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A resonance-dominance picture of reactions is shown to lead to threshold enhancements in
angle-integrated cross sections under a random-sign or oscillating-sign condition for coupling constants.
Formulas are derived for threshold-enhanced reaction rates. Application is made to several reactions and
compared to measured cross sections.

I. INTRODUCTION

a+b- c+M, M-d+e, (A)

a+b M, M c+d. (8)

In the above a and b are stable particles and c, d,
and e are stable particles or single resonances
with mell-defined quantum numbers. The reaction
product M is a hadronic state of mass M which is
in general a superposition of resonances with dif-
ferent quantum numbers. Diagrams corresponding
to reactions (A) and (8) are shown in Fig. l.

The reactions above include many cases where
threshold enhancements of substantial proportions

Threshold enhancements are seen in many had-
ronic reactions. A description of these enhance-
ments in production processes has recently been
given' in terms of an incoherent sum of a statis-
tically dense set of resonances with partial widths
which are inversely proportional to the density of
resonances. From duality, ' we have learned to ex-
pect that resonance-dominated amplitudes have
high-energy tails, characteristic of Regge behav-
ior, decreasing with increasing s as an inverse
power of s. The threshold enhancements on the
other hand are characterized by much more rapid
decrease with increasing s, after the initial rise
from threshold.

An example of a reaction showing Hegge behav-
ior is PP- nn. The reaction PP- ~'m, on the oth-
er hand, falls exponentially with increasing s up to
s =8 GeV'. This reaction is of course exothermic
and so the rise from threshold is not seen. In this
paper an explanation of the different behavior of
these reactions will be given.

We examine here classes of reactions with a.

view to understanding under what conditions strong
threshold enhancements are present or absent.
Specifically, we consider reactions of the types

are seen. In fact, threshold enhancements are
seen generally if a reaction fits into class (A).
Examples treated in Ref. 1 are the strong enhance-
ments in the region of the A„A„Q, and I. struc-
ture and N* enhancements. For reactions of class
(8), however, strong enhancements may or may
not exist. Reactions of type (8), we will see, will
not show strong threshold enhancements in elastic
reactions or reactions which are simply related to
elastic scattering amplitudes, say, through sym-
metry considerations. For example, in rP scat-
tering the charge exchange reaction ~ P- m'n has
an amplitude simply related to m p and 7i'p elastic
scattering by charge independence. Another reac-
tion not showing strong enhancement at low ener-
gies is PP nn, which is simply related to PP and
nn elastic scattering by charge independence.
More generally, using SU(3) symmetry one can
relate' a wide class of amplitudes to the nondif-
fractive component of elastic scattering of pions
from nucleons. All these related amplitudes do
not show strong threshold enhancement.

On the other hand, the reaction Pp-7i'7l is not
simply related to forward elastic scattering, and
this reaction, as well as some related amplitudes,
shows a strong threshold enhancement. We will
relate this behavior to randomness of sign or rap-
id-sign oscillations of the ratio of the coupling
constants at vertices 1 and 2 in Fig. i.

There is of course no fundamental difference be-
tween reactions related to elastic scattering and
others. The differences which exist are merely
quantitative, not qualitative. Generally some en-
hancement near threshold exists.

In Sec. II we present a picture of reaction ampli-
tudes in terms of resonance superposition. %'e

show the relevance of coupling-constant oscillation
to strong threshold enhancement. Section III con-
tains formulas for threshold enhancements ob-
tained from the considerations of Sec. II and the
statistical bootstrap. Using these formulas, we
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compare with data for a number of reactions of
type (A) and (8). Conclusions are given in Sec. IV.

II. RESONANCE-SUPERPOSITION PICTURE
OF REACTION AMPLITUDES

We consider a class of reactions

which proceed entirely through s-channel reso-
nance formation. Then, neglecting spins, we

write the amplitude for such a process as a sum
of Breit-Wigner amplitudes:

f P, ,'„' =-—Q(2l+I)I', (cose)Q + 22

(2)
where y",b is the square root of the width for elas-
tic scattering of a by b for the resonance of mass
Ej, with angular momentum /. I"j' is the total
width of the level Ej„k and E are the incident
c.m. momentum and energy, respectively. The
square root of the partial widths, y",„may be
either positive or negative, being coupling con-
stants.

We have then, for the integrated cross section
for reaction (1),

nances is high enough that we can replace the sums
in (5) by the integral in (5'). Here p(E) is the den-
sity of resonances of all angular momenta of mass
E. According to average duality principles' the
amplitude f(E, 0) at high energy has Hegge behav-
ior with

f(z 0) E2 (0)

where n(0) is the intercept of the highest Begge
trajectory that can be exchanged in the t channel.

The condition (5) is satisfied to within powers of
E if

I'.,(E)~ ——.
p(z)

'

The exact power-law behavior of (5) is related to
the energy dependence of I'„«.

We now return to reaction (1) not including the
elastic scattering case. We consider the sum cor-
responding to terms j = m in formula (3').

Again converting sums to an integral, we have

lT I', b I",djl jl
ab, ed y2 Q ( ) Q (E E )2 1(P jl)2

I,o (E~)i"„(E~)P(z,)dz~
P (z —z, )'+-,'r '(z, )

and for I" small enough

ab cd ab cd

= „—,P(2l+ I)
l

j j

j l jt ml ml
~ah+cd +ab ~cd

(E Eq( +2LI yt)(E E — 1Imt)'
t

o...„=&—, ~(Z) r„(z)r,„(z)P(z).

We make the approximation in (8') that the inte-
grand is peaked at the peak in the Breit-Wigner
component. This is exact in the narrow-width ap-
proximation. It is expected to be a good approxi-
mation, as the width of a threshold enhancement'
is typically 600 MeV whereas I" is typically -rn„.

+ terms with j 4 m . (3')

I& (3'), I', I,
= (y~&)' is the partial width for elastic

scattering of a by b through the resonance level
E,

If reaction (1) corresponds to the resonant part
of elastic scattering, i.e., if y, 'b =y', d', then

I jl
f '"' = ——Q(2l+1)Q—ab, ab 12' jfjl 2

r. (E,)p(z, )dz,
2k E -Z, +-„.'iI'(E, )

'

(5)

(5')

where we have assumed that the density of reso-

1 jl +3

Then in the forward direction we have an amplitude
of the form

FIG. 1. Two types of processes in which threshold
enhancements are seen in the distributions in the energy
variable M. In type (A) resonances of mass M are pro-
duced by Pomeranchukon or Regge exchange and sub-
sequently decay into a two-body final state. Type-(8}
processes occur when resonances are formed and decay
into the d+ e channel.
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In formula (8') the I'(E) are average values of
the I'(E;) at E; =E. To the extent that widths and
spacings fluctuate from their mean values, there
will be, in addition, a fluctuating component to
(8'). Using (7) and assuming that the total width
is a slowly varying function of E, we find that the
contribution of terms with j = m to 0„„is approx-
imately

I
o' ccabed , p(E)

'

Provided the terms with jW m are not important,
,we thus find that reaction (1) will rise from
threshold and then fall as p '(E). According to
the statistical bootstrap model, '

so that one finds a cross section which falls very
rapidly according to (9) after the initial rise from
threshold.

Whether or not this behavior dominates then de-

pends on the relative strength of j=m and jt m
terms in Eg. (3'). As discussed in the Introduc-
tion, those reactions which are simply related to
elastic scattering will have strong contributions
from jW m terms which will lead to Regge behaved
amplitudes as in Eqs. (5') and (6). The reason for
this domination of j0 m terms is that in an energy
interval from E to E+dE, the number of j=m
terms is proportional to p(E) while the number of
jx m terms is proportional to p'(E). In cases
where cancellations do not occur among the j@ m
terms, the extra power of p(E) leads to power be-
havior instead of a threshold enhancement. How-
ever, in other cases, e.g. , PP-mm, there is no di-
rect relationship with forward elastic scattering.
Here, there is a strong threshold enhancement and
the jW m terms must therefore contribute relative-
ly little. This requires a randomness of sign be
tween the couplings y",, and y~„' as ue go from
resonance to resonance, ox at least vapid oscil-
lations in the relative Sign. Random sign in re-
duced widths is well known in nuclear reactions. "

III. APPLICATIONS TO PRODUCTION PROCESSES

According to the above, strong threshold enhancements may occur in reactions which can be repre-
sented by a sum of resonances, except elastic scattering and those reactions which are related to elastic
scattering by symmetry considerations. First consider type-(A) reactions of the form a+b- c+M, with
M- d+e. Reactions of this type are depicted graphically in Fig. 1(a). The cross section for these pro-
cesses is'

gS~ r gX lft& g r' g I,
' mr

dtR(s, t, M) Q [(2l+1)(2l'+I)]' a P dQ

(11)

Here y, „' R'" is the magnitude of the exchange amplitude and s is the square of the center-of-mass ener-
gy. t is the momentum transfer from a to M. P and 0 are the momentum and angular coordinates of par-
ticle d in the rest frame of M. y, „' is the coupling constant at the vertex 1 in Fig. 1(a) and ydd', is the cou-
pling constant at vertex 2. The coupling constants may be positive or negative. Let us assume that the
terms with jx m in Etl. (11)have random signs and there is therefore much cancellation. The sum will
then be dominated by the terms with j = m. Doing the angular integration and dropping terms with je m

gives

(12)

or, replacing the sum by an integral and perform-
ing the sum over l,

da' 7T

dM' A(s, m, ', m, ')

l(x dtR(s, t, M)
dM A, ms, am a

d M, p FazI'dap(M')
(12)

M (M-M')'+-,'I" '

Approximating the integral over M' by its value
at the peak of the Breit-signer form gives

4P I'„(M)i „,(M)p(M)
1(M)

(14)

I'~, is the partial width for the d +e channel. In
order to get an explicit expression for I'„„we
note that the sum of partial widths is equal to the
total width. We have then
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1(M) = p —,II 'dM, p(M, )f(M- gz, )
0=2 1 l=l

~(nr)-=, , Ja~( ~., ,M)a(ns, m. , ~)
1

X s, m, , m(,

x jj'(Z V()1'(P» M» . . ~ Pa ~ M(,}. 2M
Af2&& 1

(20)

The sum is over 2-, 3-, 4-, . . . body final states.
p(M, ) is the density of single-particle states at
mass M( and I ( p» M». . . , p&, M&) js the partial
width into the k-body channel labeled by
P„M„.. . , P„,M~ . The factorial is needed so
that each final state is counted only once. The
choice for I'(P„M„.. . , P„M„)is motivated by
the statistical bootstrap' in which p(M) satisfies
the equation

p(M( g„', '
=ll J d (dM, 'p(,M, (s(M ZE,)-

&& ~'(Zp(),

where (2v)'V is the hadronic volume. I et us now
write

V' ' II(2E, )., ~(M)
I"(Px Mi Pa M(,)=

p M)

(17)

Then from (14), (18), (19), and (20),

da 2 vt VX'"(M', m, ', m, ') [M'- (m, ' —m, ')']
dM' 1(M)m' p(M)

(21)

This equation with P and I" treated as constants
mas used in Bef. 1 to describe experimental dis-
tributions. Good agreement was obtained for nu-
mer ous reactions.

%e now turn our attention to processes of the
form a+6-c+d. As was shown in Sec. II, there
is no sizeable threshold enhancement in elastic
scattering because all coupling constants appear
squared and therefore strong cancellations do not
occur. The coherent resonance sum gives Begge
behavior, as is mell known. For amplitudes re-
lated to elastic scattering by symmetry consider-
ations, one mill also have Begge behavior. lf no
relation to elastic scattering exists, the diagonal
terms can dominate. Then from Eqs. (8') and (18),

2" ["-(m,'- m, ')'][s'-(m, '- m, ')']
o(s) = ~, S

VI'(M) M4- (m~' —m, ')'
le 0 ((P 8 (M} M

%e do not know the precise form of the coupling at
vertex 1 involving the virtual exchange. It will be
of the form

r.„(M,m. , t) = a(M, m„ t)
pM (19)

where a(M, M„ f) is the continuation of
p(M)I', s(M, m„m, ) from E(I. (18) to virtual mass-
es for Begge exchange. For Pomeranchukon ex-
change, there is no straightforward method for ob-
taining a(M, M„ t)

In 0 e case of diffractive dissociation,

The product is over the energies in the rest frame
of M of the yarticles in the final state. Substituting
(17) in (15) and using (16}gives I'(M) = X(M). From
(17) we have

V I
p(Ms)

' (22)

This formula is compared with the experimental
data for the reactions P+P- w" +w (see Hef. 7)
and P+P- p + v' (see Hef. 8) in Figs. 2 and 8.
Good agreement with the data is obtained in each
case. In Fig. 2 the data for p+p- n+n are also
plotted. Since this reaction is related to pp and
nn elastic scattering by isospin invariance, it is
exyected to have a high energy behavior given by
Hegge exchange. The curve through the data is
c(s) - s ', as expected for p exchange with a ~(0)

I
2

It is interesting to note the tmo data points at 5
and 8 QeV in the reaction P+p- p +m' of Fig. 3.
These points are consistent with a high-energy
tail following a power law in s consistent with bar-
yon Begge exchange. This mould come from the
terms in (8) with jt m if there were some nonran-
dom contribution, i.e., a, certain amount of coher-
ence. Since this reaction is related by line rever-
sal to m'+p- p'+p at bgcAseard angles, one might
get some idea of the size of the high-energy Regge
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FIG. 2. Cross sections for the reaction pp nn {4)
and pp 7r+n (0) are shown as a function of energy,
and their behaviors are very different. The curve
through the data for pp nn is given by 5P~, ~, which
is asymptotically suggestive of p exchange. Data for
pp m'+7( are compared with Eq. (22) in the text, which
is inversely proportional to the density of states and
characteristic of threshold enhancements. The theoreti-
cal curve is normalized to the data.

FIG. 3. Data for the reaction pp p x' are compared
with Eq. (22) in the text. The rapid falloff of the data
from 1 to 2 GeV/c is explained by the threshold en-
hancement mechanism. The high-energy points at 5
and 8 GeV/c are suggestive of a small contribution from
coherent interference of different resonances, as ex-
plained in the text. The data are essentially isotropic
except for the two high-energy points. The theoretical
curve is normalized to the data.

(a)

FIG. 4. Dynamical mechanism for the reaction pp @+@ +anything is depicted graphically. A massive baryon is
produced by Pomeranchukon exchange at vertex 1 and decays into a massive vector boson plus (a) a baryon or (b) a
baryon plus other particles. The vector boson then decays by "generalized vector dominance" into a p+p pair.
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tail assuming exchange degeneracy. Similarly,
one can relate P+P- r +r' to backward ~'p elas-
tic scattering. '

Several reactions of class (A) were considered
in Ref. 1. These include the threshold enhance-
ments in the A„A„Q, and I. regions. An exam-
ple of an extension to the type of reactions in class
(A), a+5-c+M, M-d+anything, is given by p+p- p. 'p, +anything. The mechanism for producing
p,
'

p, pairs is depicted graphically in Fig. 4. At
vertex 1, a massive baryon is produced, which de-
cays statistically into a number of constituents. It
is assumed that the pairs arise from the decay of
vector bosons of mass mv and that this coupling is
a slowly varying function of m v. There will be a
modification in the decay rate from that used in
deriving Eq. (21) if the masses of the decay prod-
ucts are large enough (above -1 GeV) and one con-
siders all resonances produced at that mass. The
decay rate &u(p„m „.. . , p, , m, ) will be the partial
width given in Eq. (17) multiplied by the densities
of constituents,

-33—

—34—
0

O -35—

be
Cl

-36--

—37—

l I I

I

aB = 29.5GeV/c

(u(p„m„. . . , p, , m, ) =p(m, ) ~ ~ ~ p(m, )

x r( p„m „.. . , p„,m, ) .
(23)

For the graph of Fig. 4(a) one calculates

do' —= constant x F«(M, m «)dM .
d~v

V

(24)

dg/dM is the cross section for producing a fire-
ball of massM, and

—39 1 I I I I I

0.0 2.0 4.0 6.0

rn„(GeV)

FIG. 5. Experimental data at 29.5 GeV/c for the
reaction pp p+p +anything are plotted against the
theoretical distribution given in Eq. (25). The solid
curve is from an exact treatment of the graph in
Fig. 1(a) and the dashed curve is from an approximate
treatment of all terms. The shape is the same in both
cases, though the scale is different. Effects of tmm

which would give some energy dependence have not been
included in the calculations. The theoretical curves are
normalized to the data.

20

10—

LU

LU

2.0

MASS ( ~ ~') GeV

FIG. 6. The ur71 mass distribution for the reaction 7td ((de)d is compared with Eq. (21) in the text. The theoretical
curve is normalized to the data.
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FIG. 7. Possible contributions to the reaction 7rd (4m)d are depicted graphically.

r 0 S -leap illy
(25)

where

Z(x', y', z') =x'+y'+z'-2x'y'-2x'z' —2y'z'.
pv(mv)p(M- mv)

(M)
(26)

Taking p(M) =AM 'exp(M/m„) (see Ref. 4) and
the density of vector bosons p„(m «)
=cm~ 'exp(m~/m, ) (see Ref. 10), the distribu-
tion in the p, -pair invariant mass nz~ has been cal-
culated. Comparison with experimental data" is
given in Fig. 5. The higher-order terms of Fig.
4(b) have been estimated in several approximations
and they do not alter the shape of the spectrum.
For example, if one neglects momentum conserva-
tion in the statistical bootstrap, one readily shows

which is to be compared with E|l. (25). The form
for do/dm~ resulting from this approximation is
also shown in Fig. 5 and agrees closely with that
obtained using Eq. (6).

Finally we consider the class-(A) reaction v+8- 4z+d. Almost all the reactions of type (A) con-
sidered in Ref. 1 involved Pomeranchukon ex-
change, which is forbidden in this case. Since
this reaction is partially (d exchange, the r +d- vm+d portion of the data is of interest because
it at least partly involves (dr elastic scattering

20

No co

nn r
t

1.2
I I

I

1.6

MASS ( 4n ) GeV

I

2.0

FIG. 8. Data for the reaction md (4m)d with no cu are given. Though no fit is given, the broad distribution seen may
be explained by some combination of the graphs of Fig. 7.
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with a virtual ~. If the sign correlation between
the coupling constants at the (d~ vertex and the
virtual ~~ vertex were the same as in elastic scat-
tering, the distribution in the +& invariant mass
would show no strong threshold enhancement ac-
cording to the results of Sec. II. A threshold en-
hancement would appear if this sign correlation
were to be lost as the + mass moved off shell.
There is clear evidence for a threshold enhance-
ment„ the "J3 enhancement, " as seen in Fig. 6.
The theoretical curve is calculated using Eq. (21)
and compared with the experimental data. "

The four-pion distribution with no (d may also be
calculated using the decay matrix in Eq. (22). The
several branchings which must be considered are
shown in Fig. 7. All of these contributions have
been calculated, "and the distributions in M, from
the graphs in Fig. 7 are broad and relatively Qat.
The experimental data shown in Fig. 8 (see Ref.
12) have this same broad, flat behavior, in con-
trast with the rom mode.

IV. CONCLUSiONS

We have presented a picture in which resonance
dominance produces threshold enhancements in the
cases where coupling constants have random signs
or at least rapid sign oscillation. To the extent
that there is some coherence in the summed Breit-
Wigner amplitude, one can expect a high-energy
tail with Regge behavior. A Regge tail of some
magnitude may be expected for all reactions which

permit t-channel Regge-pole exchanges. Certainly
for those amplitudes related to forward elastic
scattering by symmetries this Regge tail is the
dominant behavior. Reactions like PP- Z'Z and
backward K P scattering, which do not allow non-
exotic single exchanges, may have no high-energy
inverse-power-law tail, or perhaps a high-power-
of-s tail characteristic of two or more Regge ex-
changes" (Regge cuts) or of exotic exchange —if
exotic resonances exist.
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