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Opaqueness of pp Collisions from 30 to 1500 Gev/c*
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Assuming only the eikona1 approximation and the approximate reality of the S matrix for elastic scattering
we evaluate from experimental data the opaqueness of p p scattering from p L = 30 to 1500 GeV/c.
Parameters X and Y which characterize the shape of the function 1 —S(b) are defined and discussed.

INTRODUCTION

Recent CERN Intersecting Storage Rings (ISR)
experiments' have refocused attention on the be-
havior of the total cross section and elastic differ-
ential cross section at very high energies. These
results are especially interesting because of the
earlier conjecture of Cheng and Wu' which seems
to be remarkably confirmed. A phenomenological
analysis of various data based on Cheng and Wu's
picture has been made. ' In this paper we make a
less extensive phenomenological analysis, with
emphasis on a description of high-energy PP col-
lisions with as little theoretical prejudice as pos-
sible. Since the eikonal approximation and the
nearly purely imaginary character of the scattering
amplitudes both seem to be quite accurate, we
shall adopt these assumptions but, shall use no ad-
ditional ones.

In the eikonal approximation'

the opaqueness n(b) for the 10.8-on-10.8-GeV/c
and the 26 8-on. -26 8-Ge. V/c PP collisions. In Sec
II we discuss the mathematical range of the elas-
ticity parameter and the slope parameter.

I. OPAQUENESS AT HIGH ENERGIES

It is easy to obtain the opaqueness 0 from
(do/dt). i by using

(n) = a+ —,'aI8 a+ —3a Sa Sa+ ~ ~ ~,

where 3 is the folding integral. The inverse of (5)
is

a = (n) ——,(n) s (n)+ —,(n) e(n)e(n) —~ ~ ~ . (6)
1 1

For the 10.8-on-10.8-GeV/c pp collision we use
the unnormalized elastic data of Barbiellini et al. e

and normalize with the total cross section o~
= 39.1+0.4 mb estimated for this collision from
the data in Ref. 1. This gives the following fit:

a(t = 0) = 7.98 + 0.08 (GeV/c) ',
a = (1 —S(b)), (2) = (0.685+ 0.005)exp[ —(4.7~ 0.05) ltl]

where ( ) designates the Fourier transform from
the two-dimensional space of the impact parameter
b to the two. -dimensional space of the momentum
transfer K (K'= ltl):

+ [1 —(0.685 + 0.005)]exp[-(9.0 + 0.5) ltl]

[ltl (0.25 (GeV/c)']. (7)

(+=—
J

X(b)exp(iK b)d'b.
27T

We shall also use the same symbol to designate
the inverse Fourier transform. We neglect all
spin-correlation effects.

The S matrix S(b) will be written as

(3)

(4)

Substitution into (5) gives the value of (Q)/(n), ,
presented in Fig. 1. Also

(n), ,= 10.15 + 0.15 (GeV/c) ' .

We present the result this way because the error
in (n), , is quite separate from that of (n) /(n), ,

For the 26.8-on-26. 8-GeV/c pp collisions a sim-
ilar procedure yields a(t=0) =8.83+0.12 (GeV/c) ',

where n, the opaqueness (or blackness), will be
assumed to be real. It is, of course, dependent
on the incoming energy. (n must be almost purely
imaginary for sufficiently large b, see Ref. 5,
p. 357—358. But we neglect such contributions
which are probably very small. )

In Sec. I we discuss the magnitude and shape of

= (0.8 2 + 0.01) exp[ —(5.22 + 0.01)
l
t

l ]

+ [I -(0.82+ 0.01)]exp[-(12.15+0.15)l tl J

[ltl(0.4 (GeV/c)'], (9)

and the plot of (n)/(n), , which is also exhibited
in Fig. 1. For this energy
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(Q), ,= 11.4+ 0.2 (GeV/c) ' . (10)

The same analysis as above for PP collision at
29.7 GeV/c was already made in Ref. 4. The re-
sult is plotted also in Fig. 1. The value of (Q), ,
is tabulated in Table I.

We notice the following facts:
(a) The opaqueness probably decreases slightly

from pi = 29.7 to 245 GeV/c, but increases from

Pi = 245 to 1480 GeV/c. The over-all opaqueness
in coordinate space,

Q(b)d'b = 2x(Q). ..

(Q) = (constant)[E, (K)]',

TABLE I. The opaqueness in momentum space evalu-
ated at t =0 as a function ofpz.

decreases by (1.5+ 2)% first and then increases by
(12.3 ~ 2.5)Vo.

(b) The shape of the opaqueness Q(b) as a function
of b exPands from Pi = 29.7 to 245 GeV/c, but then
does not change appreciably from Pi = 245 to 1480
GeV/c. (There are indications perhaps of a very
slight expansion in this second energy region. )

It appears at first surprising that the increase
of the slope parameter between P~ = 245 and 1480
GeV/c does not lead to any appreciable spatial
expansion in Q(b). Upon closer examination one
finds that there is an opposite effect leading to a
cancellation. With increasing energy the increas-
ing total cross section leads to increasing impor-
tance of the higher order terms on the right-hand
side of (5), which have smaller absolute values of
the slope in K space.

We believe conclusions (a) and (b) to be quite
firm, once one accepts the experimental data,
since few a,ssumptions have been made other than
the validity of experimental data. We do not have
any compelling reasons for this behavior of the
magnitude and shape of the opaqueness Q(b). We
are further investigating this matter, especially
considering the possibility of relinquishing the
assumption that S(b) is real.

In Fig. 2 we sketch the opaqueness Q(b) vs b for
all three energies. Since the errors on them are
quite sensitively dependent on large K data we do
not put error bars on these curves.

(c) It has been suggested'' that

&Q) (t)
&Q&t=o

~Qgi I I I g ~ I ~ t ~ ~ ~ ~ ~ ~ I I ~ $ ~ I ~ ~ ~ I ~ ~ t ~1.
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FIG. 1. The normalized opaqueness (0) in momentum
space for three different momenta: P&=29.7, 245, and
1480 GeV/c. They are normalized to unity at the origin.
The triangles, open circles, and black dots represent
the opaqueness for 29.7, 245, and 1480 GeV/c, re-
spectively. Error bars are shown only for the last
curve. The magnitude of the omitted error bars are
comparable to those shown. The logarithmic scale on
the left side is for the 1480-GeV/c case while that on
the right-hand side is for the two lower energies. The
fit used for the 29.7-GeV/c data is

a(t) = j7.89+ 0.08]

x ((0.71+ 0.01) exp[- (7.36+ 0.1)gati j

+ [(1—(O. 71+ 0.01)]

&& exp[—(3.36+ 0.1)gati]} (GeV/c)

where I', is the electric charge form factor of the
proton. Figures 1 and 3 show that this suggestion
is no longer good for the ISR data. Instead the
formula

(Q) = (constant)[Gx(K)]

seems to be relatively good.

PL
(GeV/c)

29.7
245

1480

(n)& 0

[{GeV/c) j

10.3 + 0.15
10.15+ 0.15
11.4 + 0.2

which is very good for gati(0. 3 (GeV/c) . The experi-
mental data for (do/d t) /{do/d t) ~ 0 at 29.7 GeV/c are
those of Edelstein et aZ. , Phys. Rev. D 5, 1073 (1972),
normalized by o«, =38.6+ 0.4 mb. The experimental
data for (do/dt)/(do/dt)&-0 at 245 and 1480 GeV/c are
those of Barbiellini et aZ. (Ref. 6) normalized by otpt
=39.1+ 0.4 mb and 43.2+ 0.6 mb, respectively.
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FIG. 2. The opaqueness [in units of (GeV/c} 2] in
coordinate space for three different momenta: pL —-29.7,
245, 1480 GeV/c. The value of 0 (b =0) is quite sensi-
tive to a (t) at large (t), therefore these curves are not
accurate.

II. RANGE OF SOME PARAMETERS

(t( (GeV/c)

FIG. 3. The proton form factors [E((t}] and [G@(t}]
normalized to unity at t=0. Also drawn for comparison
are two curves copied from Fig. 1. The solid curve is
(0)/(n), , for 29.7 GeV/c and the dashed curve the
same for 1480 GeV/c. Data for the form factors are
taken from L. E. Price et al. , Phys. Rev. D 4, 45 (1971}.

Three of the most important experimental param-
eters are the total cross section 0~, the total
elastic cross section u,~, and the slope parameter:

J3= —ln — at t=o.d(x

dt dt

00 ~ OO -1
a= (i -S)badb 2 (i S)bdi-

pp Jp

Thus

B= —,[average of b' with weight (I -S)] .

(15)

(16)

All three are of the dimension (length)'. We define
the dimensionless ratios

0'g( 0 ~X=—,F=
o~ ' 16mB

'

or =4m (1 —S)bdb,
&o

o,i= 2m 1 —S 'b db,
4p

(14)

Experimental values of X and F are listed in Table
II for various energies. The close equality of X
and F is a reQection of the empirical fact that
ln der/df has almost a linear dependence on t (A.
strict linear dependence means that 1 —S is Gaus-
sian in b. See the Gaussian model in Table III.)

Under the assumption that Q(b) = real ~ 0 one has

Table III lists for some models the values of these
parameters. Notice that X and T are range-inde-
pendent. I.e., they are not changed by the trans-
formation S(b)- S(cb) where c= constant. X and Y
therefore are parameters characteristic of the
shaje of the function 1 —S(b) vs b. If one increases
1 —S(b) by a uniform factor n, X and Y both in-
crease by the same factor a. Thus, qualitatively,
transparent scatterings are indicated by small
values of X and F and opaque scatterings are in-
dicated by large values of X and 7. Also "compact"
scatterings, as in a gray-disk model, or a Gaus-
sian model, are associated with large ratios Y/X
while "noncompact" scatterings, as in a two-
tiered-platform model with a large and low lower
tier, are associated with a small ratio Y/X.

These qualitative features are indicated in Fig.
4. We notice that Pp scattering in the p~

-=5-1500-
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TABLE G. X and F as functions of P&. The data are
taken from (and interpolated): NN and ND Interactions-
Berkeley Compilation (1970), Ref. 1; S. P. Denisov
et al. , Phys. Lett. 36B, 415 {1971);V. Bartenev et al .,
report, 1972 (unpublished); and G. G. Beznogikh et al. ,

Phys. Lett. 39B, 411 (1972).

B(l/2, l/2)

PL
(GeV/c) X

2.8
4.0
5.0
5.5
6.0
7.0
8.0
9.0

11.0
15
20
25
30
55

100
200
300
500

1200
1500

0.42
0.318
0.302
0.297
0.294
0.281
0.2 78
0.275
0,270
0.254
0.238
0.226
0.220
0.196
0.178
0.175
0.173
0.172
0.176
0,176

0.39
0.312
0.283
0.270
0.258
0.254
0.246
0.240
0.230
0.210
0.198
0.191
0.187
0.174
0.172
0.170
0.170
0.169
0.170
0.169

GeV/c region is relatively transparent. In fact
the transmission coefficient (of the amplitude) for
even a head-on collision is still sizable at p~
= 1500 GeV/c:

$-Q(o) -i.4 0 25

It is also quite compact, resembling very much a
Gaussian, as Fig. I indicates.

Equations (13) to (15) and the condition 0 (S (1

FIG. 4. The allowed region of the dimensionless
variables X and F defined in the text, OA, OC, BC are
straight lines, and AB has a parametric form given in
the text. Qualitative features "opaque, " "transparent, "
"compact, " and "noncompact" refer to the shape of
1-S (b). Also drawn in this figure are experimental
values from Table II. representative error bars have
been drawn for Pz =2.8 and 15 GeV/c. The square
labeled by PL

——291, 496, 1068, 1480 GeV/c is the point
corresponding to the four ISR data in Ref. 1. The
crosses labeled by a and b are calculated for collisions
in which az ——50 and 60 mb, respectively, under the
assumption that the shape of O(b) remains the same as
that for p L =1480 GeV/c, at which v+=43 mb.

show that not all of the X-Y plane is allowed.
We shall assume S(b) to be piecewise differenti-
able. The allowed region is shown in Fig. 4.

The boundaries BC and OC are obvious.
To prove that OA. is a boundary we use the follow-

TABLE III. X and 7 for various models.

Model 0 el X

gray disk

Gaussian

e ifb &R,
0 ifb &R
(0~e ~1)
ee -b2/~2

(0~0. ~1)

27te R

2
I- ~~2R2

4mR

8xR

—G1
2

1
2

two-tiered platform G. if b & R,
G.p if R &b & (1+y) / R,
0 jfb&(1+/) /R
(O~e~l, O~y, O~P~l)

truncated parabola e if b &yR,
(b 2/R 2 1)(~2 1)

if yR &b &R,
0 ifb &R

(0 o. 1, 0 y 1)

] +2py+P ~ 1+yp2 i (1+Py)(1+~P)R2 ++2 (1+~P2)R2 4+ j +Py 2 1+yp 2 1+2py+Py2

1+ s+ 4 1+2 ~ (1+~ )
2 2

~~ (1 +~2)R2 ~~2(1 +2~2)R2 8 ~ ~ Y R2 1~ Y 3 ~
1+7' 2 8
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b =—z,&r
21T

(1 —S)d(&') = 2„'(.

Then

ing transformations:

(17)

1 —yo
y

0 and Q. =1
1+$0

The envelope of the boundary curves (21) is AB,
which is parametrically

1

(dz/d$) '

X=———y
1 1
2 6 0&

I'= (2+ —,
'

y, ') ', 0 (y, ( I .
(28)

1

4 f 'ader

1

4 f '(1 —$)(dz/dg)d( '

1 —S=—.d$
dz

'

(18)

Using Schwarz's inequality one obtains from (18)

XF' 2
2

(1 —$)'/ 'd( (20)

XI" " - (—,
' ——,' y, )(2+—3y, ')", (21)

where yo is related to n by

This shows that all points are to the right of the
line QA. This is the same restriction as one ob-
tains at high energies from the MacDowell-Martin
bound, ' if one neglects the real part of the near
forward amplitude and the spin dependence of B.

That AB is a boundary can be obtained by a vari-
ational calculation for minimizing (XI' "), where
n ~ 1. One obtains the minimum

Are all points inside and on the curve OABCQ
realized by some model for which 0 ~S (1?

The answer is yes. But the line QC can only be
realized if the integral for B in (15) is divergent.
Also the line BC can only be realized by a model
where S=O or 1 everywhere. (I.e. , for a collec-
tion of black rings with or without a central black
disk. ) If B is assumed to be convergent and 1 —S(b)
is assumed to be nonincreasing with increasing b,
then the lines OC and BC cannot be realized ex-
cept for the point B. In such a case only the open
region QABCO, the open curve QAB and the point
B can be realized.

We shall not give the detailed proof of these
statements. Suffice it to mention the following two
observations which are helpful: (a) Starting from
any given model, replacing 1 —S by o.(1 —S) leads
to a new model at nX, nI'. (b) Starting from any
model one can add a very large but very transpar-
ent wing. If the area of the wing is A and the value
of 1 —S on the wing is c, then fixing eA' but making
A- ~ would lead to no change in 0~ and 0 „but
possible finite addition to B.

1 1 2
n + +

2 2/0 3 —$0
(0 ($, ( I) .

The minimum (21) is realized by the truncated
parabola model of Table II at
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