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A unified treatment of peripheral models for the inclusive q» spectrum in the central plateau region
is presented, The q» spectrum is calculated from several models of damping in internal momentum
transfer, The highest-energy CERN Intersecting Storage Rings data for p + p ~ + X is fitted for all q»
by a power-law internal damping.

I. INTRODUCTION

The recent experiments at the CERN Intersecting
Storage Rings (ISR) have confirmed the existence
of a central plateau in the inclusive single-particle
spectrum' and have found the q, ' dependence over
a large region. ' Different theoretical models have
been used to account for different regions of the
pionization data. ' ' In this work we unify the
treatment of these models by considering a gen-
eral dynamical structure which includes all of
these models as special cases and obeys the
correct analyticity properties. It will be shown
how specific forms for internal damping in mo-
mentum transfer lead directly to types of damping
in q»'. We use one such form to obtain a fit to
the q» dependence over the entire range of data
at the highest ISR energy.

A theory for multiparticle production which
describes the pionization or flat central plateau
region must have a peripheral structure in order
to decouple the detected particle c from the mo-
mentum and nature of the incoming particles in the
central region of the inclusive single-particle
spectrum, g+ 5-c+ X. This is indicated in Fig.
1, where the particle c is peripherally attached
to the faster particles on the left-hand side and
the slower particles on the right-hand side. A
more general case is to peripherally produce a
resonance or finite-mass fireball, and this will
be considered in another paper. '

In order to obtain an asymptotic behavior as
~- ~, we assume Regge behavior of the inclusive
sums and phase-space integrals over the undetec-
ted particles s, &(, s, 2' . The absolute-
square and phase-space integration over this pro-
duction amplitude gives the single-particle spec-
trum or the M' = (p, +p~+p;)' absorptive part of the
forward 3- 3 amplitude for g + b + c scattering
(Fig. 2). The inclusive Regge behavior of s, and
s, reappears as Regge behavior in energies s, ,
s„and gives the Mueller double-Regge structure
in the 3- 3 amplitude, Fig. 3.

In order to get the pionization spectrum which

shows rapid damping in q» „we must add to this
general structure some form for the damping of
the internal momentum transfers t, , t„. The
various models for the pionization spectrum
differ mainly in the assumed form for these mo-
mentum transfers as well as in the theoretical
nature of the exchanged object. We will present
a unifying formulation for computing the pioniza-
tion spectrum from Fig. 2 with any internal-damp-
ing functions P, (t, ) and P„(t„). It will be shown
that the above formulation is sufficient to fit all
of the highest-energy ISR pionization data with a
single form for P(t).

Previously, the single-particle spectrum from
Fig. 1 or Fig. 2 has been calculated in the s-~
limit for exponential damping in momentum
transfer"

and gives a closed form for the result, Eq. (3.4).
The square of any other internal damping P (t)
which is nonsingular and which vanishes for t-
-, ean be represented as a superposition of these
exponentials:

The result of calculating Fig. 2 for any such A, ,
A, will be a superposition over 0, , O„of the
results for the simple exponentials.

The general result, Eq. (2.11), agrees with the
general analytic representation found by
Zakrzewski' on the basis of analyticity argu-
ments alone, since the diagram in Fig. 2 possess-
es the correct analyticity consistent with double-
Regge behavior and has no simultaneous discon-
tinuities in the overlapping variables s, and s„
(Steinmann relations). Our derivation provides
the physical meaning of the arbitrary weight func-
tion in this representation in terms of the internal
damping functions P (t).

Because of the generality of the formulation, it
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4. power law in t. We also discuss the results of
the dual resonance model and summarize all of
our results. The pionization data are fitted in Sec.
IV with a specific power-law internal damping.

FIG. 1. Peripheral production amplitude for the
central plateau region of the single-particle spectrum.

includes several physical models such as the ex-
ponential damping model of the small-q~ region' "
and the power-law' or parton models' in the large-
q~ region. In this paper we show how to generate
the phenomenologically proposed behaviors such
as

but the method outlined above modifies these to
include the correct analytic behavior.

We have also treated the theory where the pe-
ripherally produced object is a spinless resonance
which decays into two pions. ' The large-trans-
verse-momentum behavior of the resonance pro-
duction reappears in the decay pion distribution
modified at most by a power. A simple Amati-
Fubini-Stanghellini (AFS) model with the only
internal damping coming from pion propagators
will be shown to give much too slow a power-law
falloff.

In Sec. II we calculate the pionization spectrum
for an arbitrary internal-damping function by
expressing it in terms of its Laplace components
and using the previously known phase-space inte-
gral over these components. In Sec. III we calcu-.
late in this formalism the pionization spectrum
for the following specific models of internal damp-
ing: exponential in t, exponential in (-t)'t', and

II. LAPLACE- TRANSFORM CALCULATION
OF THE PIONIZATION SPECTRUM

The pionization spectrum may be computed from
Fig, . 1 or Fig. 2 as integrals over the momenta P,
and&, of the inclusive sums:

6 = P,
' (t, )P„'(t„)(s,)"& (s,)"~,

where

n, = n, (0), a, = n, (0).

(2.2)

This integration has been performed analytical-
ly for exponential internal damping functions. s'
We can easily extend this since any p'(t) that van-
ishes as t- -~ can be expressed as a superpos-
ition of exponentials (a Laplace transform}:

~,(t, ) =- P,'(t, ) = dQ, B,(Q, )e'"('),
0

( d))-=)()())=J d))B,()),')e, „,
0

This gives in (2.1)

(2.3}

d P, d'P, 5' (P, + P, + q -P, -g)6,
d'q/E s

(2.1)
where q is the momentum of particle c and X' is
on over-all constant.

The term 6 includes the inclusive sums and
phase-space integrations that give rise to Regge
behavior and is given in terms of the internal-
damping functions P (t):

A.
'

dQ, dQ„B,(Q,)B„(Q„) d'P, d'P, 6'(P, +P, + (f- p, - p~) s, ~ s, "2exp(2Q, t, +2Q„t )d'q, dy s

(2.4)

The integration in the square brackets has been performed in Refs. 5 and 6 and gives in the limit s„s„,s- in the pionization region with m'=q',

dQ„B,(Q,}B„(Q„)sS Q'
Q „,'„„(Q„s,) (Q,s

xexp
Q

m e "e &)1(n, +1, -n, +a, +1;x) .a,
l+

4 is the confluent hypergeometric function and

20gQ„
Q, +0„

(2.5)

(2 5)



2110 R. MICHAE L BARNE TT AND D. SILVERMAN

S1S
0=—9'~ +~ s (2 7)

For the asymptotic energy limit we take a, and a, to be Pomeranchukon trajectories of unit intercept.
This gives the single-particle spectrum from (2.5):

do' 2Q)Q„
dQ, dO, B(A,)B,(A)(B, 0,) exp

" m')e "4(2, (; «') . (2.8)

This may also be rewritten using the relation"

e "4(2, 1, z) =(1+~)E,(~) —e ", (2.9)

where E,(I() is the exponential integral function.
Equation (2.8) is seen to be the result for internal
exponential damping e'"~'~""~'~ obtained previous-
ly, ' but now including a superposition over many
different damping constants Q„Q„with arbitrary
amplitudes B,(Q, ), B,(Q,).

The q
~ or 7i dependence of (2.8) occurs only in

the variable x, which depends on Q„Q„only in the
ratio

2Q ~ & 2Q ~ & & Q~r
(2.13)

The representation (2.11) [or more generally, a
similar one derived from (2.5)] has been found by
Zakrzewski' on the basis of analyticity require-
ments that include Regge behavior and absence of
simultaneous singularities in the overlapping vari-
ables s„s„. Our derivation connects the repre-
sentation function C(Q) with the dynamics of inter-
nal damping through (2.12) and (2.3).

A convenient form for calculating (2.12) is ob-
tained by using

2Q, Q„Q=—-
Q, +Q„

(2.10) which gives

It is then possible to express the q~' dependence
in a single integral over Q by introducing into
(2.8)

1= dQ5 Q—

0
C(Q) =16Qe" " dT, r, (Q ' —T,)

0

xBt
27, B„2Q ~—

(2.14)
This gives in She pionization region the single in-
tegral representation III. SPECIFIC MODELS OF INTERNAL DAMPING

—= D(q) = dQC(Q)e ""4(2,1;Q7i),d Q~dg

(2.11)

where

In this section we apply the general result to
the calculations of the spectrum resulting from
specific choices of P(t) which correspond to some
current models.

A. Exponential Damped Model

g(Q +Q ) 3eom2 (2.12)

Motivated by exponential damping in exclusive
momentum transfers, Caneschi and Pignotti' and
Silverman and Tan' used single exponentials to
calculate the spectrum. In our formalism this
becomes simply:

(3.1)

FIG. 2. Inclusive single-particle cross section as an
absorptive part in M =(p, +p~+p;) of forward a+b+c
scattering.

FIG. 3. Double-Regge behavior in forward a+ b+c
resulting from inclusive Hegge behavior in Fig. 2.
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a, (n, ) =5(n, —a, ), a„(n„) =5(n„-a„),

c(c)=a(c—2 ' ' (a, a, ) 'e~ ',
as+ a„

D(yl) = e '"4(2, 1;aye),

where

a,a0:
a, +a„

As-g-,
e-ag

D(yi)-, xconst.n'

(3 2)

(3 3)

(3.4)

(3.5)

m, ' = 0 and for y & —,', we obtain D(yi) in terms of a
Meijer G function" (see Appendix A):

C(n)-constxn'y '+constxn4y '. (3.14)

const » 4,~
1 —2y 1 —2yDq =—» G» P q — 2 -1-

(3.13)

The asymptotic behavior of D(yi) can be obtained
from (3.12) in the integral representation (2.11) or
from (3.13) (see Appendix A). As yl-~, the inte-
gral (2.11) is damped by e ""so that the important
Q are Q-O. In this limit,

B. Exponential Damped in (-t)1/2

Since the maximum possible falloff of a form
factor is e ' ', and the small-momentum-
transfer spectrum follows a behavior e '~&, we
study the case

D(n)-n' ",
D(n)-n ", (3.15)

Scaling the integration variable to x= Qq gives the
results

P (t) = P„(t) = e ' "
2

B(c,) =(—)
' ( 2c,

This gives

(3.6)

e(2 1 n)l) -in(nyi)
Aq~p

2 2
and is damped by e ~~" ~~ if 4p, ' —nz'&0. In
this case

(3.16)

As q-O, the integral inherits the logarithmic q
branch point in

2

c(c) = —,', a'c 'exp(m'c - —' (3.7) D(yi) ~ -in'. (3.17)

For large q, we can find from the integral repre-
sentation (2.11) that

D(yi) -10(-',n)"'a "'yl"4e ' " (3.8)

1
Pt(t) = p (t) =

( 2)y i (3.9)

C. Power-Law Damping

This case is motivated by the power-law falloff
of the large-q~ pionization data, as well as by the
power-law behavior of propagators and form fac-
tors. This includes the most simple AFS model
of pion exchanges producing p's. It also includes
the parton models of the large-transverse-mo-
mentum region. '

We parametrize the internal damping with re-
spect to an effective mass squared p, ':

If m' —4p, '& 0, however, there is a branch point at
q =m' —4g'. In either case the singularities are
outside the physical region since g = q~'+nz'. For
the case of p production with pion exchange and
only the pion propagators giving damping we have
y=1 and the p's are transversely damped in terms
of

yap =-(qp)'+m p',

so that

D(yt ) 1/yi p.~ oo
P

In Ref. 8 we show that this leads to a spectrum for
the decay pions of

1
D(yi) ~ —. (3.18)

'gazoo g

D. Dual-Resonance-Model Tree Diagram

A, (t) =A (t) =(-,), )
1

47a(n)= n'y 'e '& ")
) P(2y) I

C(n) I" enm2nsy -se-2)(2o
ln2y))' 4

(3.10)

(3.11)

(3.12)

Although the dual-resonance-model tree dia-
grams do not contain an internal structure as in
Fig. 2, the 3-3 amplitude has an M' absorptive
part. '4 Since it also has Regge behavior and the
absence of singularities in overlapping variables, "
it falls into the representation (2.11)." With o.'

the trajectory slope, the M2 absorptive part is
given by (2.11) with

where 8'& „ is a Whittaker function. "
If the produced particle is a pion, we may take and

C(n) = n "'(n —4o. ') '"6(n —4o. ') (3.19)
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D(q) = qe '" "+(-,', 4; 4u'q) .
For large q,

D(~) ~1/2e 4a

(3.20)

resembling the exponential -damping result.

IV. COMPARISON WITH PIONIZATION
SPECTRUM DATA

We have studied three general q~ behaviors:
e ~, -e '~, -(q ') &. These will now be com-

pared with the highest-energy ISR spectrum for
p +p - n +X in the pionization region. '

The region of 0.2 «q~ «0.8 can be fitted with the
internal exponential damping form of Sec. IIIA

E. Summary

The large-q behavior of the examples in Secs.
IIIA, III8, and III C lead us to the following recipe
for finding an internal damping which will yield a
desired large-q behavior: If the internal damping
falls off faster than (-t) "' for large

~ t~, then the
dominant damping for large g is the same as that
for large

~
t~. Numerical studies also show that

as q~' approaches zero, the increase of D(q) is
much smaller than would be obtained by using only
the associated asymptotic forms

aug e beg (q 2)

respectively.

with a =2.V GeV '. The region 0.2 ~ q~ ~ 1.1 can
be fitted with the e ' ' ' ' internal damping form
of Sec. IIIB. However, both of these fits fall off
too fast in q~ to fit higher-q~ data. To study the
power-law damping form, we plot in Fig. 4 the
data for ln(do/d'q~dy) vs in(q) =in(q~'+m, '). For
large q the curve becomes linear with a slope in-
dicating a large-q~ power-law behavior like q~

'
or g 4, as previously recognized by others. ' From
(3.15) we conclude that y = 2. This rules out the
possibility of damping from single propagators
only, which behaves like q

' from (3.18).
We have used the internal power law damping of

Sec. IIIC with y=2,

to give the fit shown in Fig. 4 with the integral
over C(Q) in (3.12) calculated numerically. Using
an effective mass a =0.485 GeV, the fit covers
nine orders of magnitude of cross section.
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APPENDIX A

We calculate the integral from Sec. III C for m, '
=0:

I ~ I I I I I I I I I I I I I I I I II I I I I I II

m'- Saclay/Strasbourg Collaboration

-36
.02

I I I I IIII
.05 .I

I I I I IIIII I I I I I I I II I I I I I I I I.2 .5 I 2 5 10 20 50 100

q (GeVa/ca)

FIG. 4. Fit to the s =53 GeV/c ISR data for p+p ~+X, using p(t) =(t-a ) for power-law internal damping
with a = 0.485 GeV and q = q~ + m~ .
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D(q) = JI de[f1'/ ' exp(-2q'n)W„'„, 3/, ,(4p. 'a)]
0

x e ""4(2, 1; qQ) .
We use the Mellin convolution theorem" (see Ref.
17):

J
oo 1

dx v(x)u (x) = . —W.(p) V„(l —p)dp,
0 27TS ~ ao+ g

(A2)

Regarding the bracketed expression in (Al) as
m(n), we find from (A3) that

g/ ()(4$)3gy& 1 (p —1 + 2y)r(p —4 +4y)
( --'+2 )

(A4)

Similarly,

V (I-p)= J dAB 'e"~e(2, 1;q(W
0

where

W.(p) =-
Jl dn~(fl)n~ '. (A3)

1 I'(1 —p)I'(1 —p)
q' /' r (3 - p)

From (Al) and (A2) we now have

(A5)

&(q)=, . dp
(4p, ')' '/ ' )'" q ~ I (1 —o —p)l" (1 —o —p)r(2y —1+o+p)r(4y —4+o —p)
q' '(2~i),.„4p,' r(2y --,'+a+p)r(3 —0 —p)

(A6)

There are three conditions on o'.

o &1, 0&1 —2y, cr &4 —4y,
g22 g 1 2 3 O gQ

&i &2 &3 Z-0
(A10)

which can always be met if y &-,' . For y & —', we
choose o = —,

' and obtain the result

D(q) q-1/2(4/2)5/2-3y

)( G22 4 2 2 y 2 y 2

2 2

where G is a Meijer's t" function. "
We will need three properties":

a, a, a, „a,+o a, +cr a, +0
b, b, 5, " b +O b+g 53+a

(AS)

z
5, 52 b3 1 —a, 1 —a2 1 —a3

(A9)

where b =—min(b„b, ).
From (AS) and (A9) we get the form useful for

large q and y & 4.

D( )
(4jj')' 'G22 4 2] 1-2y 1-2y

(A11)

(A12)

and

for —,'« y» —,', D(q)
oo g

From (A10), the asymptotic q ~ behavior is de-
pendent on y, so that

for y~ —„D(q) ~ —,—,3 1

QQ

*Supported in part by the National Science Foundation.
J. C. Sens, review talk, in Proceedings of the I"ourth
International Conference on High Energy Collisions,
Oxford, 1972, edited by J. R. Smith (Rutherford High
Energy Laboratory, Chilton, Didcot, Berkshire, En-
gland, 1972), p. 177.

R. Cool et al. (CERN/Columbia/Rockefeller Collabora-
tion), in Proceedings of the Sixteenth International
Conference on High Energy Physics, National Acceler-
ator Laboratory, Batavia, Ill. , 1978, edited by J. D.
Jackson and A. Roberts (NAL, Batavia, Ill. , 1973);
M. Banner etal. (Saclay/Strasbourg Collaboration), ibid.

SD. Amati, S. Fubini, and A. Stanghellini, Nuovo Cimento
26, 896 {1962).

4L. Caneschi and A. Pignotti, Phys. Rev. Lett. 92,
1219 (1969).

5D. Silverman and C.-I Tan, Nuovo Cimento 2A, 489

(1971).
6D. Silverman, this issue, Phys. Rev. D 8, 2279 {1973).
~S. M. Berman, J. D. &jorken, and J. B. Kogut, Phys.

Rev. D 4, 3388 (1971);J. F. Gunion, S. J. Brodsky,
and R. Blankenbecler, Phys. Lett. 39B, 649 (1972);
Phys. Rev. D 6, 2652 (1972); Phys. Lett. 42B, 461
(1972). P. V. Landshoff and J. C. Polkinghorne,
DAMTP Report No. 72/43 and No. 72/48 {unpublished).
D. Amati, L. Caneschi, and M. Testa, Phys. Lett.
43B, 186 (1973).
R. M. Barnett and D. Silverman, University of Cali-
fornia, Irvine, Report No. 73-15 {unpublished).

9A. H. Mueller, Phys. Rev. D 2, 2963 (1970).
W. J. Zakrzewski, Phys. Lett. 40B, 645 (1972).
C. H. Mehta and D. Silverman, Nucl. Phys. B52, 77
(1973).

~I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals,



2114 R. MICHAE L BARNE TT AND D. SILVERMAN

Series, and Products (Academic, New York, 1965),
pp. 1059-1063.

~3I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals,
Series, and Products, Ref. 12, pp. 1068-1071 (the
conditions on the expansion on p. 1069 are in error);
Higher Transcendental Functions (Baternan Manuscript
Project), edited by A. Erdelyi (McGraw-Hill, New
York, 1953), Vol. I, pp. 206-222; Tables of Integral
Transforms (Bateman Manuscript Project), edited by
A. Erdelyi (ibid), Vol. II, pp. 391-444; Yudell L. Luke,
The SPecia/ Functions and Their APproxirnations

(Academic, New York, 1969), pp. 136-234.
i4C. E. DeTar, Kyungsik Kang, C.-I Tan, and J. H.

Weis, Phys. Rev. D 4, 425 (1971).
5C. H. Mehta and D. Silverman, Nucl. Phys. (to be
published).

i6P. M. Morse and H. Feshbach, Methods of Theoretical
Physics (McGraw-Hill, New York, 1953), Vol. I.

VAlthough the integral (Al) is given in Erdelyi, Tables
of Integral Transforms, Vol. II (see Ref. 13), p. 411, Eq.
46, and is quoted in Gradshteyn, Eq. 7.625.3, the
results given there are erroneous.

PHYSICAL REVIEW D VOLUME 8, NUMBER 7 OCTOBER 1973

Analytic Representation for Deep-Inelastic Electroproduction Structure Functions
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Conformal mapping and the ideas of analytic data analysis are used to obtain a new variable for the
parametrization of the deep-inelastic proton scaling function, F,(co). The resulting fits to the
scaling-region data are excellent. We note that present scaling data do not uniquely constrain the
threshold behavior. Extrapolations to large co favor a decreasing F,. Assuming that a simple analytic
continuation to the e+e P X channel is allowed, the fits are extrapolated to this region. The
extended reciprocal relation is also discussed.

I. INTRODUCTION

Experiments' ' on the inclusive reaction e + p
—e +X ("anytEing") strongly support the scaling
hypothesis of Bjorken, '4 that in the appropriate
kinematic regime the structure functions depend
on a single variable, co. We have used the u-plane
analytic structure suggested by one reasonable
field-theory model' (which gives Bjorken scaling)
and constructed a new variable by conformal map-
ping. Power series in this variable provide excel-
lent fits to the experimental data in the scaling
region. We further consider extrapolations of our
parametrizations to high w and find that a decreas-
ing E,(w) is favored. Assuming that the dynamics
allow continuation to the annihilation channel, e+

+e -P+X, we extrapolate our representations
to this region of the ~ plane and draw some limited
conclusions. We also briefly discuss the Gribov-
Lipatov" reciprocal relation.

In the remainder of this section we describe the
kinematics for e +P-e +X, shown in Fig. 1.
Following standard usage, ' ' we define v =P q/M,
W'=(p+q)', &@= I/x=-2Mv/q'. In our metric q'
~0 and v ~ 0 for electroproduction; M is the nu-
cleon mass (the electron mass is neglected).
Since W'~~' it is easy to show that 1~~&~ for
e p-e X. (For e'e —pX, 0«u &1. See Sec. p. )
The Bjorken scaling limit' is the kinematic region

lq'I-", ~ fixed W'&~M'
Assuming one-photon exchange, the cross section

for inclusive electroproduction is described by two
structure functions, ' W, (q', v) and W,(q', v). Both

and W, are non -negative in the physical ep
scattering region. According to the scaling hypoth-
esis, W, (q', v) and vW, (q', v) become functions of
the single variable (d in the Bjorken limit. We thus
define

E,(&u) —= »m [MW, (q', v)],
~ fixed

E2(~) —= lim IvW2(q, v)] .

In terms of the parameter 8 =o,/o„ the ratio of
the photoabsorption cross sections for longitudinal
and transverse virtual photons, '' F, and F„are
related by

E,((u) = —,'(1+II) '(uE, (u))

in the scaling limit. Thus, if B is a constant (or
a function of &u only), E,(&a) automatically obeys
the scaling hypothesis if E,(&o) does. In Sec. III
we shall assume 8 to be constant and thus only
discuss fits to E,(&u).


