx( ). . . dkk ', dk, k (, „- -) —k,).

x„ is the positive root of 62 —m, '=0. (Recall b, depends on x through p, =xP, .) In I24, we can take e =0,
do the fdk, calculation, and get

e(/2 m 2) " k 2m Nla k 2m4N)2
0

(2v)'(a'-m, ') . ' k,.p, k, p,

which is an invariant (although not manifestly so as written). I» is evaluated by parametrizing the denomi-
nators in N'2 and carrying out the fdQ and fdk, The calc.ulation is best done in the rest frame of the re-
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suiting parametrized four vector.
Even with this simplification, the calculation is rather messy. However, in combining I~ with I„ the

dependence on c cancels out, as it must, and the result is covariant.
Considerable simplification results from dropping terms of order one relative to logs. The parametric

integrals are handled using the techniques of Ref. 5. We also drop terms which have an extra 1/q P, as they
are small in the deep-inelastic region. The result is

dZI~z o. E(x,)M, (15a)

(15b)

B=f'1n—+f"ln —+ln ——
~ ( dz, dz, 5(1 -z, —z, ) ff', ' ln, +f ' 2' ln, -f', ' ln

m m m 0
' — ' '

C4 C4 C6 C6 C5 C5

2h p 2q.P~ Mf' -ln — ' + ln(1 —x,) +ln, ' + ln
m ]m 2 MH m~m2

(15c)

2q P, MH' 2~ k2 2q-P M '-f" ln(1 —x,) +ln, ' + ln " — -ln ' + ln(1 —x„)+ln, ' + ln
MH m2 rn2m~

'
MH m2m~

m2m, m m, MH' ' M„' MH
' m,

ft
' ' -'+ ' —2,' '," —2) ( —,) 2 )

m&m, m2m& m pz y MH MH MH Le( py m& bp,

m2mp
'

m2mv MH' ' ' "
MH'

' nMH- ' m
(15d)

B and C are both to be considered evaluated at x = x,:

mx =-q' + q q, , limx, =
MH' MH' '

sj
' 2qa,

VI. RESULTS

In this section we will combine our results from
Secs. I-V. Recall that the graphs of Fig. 1(a) give

tion of G by writing

G' e A & n A1+2—ln + ~ ~ ~ = —,
'

G 1+—ln
2 m MH n' MH

(x), 5(+' —m, ') 8(
dZ~ m4M

2 0

Z(x, ) m'M
2~'M„2(x, -x ) n;P, „„

The contributions to M from the basic, self-ener-
gy, and vertex graphs have been given in Secs. II,
III, and IV. The bremsstrahlung graphs give

with

O' =—G 1+—ln

x (1+ ~ ~ ~ )
l2

2
(1+ ~ ~ ~ ) y

dZg@ dZ(g dZ)@

2 2 2

Vfe can now make the gratifying observation that
the A. -dependent terms in Z', ~ cancel those in Z~.
Not so gratifying, however, is the fact that the
A-dependent terms do not cancel. Since these
terms are the same in case II as we just obtained
in case I, we can interpret them as a renormaliza-

G' is interpreted as the renormalized weak cou-
pling constant to be identified with the observed
coupling constant in a reaction such as P decay,
where the A-dependent parts of the radiative cor-
rection are the same. (This identification may not
be justified since the model we use is not actually
applicable to a low-energy process such as P de-
cay. )

We are also troubled by the explicit appearance
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of m„ the quark mass. Its presence reflects the
uncertainties and ambiguities of the parton model
such as neglecting the transverse momenta of the
partons. Deep-inelastic ep scattering suggests

that m, «M~. However, we cannot put m, = 0 be-
cause it appears essentially as 1n(m, /M„). We
take m, =0.3 GeV and hope for the best.

Finally, we have for case I or II

with

dZ G "Z(x)M,
"d'k, g4m'M„'(x, —x )k, P,

1 + (A+B) +kgo
jT 2

Mo) =8k, -p,k, 6, Mo~=8k, Ak~ P~,

A, = dx, (xs —4')E(x) f,f&ln —,+f&ln» —f', ln

dx, (xu —6 )F(x) f„ff,ln —,-fain» +f,', ln —[x-x,]

B,= -f, '[- —,
' lnx, + ln(1 —x,)] -f," ln(l —x,)+ ln — -ln —lnx, + jn(1 —x,)

I X- H

fy —n -p n
X S

2 P

f» ln -+ ln
2M~v 2MH

B„=-f»'[- -', lnx, + ln(1 —x,) ] -f,'p ln(1 —x,) + ln —-ln —lnx, + ln(1 —x,)
M&. 2M+v

-f„f,', + -, lnx, ——,ln — + ln —--, jn —+ lnx, —2 ln(1 —x,) ~ in-' y g ~x+Myg 2v y 2v m2

2 2- 2 H

x,s—f,',
)

ln ' —,1
lpga Qm

s
Hv

n ' —21n —2ln(l x,)+ ln'M-
—ln ln ' "—21nx, —ln ln + 21nx, —2 in(]. —x,)

2MHv m&
' m&M~ 2M~v

f,f', —,ln—x, ——,ln ' + ln ———,In —+ lnx, —21n(1 —x,)+ ln~x+MH 2v & 2v m

2 m2- 2 H

—21n —2ln(1 —x,)+ln ",'+21n
H M~'

ln ' —,
' In', + 1n 1n ~ 2 lnx, —2 ln(1 —x,)

v m~ m~ ~ M~v

&=(k, +P,), ~= q P„u=(P, —k,)',
H

1 I 2fr= fg=fi —1, f„==, f'=f +1, P, =xP„

dx&(x), ~ &[(~-k)'-m, ']e(~.-k, )
2 0

4(k P,)' 4(k b,)' 4(k k,)' 4k P,k a 4k.P,k-k, 4k.gk.k,

,~ U I
= -64m, 'k, .p, k k, —64m, k k,k, 4+ 64m, 'k k,k k, -64k k,k. p,k .&+64k-k,k.p,k.k

r2 U~&
= -64k Ak k~kx'p

2—

U = 64m k .p k.k + 64m k.gk .p 64k.k k, gk, p

„U„=—32k k,&.p,k, p, —32k p,a k,k, .p, —32k-ak;p, k, p, -32(g k, —k k,)(k.k,~ p, k p, g k, +k gk, p,),2
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2—-„U„=-64k k,k, p,k,.p, +32k ak, .p,k, p, —32k k,s p,k, .p,

+32k p,b, k,, k, p, —32(A k, —k k, )(k kp. , p, .—k p,.k, k,.+k kp. , p, ),

„U„=-64k k,h k,k, p, —32m„'k hk, p, + 32k, p, (2k Ah k, —k k,m, '),

64,'k k k p, —64m, k k,&.k, +64m, k.k k.ki 64k.k k pi~ k]+ 64k k2k p k ky,

,~ U2„= -64k k,k"Ak2 p, ,
2—

G I 2 3II
— „U„=-- m„~, 2 p, + m~ p, , —6 m„p, ~, —

~ p, , 6+6 k, p,k

„V~„=—32k k,A:pp, p, —32k p, A k,k, p, —32k ak, p,k;p, —32(b, k, —k k, )(k.Ak, p, —k p,a k, + k.k,b, .p,),
2—

2—
s2 511 1 2 pl 2 pl 2 pl 1 1 2 pl

-32(6 k, —k k, )(2k.PP, P,—m, 'k k, —2k k,k, P, +m„'k P,),
2—

G s2 6II„V6n = 32k k,A k,k, P, + 32k k,b. k,k, P, + 32k LA, k,k, P, -32(b, k, —k k, )(k P,b, k, —k.k,b, P, + k Ak, P,) .

At this point it should be noted that the corrections
which arise from the bremsstrahlung graphs depend
upon the form of the parton distribution function
E(x) The result . is particularly sensitive to the
small x region.

To get the radiative corrections to an actual
cross section such as vp, we must use the cross
section (case I or II) and an E(x) appropriate for
each kind of quark ((P, X,F, %) and then sum over
quarks in the target.

As an example, we have worked out vp and vp at
E, = 100 GeV in the lab. We have used distribution
functions from Kuti and Weisskopf' and have done

the integrations for A and Z~&~ numerically. Kuti
and Weisskopf give

E(P in P) =E(Xin P)

= E(6' in n) = E(3I in n)

1 (1 —x)'~'
3 x

E(d' in P) = E('X in n)

1 (1 —x)'i' 105 (1 —x)'
3 x 48 ~x

"D
(D

O

0.15

O. I 0

0.20

O. l 5

0.10

c'. -„- 0.05

0

-0.05
b —0.10

c -„0.05

0D

-0.05
b —0.10

—0.15
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k (GeV)

2QLAB

80 100

—0.15

20 40 60
(GeV)

20LAB
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f (+corrected +uncorrected)/ uncorrected

various lab angles and energies of the outgoing muon in
the reaction v p p, X at an incident neutrino energy of

e 100 GeV in the lab. ~o'corrected ls k20 dZ/d k2 of Eq. (17).]3

plot of (Ocorrected uncorrected l/&uncorrected f
various lab angles and energies of the outgoing muon in
the reaction v p @+X at an incident neutrino energy of

P
3100 GeV in the lab. ~0'conected ls k20 dZ/d k2 of Kq. (17).l
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E(51 in P) =E(&P in n)

1 (1 —x)'i' 105 (1 —x)'
3 x 96

Typical results can be seen in Figs. 6 and 7.
These curves show features typical of radiative

corrections in other processes, ' which is not sur-
prising since it is primarily a classical effect,
At fixed lab angle and fixed incident neutrino en-
ergy, the spectrum of the muons is decreased by

about 10% at the high end and increased by about
10% at the low end. We note again that the approxi-
mations of the calculation are valid only in the
scaling region with all momenta dot products much
bigger than the corresponding masses.
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Under the assumption of gentle behavior of higher cumulants or correlation moments, we discuss how
the multiplicity distributions approach the Gaussian (normal) or approximately Gaussi. an distribution at
high energy. This is an analog of the central-limit theorem. A detailed comparison with experiment is
made based on this formalism and shows that such an approach may be useful. It is pointed out that if
the 2-prong inelastic cross section in the pp reaction is identified with the lower end point of the multi-
plicity distribution, then a deviation from the Gaussian form is necessary at the present energy. The
asymptotic relation (1/t/2e)cr;„, i/cr = y =

& (n —&nl)'»'i is well satisfied by experimental data,
where cr and y stand for the maximum of the topological cross sections and the width of the
limiting Gaussian form, respectively. If the ratio of the width y and the modal multiplicity m

approaches a nonvanishing value at infinite energy, then we obtain a scaling of the distribution
function, the scaling function being of approximately Gaussian form with the scaling variable n/m.

I. INTRODUCTION

For a long time, the Poisson distribution has
been a favorite model of physicists for describing
the high-energy multiplicity distribution. Recent
experiments, ' however, indicate a departure from
it by exhibiting nonvanishing correlation moments.
It has been pointed out, in fact, that the asymptot-
ic multiplicity distribution seems to approach a
normal distribution' ~ as energy increases. Such
a phenomenon resembles the central-limit theorem
in statistics and was proved by Haldane some time
ago in the case of a continuous distribution on the

interval (-~, ~). The assumption that leads to
this result is that the higher cumulants do not grow
too fast, a condition which is met by multiperiph-
eral models, ' field-theoretical models, ' and a gas
model. '

In this article, we elaborate on the Haldane
theorem and present it in a form suitable for ana-
lyzing experimental data. In Sec. II, the central-
limit theorem is exhibited for the Poisson distribu-
tion so as to be useful for discussions of the later
sections. Section III presents the definition of
various moments and their relationships. In Sec.
IV, we prove the Haldane theorem for a discrete


