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The Kroll-Wada formulation of the internal conversion of mesons into lepton pairs is modified by
taking into account the correction due to the effect of exchange of leptons. Single- and double-pair
decays, such as vr (K~, q} e+e y, K~(q) p, +p, y, n (KJ, g) e+e e+e, and Xz(q)

p, +p, LM+p, , are studied under the assumption of C P invariance. A spectral analysis is made,
stressing the importance of this exchange effect in the shape of the spectra. These kinds of experiments
are proposed as a clue to obtain knowledge about the meson-photon-photon vertices.

I. INTRODUCTION

Internal conversion of a neutral pion into one or
two electron-positron pairs (m'-e+e y and m'

- e'e e'e ) was first systematically studied by
Kroll and Wada'' in 1955. Their derivation was,
however, based on the assumption that one could
neglect the effect of exchange of electrons or posi-
trons, which is really non-negligible as was point-
ed out by the present authors in Ref. 3; we treat
the effect in this paper. Historically, the m'- e'e e'e decay was an interesting object in
view of the determination of the intrinsic parity
of the neutral pion, although it is a rare event in
fact. Now that the parities of the mesons have
been established, the decay processes of the in-
ternal-conversion type, meson- l jy and meson- lrlr with l=e or p, are attractive in the fol-
lowing respect: The analysis of the spectra of
such decay processes allows us to obtain knowl-
edge about the form factors of the meson-y-y ver-
tices. From this we know the interaction of the
photon and meson system. The momentum depen-
dence of the form factors becomes important in
the case of decays into muonie pairs, because
there is large energy release. As will be shown in
Secs. III and IV, owing to the propagators of the
virtual photons, the momentum dependence of the
vertices is neglected in the decays into electronic
pairs, where there is small energy release.

Throughout this paper, invariance under CP
transformations is assumed and K~ is regarded
as a CP-odd eigenstate. In the actual measure-
ment one could not, perhaps, explain the aspects
of Kl, - p.

'
p. p,

'
p. or K~-e'e e'e decay only by

taking the momentum dependence of the CP-con-
serving vertex into account, At the present status

of experiments concerning the well-known K~
puzzle, the vertices K, ,-y-y are consid-

ered as violating the CP invariance. The CP-con-
serving vertices alone induce a larger branching
ratio of the KL, - p.

'
p, decay than that of the actual

measurement. Hence the efforts to obtain knowl-
edge about the vertices of K»-y-y from the experi-
ments on the KI. ~-llll decays lead us to obtain
definite knowledge about the KI. —p' p. puzzle.

The deviation from the point interaction is seen
by speculating about the spectra of the decay pro-
cesses. So in this paper we stress the spectral
analysis of the theoretical prediction. The correc-
tion of the Kroll-Wada formula by including the ef-
fect of exchange of leptons and antileptons takes a
formidable aspect, In particular the integration of
the matrix element over phase space is quite com-
plicated. We evaluate this correction in the decay
width as well as in the spectral shape. The correc-
tion is small in the decay width, but one cannot
say anything about the exact shape of the spectra
if one takes the Kroll-Wada term only. The term
alone shows a sharp peak for small values of the
four-momentum squared of lepton pairs. There
is also, however, a broad plateau which cannot
be explained with the Kroll-Wada term. This pla-
teau was neglected in the analysis of spectra in
Ref. 5. Each area represented by the two curves
is equal. Up to now, nobody has taken up the lat-
ter broad shape. Therefore these aspects of ex-
change effect are important not only for merely
modifying the Kroll-Wada formula, but also for
obtaining exact knowledge about the meson-y-y
vertices. In such precise measurement as to de-
cide the momentum dependence of the form factors
or the ratio of CP-conserving and -nonconserving
vertices it must play an important role.
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II. THE DECAYS OF PSEUDOSCALAR
MESONS INTO TYCHO PHOTONS

I'(meson- y y) = If(04 0) I
'M/I6)( (3)

III. SINGLE-PAIR CONVERSION
OF PSEUDOSCALAR MESONS

This section treats the decays of the meson- Ll y
type. The processes were partly treated by one of
the authors (T.M. ),' so we briefly review the re-
sult and analyze the spectra. As the interaction
between photons and leptons is given by conven-
tional quantum electrodynamics, one easily obtains
the matrix element of the meson- I l y decay (Fig.
2). Summing over the helicities of the final lepton
pair, we have

dl'(meson- I l y) Mo.'~f(x', 0) ~' I
x'

x 12m' x
1

M.((,',*)(( '.-')"', (4)

where m is the lepton mass, and x' =4". Here we
note that the symmetry of the meson-y-y vertex

FIG. 1. Meson yy decay.

The basic interaction of a pseudoscalar meson
and two photons is taken as

H, {x)= (f/4M)c „„p,E"'( x)E~'( x)p( x),

where F"'(x}is an electromagnetic field tensor,
and P(x) is a meson field with M its mass. f is a
coupling constant when the two photons are on the
mass shell. But when the photons are off the mass
shell, it depends on the momenta of the two pho-
tons in the momentum representation. Generally
it depends on (P„—k, )' =—:k,', (P„ —k, )' =—k, ', and
(k, —k, )' (Fig. I). This last, however, reduces
to the linear combination of the first two'.

(k, —k, )' =2(k,'+k, -) -M'.
Hence the form factor has the form

f=f(kg', k2') ~

With the interaction (I) we calculate the decay
width of the meson- yy decay, taking into account
the fact that there are identical particles in the
final state,

FIG. 2. Meson-2Ey decay.

imposes f(0, k") =f(k", 0). The range of the variable
x is given by 2m «x «M.

Combining Eqs. (3) and (4) we have

dp(meson-I ly) 2o. f(x', 0) ' I x' '
dx 3w f(0, 0) x M'

where the conversion rate p is introduced as

I'(meson- l l y)p(meson- I /y) =—
I'(meson- y y)

By putting

f(k, 0) =f(0, 0),

namely, by adopting the assumption that the mo-
mentum dependence of the form factor be neglect-
ed, we can eliminate the coupling constant in Eq.
{5). In such a case we plot the decay spectra
dp(meson- I Iy)/dx for the various decay proces-
ses of the single-pair conversion. In Figs. 3(a)
and 3(b), we plot these results with the experimen-
tal values of Samios et al. ' From the plot we im-
mediately find that the contribution to the matrix
element comes, for the most part, from small
values of x. This, in turn, gives justification for
neglecting the momentum dependence of the form
factors for the decays into electron-positron pair
conversion, because it is considered as a smooth
function in the physical region and the electron
mass is very small. The remarkable agreement
of the experimental curve and the theoretical one
indicates that the assumption (6) is (Iuite reason-
abl. ' For the muonic pair conversion there is not
so definite a reason for neglecting the momentum
dependence. The mass of the muon is not small,
and one may not be convinced that the momentum
dependence of the form factor could not play a
role. In the muonic case there have been no ex-
periments, unfortunately. So if the experiment
were to be done and its values were to be on the
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FIG. 3. Decay spectra with respect to the variable x/M for the (a) ~0 e+e y, (b) K~ e+e y, and (c) X~ p+p y
decays. For the Xi -. p+p y decay [(b)] the values multiplied by 102 are plotted. Experimental values in (a) are taken
from Refs. 5 and 7.

theoretical plot with (6) in Fig. 8(b), one could con-
clude that one has the justification for disregarding
the momentum dependence. Otherwise, however,
one must not assume Eq. (6) and one should esti-

mate the form factor from the experimental spec-
tra. As such, the experiments on meson- p,

'
p, y

are desired urgently.
By integrating Eq. (5) using (6) we obtain

p(meson- LLy}=— ln (1 —-a +-a )+(1-a) (--+Ya+~a )
2o. 1 + (1 —a)'"

1/2 7 13 1 2

3w 1 —(1 —a}'i' s 2

where a = 4m'/M'. For w' decay we have Hl' (x) = (g/2M)F q, (x)F""(x)(f)(x), (8)

= 0.0118,r(w'- y y)

which shows remarkable agreement with the ex-
perimental value.

For single-pair conversion of the Kl, meson,
one would think that the vertex might be violated
under CP transformations. So one might add to
the interaction (1}

where Q(x) is a K, or Ks field. The interaction
H, (x) conserves CP invariance for Ks and violates
it for K„ the interactionH~(x) conserves CP in-
variance for K, and violates it for K,. In the ac-
tual decay of K~ and K~, some complicated as-
pects appear. The mesons K~ and K~ do not form
pure CP eigenstates,

Kg =CK1+K2
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TABLE E. Numerical results of the conversion rates
p(meson //y) = F(meson //y), l"(meson yy) for var-
ious single-pair conversions.

(a )

Decay modes p(meson —//y)

7( ~e e
Z s ~- e'e-y
E. s, r.

e e
PP7

1.18x 10 ~

1.59x10 '
4.09x 10 '
1.62x 10
5.54x 10

p

Ks =K» + EK2,

with

q= 2xIO 'xe "~~

and the terms smaller than and equal to &' being
neglected. There are two types of couplings for
each of K, ,- y y:

»

p

FIG. 4. Meson-llll decay. 3R, ~ comes from the dia-
gram (a), and5g& from (b).

p, is divided into two parts 3R» and +~; the former
comes from Fig. 4(a), the latter from Fig. 4(b).
The detailed calculation is stated in Appendix B
from which we have

However, this complicated situation does not af-
fect the final result that the decay spectrum is
given by the form (5), with f(k', 0) now being re-
placed by the function of f, , and g, , In this case
also the factdr due to the form factor, f(k', 0)/
f(0, 0), is replaced by I if one disregards the mo-
mentum dependence of f, , and g, , The detailed
derivation of this relation is seen in Ref. 6.

Hence the experiment on the decays of meson- lip is suitable for determining the form factors.
Table I gives the numerical result of Eq. (7). We
note here that the decay rate of K~- p.

'
p, y is

much larger than that of KL - p.
'

p, . In the latter
case, Clark et al, ' showed

1(Ki- p.
'

p. )

I (Ki - all)

(90%%u&j confidence level). '

2f, (P,+P )"(P,'+P')'
' ~ ""'(P,+P )'(P."P')'

&&&(P-)y"v(P, )u(P') y~v(P,'),
2f, (P, +P')'(P,'+P )
~ "" (P.+P')'(P,'+P )'

x&7(P')y" v(P ) N(P )y~v(P').

(9)

The decay width is obtained by

9R ~dC,

I"= I"» + I'2+ I'»2,

where d4 is the phase-space volume element,
The phase-space integration is performed in Ap-
pendix A 2.

Using Eq. (9) I' is divided into three pa, rts:

On the other hand, our calculation shows

~(Kz P l~ 'Y)
2 0XI0-7

r(K, - all)

».2». 2

I"„= 9g, 3g,*+9R,%,* d 4.

(lo)

using the world average of I'(K~-yy). "

IV. DOUBLE-PAIR CONVERSION OF A
PSEUDOSCALAR MESON

The decay matrix element 3R of the meson- ill I
decay is calculated by conventional quantum elec-
trodynamics with the interaction (I). The element

We must note here that ~%, ~

' integrated over the
whole phase space is identical with ~3R, ~

integrat-
ed over the whole domain:

I'» = I"2.

Here we introduce the conversion rate by the rela-
tions
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p = I'/I'(meson- yy),

p,. = I', /I'(meson- yy).

Then we find

p =2p~+ p».

Combining with Eq. (3), we can calculate p and p, .
The first term on the right-hand side is

2p1 dXl dX 2

nl
dye

n1 'fj2

1 y, 4m'
~y 4m

y, '+ y,
' 4m'(x, '+ x,')

where the definition of the new variables is men-
tioned in Appendixes A and 8, and

TABLE II. Numerical results of the conversion rates
for various double-pair conversions.

Decay modes

7l' e e e e
Kl eeee

p'p,

e+e e+e
e+e p+p

PP PP

2P1

3.46x 10 5

6.26x 10 5

1.42x10 '
0.997x 10 9

6,50x 10 5

1.99x 10 ~

6.73x 10 9

P12

-0.18x 10 ~

-0.35x 10 5

0
—0.051x10 9

-0.36x10 '
0

-0.50x 10 9

3.28x10 "

5.89x 10 5

1.42 x 10 6

0.946x 10 9

6,14x10 5

1.99x 10 6

6.23x 10 9

In the case of the K~- p, 'p, e'e decay, the situa-
tion becomes simpler. We have F» =0, and the
terms 4m'/x, ' and 4m'(x, '+ x,')/x, 'x, ' of the in-
tegrand of (12) are replaced by 4m"/x, ' and
4mm'(x, '+ x,')/x, 'x, ', respectively, where x,' is
the four-momentum squared for the muonic pair,
with m' its mass.

Following the same reasoning mentioned in Sec.
III, we can disregard the momentum dependence of
the form factors for the conversion into electron-
positron pairs. Then Eq. (12) just reduces to the
Kroll-Wada formula in the case of the m'- e'e e'e
decay. As was stressed in Ref. 3, Kroll and %ada
neglected the cross term p». This term expresses
the effect of exchange of leptons or antileptons. It
is obtained in Eq. (A6) in Appendix B. Using a
computer, we numerically calculate each term of
Eq. (11). In Table II we list each term of Eq. (11)
for various double-conversion processes with the
momentum dependence of the form factor being
neglected. As is seen immediately from Table II,
the contribution of the cross term is small by a
factor ~~o or so compared with the direct (Kroll-
Wada) term. Notwithstanding its smallness, this
correction term is important, "because the main
purpose of measuring the decays of the type

of internal conversion is to try to understand
the meson-y-y vertices. For example, the
measurement of the K~- p'p e'e and/or K~
—e+e e+e decay informs us of the K~-y-y vertex:
how much its vertex is violated under the CP
transformations. This in turn influences the rate
of the K~- p. 'p, decay. In such precise deter-
mination of the vertex, the correction term should
not be disregarded. The discussion about the C2'-
conserving and -nonconserving interaction is not
so simple in the case of double-pair conversion as
in the single-pair conversion of Sec. III. This at-
tractive problem is set aside until the future.

Henceforth we take the form factor to be an on-
shell coupling constant and calculate the spectra
of the meson -l l l l decay. This is done by fixing
a special variable and integrating over the re-
maining variables in Eq. (10). We must note here
that although the contribution of ~3g, ~' and ~3iI, ~'

to the decay width is the same, their contribution
to the decay spectrum is quite different as long as
the remaining variables are integrated. The Kroll-
Wada term only is insufficient to analyze the spec-
tra. In Figs. 5-7, we plot the decay spectra with
respect to the variables x,/M, y„and Q for vari-
ous decay processes Each c. ontribution of (II, )',
~II, )', and3g, II(+ 34II,* is also plotted, as well
as the total decay spectra which can be measured.
Remarkable is the fact that the (3R, ~' contribution
shows a sharp peak for small x„and the ~34~'
contribution shows a rather broad plateau. This
apparent difference is due to the phase-space in-
tegration, though the area of the spectrum is just
the same in each term. The interference between
these two is what the contribution of 9R,SR,*+SR,SR,*
shows. Adding the three contributions we have the
resultant decay spectrum.

There has been an experiment concerning the
m'- e+e e+e decay. Samios et al. ' analyzed the
decay spectrum. But, unfortunately, their anal-
ysis is quite misleading. They assumed the condi-
tion
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In the case where this condition did not hold, the
pairing which gave the larger value for the matrix
element was used. By such a procedure they ana-
lyzed the spectra only with the Kroll-Wada term.
But, evidently, this analysis was valid only for
small x, . Except in that region, one could not say
anything about the spectrum. Now we cannot em-
ploy their results of the decay spectrum. We do
hope that some experiments of this kind will be
done in the near future and analyzed, taking the
above points well into account.

We now discuss the form factors. If the experi-
mental curves lie on the theoretical ones shown
in Figs. 5-7, we can take the form factor to be an
on-shell coupling constant:

f(F1,A2 ) = f(0, 0) .
This would be the case for the electronic case,"
because near the threshold dp/dx, shows a sharp
peak. Moreover, we have the fact that the case of
the m'-y-y vertex with one off-shell photon allows
us to have approximately a constant form factor.
In muonic conversion nothing could be said about
the form factor. There has been no experiment in
this case. The threshold value of x, is large
(equal to 2m„), so it might happen that one could
not replace the form factor by a coupling constant.
Hence the spectral analysis of the decays deter-
mines the form factors, or in other words, it
determines the meson-y-y interaction.

V. CONCLUSION

violated under the CP transformations, especially
when the K, ,-y-y vertex does not conserve CP
invariance, the most interesting experiment would
be thaton E~-e+e e'e .

Disregarding the momentum dependence, there
are four coupling constants:

By analyzing the spectra of the K~- e'e e+e de-
cay with the four parameters f» and g», we

know how much the CP-conserving and -noncon-
serving interactions are mixed. This determina-
tion of the K, ,-y-y vertices allows us to obtain an
estimate of I (I(.~- p'g )

The detailed analysis of the case where the ver-
tices are violated under the CP transformations
is quite an interesting object and will appear sep-
arately. Anyway the experiments on these single-
and double-conversion decays are needed quite
urgently.

APPENDIX A: PHASE-SPACE INTEGRATION

In Appendix A we treat the phase-space integra-
tion for the decays of (a) meson- I ly and (b) me-
son- l l l l. In the whole calculation we take the
meson rest frame P„=(M, 0).

1. Three-Body Decay (Fig. 2)

The phase-space volume element d4 is given by

The experiments on the decays of the meson- l l l l type are important in the following re-
spects.

(a) In the electronic double-pair conversion of
w'-e'e e'e and g-e'e e'e, we can check the
interaction of the form (1). Here we have good
reason to disregard the momentum dependence of
the form factor.

(b) In the muonic double-pair conversion of q
—p, +p. p+p. and q- p, +p. e'e, we can estimate
the momentum dependence of the form factor.

(c) The decays of R~ - e+ e e+e, E~ - p+ g p,
+ g,

and K~- p, 'p, e'e are most attractive. If the in-
variance under the CP transformations holds, the
momentum dependence of the form factor for K~
—p, +g p.+p, and K~- p, p, e'e canbe estimated
from the experiments. From the form factor we

can calculate the decay width of E~- p, 'p. via the
two-photon intermediate state. Hence we have
definite knowledge of I'(K~- )((, 'p ). At the present
time the estimate is done theoretically with re-
spect to the lower bound. If the theory were to be

P+d P- 0 0 0

(2 )'4Mp'p'u'

We transform the variables p+, and p into lql,
X, Q, and P by the following relations:

p, = q+ —,'(I + A,)P,

p =-q+-,'(I —A.)P,
q. P =0

and P is the azimuthal angle of q. Then we im-
mediately obtain the relation

d'P, d'u = llqllP ldlqld&dyd'&

and moreover we have

0 0

qdq5(p++p +ko- M)= +~~

where

pO pO +pO
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The range of the variable X is obtained by the re-
quirement Iq I2 ~ 0, where by a straightforward
calculation

We have finally

m'
I P

I
'd

I P I dxdydn
8(2(()2MPO

with dQ the sobd-angle differential around the P
vector.

2. Four-Body Decay [Figs. 4(a) and 4(b)j

In this case we transform the integration vari-
aMes p+, p, p,', and p' by the following relations:

p+ =q+ 2(&+}()P1

p,'=q'+2(~+( )P',

p =-q+ —2'(1- }()P,
p' =- q'+ -,'(1 —(1)P',

q P=O,

q/ ~ PI 0

Then we immediately obtain as before

d'p+d'p = ~2 Iql I P Id lql d}(d@d'&,

d'P'd'P' = 2 fq'I I P'Id iq'I d}dyd3&'.

The phase-space volume element d4 is calculated
using the conventional technique:

12 4pOpO 0 0 (2~) 8 (P+ P- P+ +P— PN)
Cf p+d p d p+d p 4 (4)

2M2g 4pp p' p'

d'Sod'Z'V"(Z+Z'-Z ) P' P-d"(p +P -Z) P' P-&("(P'+P'-&')
8M(2(()' + Af po po P++ -

pro~i
o +

where the factor 4 is added because there are two sets of identical particles in the application to the final
e'e e'e or p.+p p, +p, state.

1
2

P+ P- g(4}(p +p ff)po po +

fq I I Pfd fq I d}dQd'&
~( }

pO po P+ P-

TIKI
o dA. ,

with K =p++p =P and K'=p++p' =j'.
d dP+ P- (}(4}(p + p If )2 pl opjo ++

((IK I

~g o dl(L

with K'=p++p' =P'=-Pand K"=p,"+p"=P". Moreover, we have

d'Zd'Z d'(Z+Z -P„)" = dx,'dx, 'd'Zd'Z''d"(Z+Z'-P„)~(x, '-Z')~(x, '-Z")~"

. IPI . . .= 7T de dX2

where

[x,'+x,4+ ~-2x'x '-2x2~'-2x 2~2]"I
2M

Hence we have

P 3

d4 INI =,
(

)-, dx, 'dx2'd}(d}1 dpd((1' 0 „I%I

The range of the variables A. and p. is determined by

Iq I' ~ 0 and Iq'I' ~ 0,
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where

(q) =-,x, 1- „x —m,2 (A4)

~q') =-,x, 1- „p, —m .+( (AS)

Of course when one applies to the K~(q}-e+e g'p, decay, one may remove the —,
' factor and replace the

m' in Eqs. (A3)-(A5), for example, by the respective m, ' or m„'.

APPENDIX B: MATRIX ELEMENT FOR THE MESON ~ llll DECAY

The basic interaction we take for the meson-y-y vertex is

If (x) =(f/4M)e„, ,F""(x)&p '(x)P(x) .
With this interaction we write down the matrix element, which is divided into two parts. Each of them cor-
responds to the contribution from the diagrams of Figs. 3(a) and 3(b), respectively.

9R SR/ + 2m2

+ + +

„... (p', p, .(p', ,p ). (P')r" (P.)' (P )r' (P').

We calculate ~3g~, summing over the helicities of the final leptons and antileptons. In this calculation there
appears a trace of the product of eight y's, which induces 105 terms. So it is very complicated. After all
calculations, we have

2 1II I 4~2 I %2/ I I )2 P vp 0 cy2g2(P+ P ) (P+ P-) (P+ P ) (P+ P )

x [(m'+p p )(m'+p'p')g""g»-(m'+p p )g" (p'&p' +2p' P2'&)

—(m'+P! P') g"(P,"P"+Pl P"}+(P."P"+Pl P")(Pl 'P" +P"P'-'))

NI, II*, 3t43gI 2 2 I m4~2 (P +P )2(pi +pl)2(p +pl)2(pg +p )2

x eq, pod Syqg»(P4. +P )"(p++p') (P4+P'-) (P+'+P-)

x [(m'+ p.p )(O'"O'"-pl p'")+(m'+O' p-')(p".p -p:p"}- (m-'- p-pl )(p".p-'"'p". p'-")

( '-P, p,')(P" O'".P P'")-( "P,'P )(P!O'"-P,"P'"}
+(m'+P. P'}(P"O'"-P"p'")].

(3II2(' is given by the replacement of p p' in (3RI )2.
The spectra are not studied with respect to the original variables of p, p, p,', and p', but with respect

to the new variables which are obtained by transforming the above variables by the relations (Al}. So we
write down the matrix element in view of these new variables.

2 4p X &2
P2 'x 2x 2 x 2~2 x 2~q~2+I ~2 2 2

Xg X2

2 p2
2 ~23gl m2 (p p )2(p p )2 (( +P+P )(q q q )+ (m P+P )(q q q )

+-,'(m'-p p')[(X+ p, -2)q q'+(p, +1)q2+(x+1)q"]
+-,'(m'- p, p,')[-(X+ i1+2)q q'- (p, —1)q' —(X-1)q"]
+ —,'(m'+p p,')[(-X+ p, —2)q q'- (g —1)q'+(&+1)q"]
+ -,'(m '+p,p' )[(X —p, —2)q q'+ (i1 + 1)q ' —( A, —1)q"]/,
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lÃ(, I'=(. . . , (—,'(m'+(, (')(m'+p'p )[4(t( —q')'+(z g)'p']
——,'(nz'+ p p,')[4(qxq')'+ P'((l+ p}q —(l+ X}q')']
——', (m'+ p„p ') [4(qxq')'+ P'((l —Iu)q —(l —Z)q ') ']+ 4(P *qxq')'],

where x, =I', x~'=P", and

p2

p2
p p' =q q'+ — (PP') l—,Ap, ——

()—,P M,~o~g 0

P+P- 2 1

p 1
p p 2xp —m .

tra. Note that although lgg, l' and I3$2I' contribute
equally in the decay width, i.e.,

p' is given by Eq. (A2). Finally we transform the
variables A, and p. 1nto y~ and p2 as follows:

3'~ =
p 0 ~

~ X2
= ~I 0 &

With respect to these variables (x's, y's) and
(the angle between q and q'), we analyze the spec-

their contribution to the shape of the spectra in
these variables defined previously is quite differ-
ent. For example, the contribution from ling, I'
shows a sharp peak at a small value of x„and that
of ISR, I' shows rather a broad plateau in x„with
the same area.
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