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We suggest an approximate chiral SU(4) x SU(4) symmetry for the strong Hamiltonian with
the vacuum only SU(3)-invariant in the symmetry limit. Two exact sum rules are obtained.
Within this scheme both chiral SU(2) x SU(2) and SU(3) are good symmetries.

In recent years the group SU(4) x SU(4) has as-
sumed importance in several different theories
of elementary particles. ' ' Among the theoretical
motivations for considering this group, it is worth
mentioning the following: First, there exists the
possibility of incorporating a quark-lepton sym-
metry by regarding the four basic leptons as a
fundamental representation of SU(4). Then, in
recent attempts to include hadrons in unified the-
ories of weak and electromagnetic interactions,
SU(4) has been introduced in order to overcome
problems of renormalizability and to avoid sizable
strangeness-changing (hS = 1) neutral currents.
In addition we can try to use this larger group to
shed light on existing ideas on SU(3} and SU(2)
x SU(2) symmetries of strong interactions. In this
way we may hope to open up the possibility of an
integration of symmetries of strong interactions
with renormalized theories of electromagnetic and
weak interactions.

However, experimentally, an SU(4) theory re-
ceives little confirmation, mainly because the ex-
isting particles fit into multiplets of SU(3) rather
than SU(4). Indeed, there has been only one known

event to suggest the existence of a new particle
with a new quantum number, namely the observa-
tion by Niu et a/. ' in cosmic-ray showers; they
suggest that this particle (assuming it to be a me-
son) decayed into 7( (7' and had a mass of 1.I8 GeV
and a relatively long lifetime of 2.2x 10 ' sec.

Previous attempts have been made to regard
SU(4) as a symmetry group of strong interactions. '
But in a straightforward generalization of SU(3}
other difficulties arise, for instance with the vec-
tor-meson mass formula, and these appear over
and above the multiplet structure. The former
problems can be eliminated' but the main problem
of the SU(4) multiplets is a serious drawback un-
less many new particles are to be discovered.

We suggest that these difficulties can be over-
come by still taking SU(4) x SU(4) as an approximate
symmetry of the strong Hamiltonian density, K,
but allowing the vacuum to be symmetric only under
SU(3) in the symmetry limit. Thus our fundamen-
tal assumptions are as follows:

//san -Qp+ cQS+6Qj5~ (2)

where the u& together with v& (j = 0, 1, . . . , 15}are
the scalar and pseudoscalar densities transforming
as the (4, 4)+(4, 4) representation of SU(4) x SU(4),
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where i =1, . . . , 15 and j, 0=0, 1, . . . , 15. The co-
efficients f,» and d(» are listed in Table I. (v)
We can use soft-meson theorems, so that for our
Goldstone bosons in the theory the mass-squared
matrices are given by'

f,f, '„=-(0I[e,",[e,", ~.,ill»
(no sum oni or j), (4)

F, F,M'„=-(0~[q', , [q,', X„]]~0)
(no sum on i or j), (5)

where in Eq. (4) i, j = 1, . . . , 15, and in Eq. (5) i,j
=9, . . . , 15, and f, and F, are the appro. priate me-
son decay constants. (vi) We adopt the following
particle assignment: p». . . , p, are (( and K; (((«k

and p„mix to give q and X(958); pk, . . . , p» are
$ and F„ the isospin doublets from the new triplet
and antitriplet; P» and p(4 give X and X, the iso-

(i) K =Xo + cK g(( «

where X, is the SU(4) x SU(4)-symmetric part of the
Hamiltonian density, and X» the symmetry-break-
ing part. (ii) In Eq. (1), e is a small formal pa-
rameter and we assume that it is sufficient to work
to first order in e for the purposes of checking the
theory. (iii) In the limit of chiral SU(4) x SU(4)
symmetry (e-0) the vacuum is taken to be only an
SU(3) scalar. Thus the full chiral group is real-
ized with SU(3) multiplets of particles and a pseu-
doscalar octet, triplet, and singlet (P,.;
i = 1, . . . , 15), and a scalar triplet and singlet
(}I(,' i =9, . . . , 15) of Goldstone bosons. ' (iv) For
X» we take the simplest generalization of the
model of Gell-Mann, Oakes, and Renner' (GMOR),
namely,
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spin-singlet parts of these triplets. For the scalar
mesons we assume that y», the SU(3)-singlet sca-
lar Goldstone boson, mixes with the eighth compo-
nent of an octet of scalar bosons (y„.. . , x„which
are not Goldstone bosons) to give the physical
q„(S*) and e particles. The remaining seven par-
ticles in this octet are m„and I(..

By virtue of assumption (iii) above, u», a,s well
as u„has a nonvanishing vacuum expectation val-
ue to zeroth order in e. This is the crucial point
which distinguishes our model from previous SU(4)
x SU(4) models. Relations between masses are ob-
tained by writing Eq. (4) explicitly for the 15 pseu-
doscalar mesons. As a first approximation we
assume that all the f, are equal here. ' The q-X
mixing is achieved by diagonalizing the mass ma-
trix (the only nondiagonal term to appear is m', »}.
Solving these equations we obtain the sum rule

1
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10 1
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1
2

TABLE I. Nonvanishing values off;;~ and d;;&.

(m „'—m „')(m» —m, ')
= —,'(m»' —m, ')(2m „'+2m»' —m „'—3m»'),

(6)

which is satisfied exactly (with m» =958 MeV) to
within the electromagnetic mass differences. We
should like to mention that this sum rule has been
obtained previously» in an SU(4) model; it is in-
teresting to see that the same sum rule still holds
here despite the fact that we have one more un-
known, namely (u»&, . A further point of interest
is that this sum rule holds equally well for linear
masses.

Taking the new particle observed by Niu et at. '
to be g, the isospin- —,

' particle from the SU(3) trip-
let of pseudoscalar mesons, and inserting its
mass into the formulas for the mass matrix [Eqs.
(4)], together with the masses of the v, K, q, and

X, two sets of solutions are obtained for c, d, and

(&»&0&&~a&0:

Solution I:
=-O.O65 d =-163 (""&' =O 46

(
Solution II:

d =+O 56 (""&' =- I 72
(uo&0
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Using these results we arrive at two possible val-
ues for the mass of the A. , namely, 1.8 GeV and
8.3 GeV. Bearing in mind that these particles are
supposed to be Goldstone bosons, the large value
of m ~ in the second case leads us to discard the
second set of solutions in favor of the first.

It is remarkable to consider our preferred solu-
tion from the point of view of the subgroups SU(3)
and chiral SU(2) x SU(2) (s„AI' = 0 for i = I, 2, 3).
Experimentally, besides being a good chiral SU(2)
xSU(2) symmetry (typified by smallness of pion

mass, accuracy of Goldberger- Treiman relation,
etc.), SU(3) seems to be a good symmetry of na-
ture (e.g. , baryon masses, vector masses, etc.)
except for the mass splitting of the pseudoscalar
octet. In our model we have in general (even for
the pseudoscalar mass) a good SU(3} symmetry
(c«1) as well as SU(2)xSU(2); the difficulty with
SU(3) for the pseudoscalars is overcome by having
two SU(3) singlets in the Hamiltonian whose con-
tributions partly cancel in the masses, so that the
octet and the over-all singlet contribution are of
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TABLE I (Continued)
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the same size.
Vfe conclude with a sum rule for the scalar me-

sons. Equation (5) gives M'»» =0, and diagonal-
ization of the mass matrix therefore yields I'«
=M„„'+M,'. Combining this with the Gell-Mann-
Okubo mass formula for the octet, we obtain

3(M '+M ')=4M '-M (7)

By taking" M, =1 GeV, M„=1QeV, and M

=1.2 GeV, M, is given by Eq. (7) as 0.77 GeV.
Thus this sum rule is also in excellent agreement
with the commonly accepted values of the scalar
masses.
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The pairlike cross section for Compton scattering from polarized electrons is derived,
and shown to differ slightly from the cross section obtained from the conventional matrix
elements. The differences may enable an experimental test of the existence of the fieldlike
interaction.

If the electromagnetic interaction is viewed
from the rest frame of the interacting photon, it
divides naturally into a pairlike transition —a pair-
creation or a pair-annihilation event, and a field-
like transition —an event in which the photon is
absorbed or emitted by an electron (or positron).
In the pairlike transition an electron-positron pair
with equal and opposite momenta is created or
annihilated. In the fieldlike transition, the elec-
tron absorbs or emits the photon with no change in
its charge or momentum.

It is remarkable that most familiar electromag-
netic phenomena result from the pairlike inter-
action, but that the nonobservable self-force on a
free electron results from the fieldlike interac-
tion. ' These results are obtained by the introduc-
tion of the projection operator

—n q+noq+(g-m)t(P, (q;n) =

and its transpose I'~ at each vertex where a photon

of momentum k interacts. In Eq. (I), n=(p k)k,
q=P+4, and the quantity noq is proportional to the
electron energy in the photon's rest frame:

noq-=[(n q)'-n'(q' m')]'~' . -
The application of these projection operators iden-
tifies ordinary electromagnetic scattering as a
pairlike transition and yields the Klein-Nishina
formula for Compton scattering from unpolarized
electrons.

For the case of polarized electrons, however,
the Compton cross section differs slightly. We
evaluate the pairlike cross section using the doubly
projected propagators:

K~(q;n„n, ) =P'(q;n, ), , P(q;n, ) .

Using this propagator for both the "direct" and
"exchange" diagrams, the matrix element for pair-
like interactions only reduces to


