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Broken scale invariance is briefly reviewed. A constraint on the equal-time commutator between the
trace of the energy-momentum tensor and symmetry-breaking terms is discussed. A sum rule relating
matrix elements of chiral-symmetry-breaking terms with their dimensions is derived.

[D,(t), su(x)]„, , =t(d —x"8„)u(x),

where

(2)

D,(t) = ~ d'xx" 8qo(x)
4

is the generator of dilatations.
Assuming that the u's have a unique dimension,

d„, from Eqs. (1)-(3) it follows that

8"„=(4 —d„)e(uo+ cu, ) + 45 .
The most general form of the energy-momentum

tensor compatible with Eqs. (1) and (4) is
8~"=8~" +[(1--', d)u+6] gu" + —,'duguog" (5)

where u stands for e(u, +cu,).

Much has been written' over the past few years
about a theory in which the energy density opera-
tor is given by

8« = 800 + E 6 + 6 (uo + cu ) . (1)

In this relation, 8« is SU(3)xSU(3)- and dilatation-
invariant, 5 is a c number which breaks dilatation
invariance but preserves SU(3) xSU(3} symmetry,
and uo and u, are scalar densities which break
both dilatation and SU(3}xSU(3) invariance and
transform according to a (3, 3*)+(3, 3*) represen
tation of SU(3)x SU(3).

Equation (1) is supposed to describe a world in
which dilatation and SU(3) xSU(3) are broken spon-
taneously, leading in the SU(3) xSU(3) limit (e =0)
to an octet of massless pseudoscalar mesons and
a massless scalar meson. The scalar meson is
usually referred to as the dilaton.

In spite of the fact that there are several good
reviews on the subject, there are still some
points which, in our opinion, have not been suf-
ficiently discussed in the literature. The purpose
of this note is twofold: We shall first make a few
comments on these points, and then we shall de-
rive a sum rule relating matrix elements of u,
and u, with the dimension d„associated with these
operators. The dimension of an operator w(x),
having a unique dimension d„, is defined through
the equal-time commutator

d'xx'[ 8"„(x),u, (0)]„, ,= 0. (8)

Equation (8) means that terms proportional to first
derivatives of 5 functions in the equal-time com-
mutator between the trace of the energy-momen-
tum tensor and u„ for a=0, 1, . . . , 8, must van-
ish. This constraint is the necessary and suffi-
cient condition for d„ to be frame-independent.

We shall now derive a sum rule relating matrix
elements of I, and u, with d„. In order to do this,
let us consider matrix elements of 0", given by
Eq. (5), between identical, single-particle states
at rest. We obtain, after subtracting the vacuum
expectation value,

&~(p) I
8'*

I ~(p)& I-,=.=& ~(p) I8"—(3 —d}ul~(P}&I;=.
=0.

Let us expand
I

o.(p)) a,round the SU(3) limit,
namely,

I ~(p)&=I ~ (p)&+I ~ (p)&+ "
where o.,(p)) stands for the SU(3)-symmetric
state, n, (p)) for the first-order SU(3) correc-

Obviously 8"" is not a tensor, and although the
dimension of 0' is 4 in all Lorentz frames, when
boosted it becomes a mixture of pieces of dimen-
sion 4 and d„. The reason is that in a non-scale-
invariant world the generators of the Lorentz
group do not commute with the generator of dila-
tations.

On the other hand, since the u's are scalar
operators, their dimension must be preserved by
the boosts. Otherwise, the dimension would be
fram'e-dependent and the whole scheme would then
be meaningless. Let us apply an infinitesimal
boost, along the ith spatial direction, to

[D(0), u, (0}]=d„u,(0), a=0, 1, . . . , 8

namely,

[Mo), [D(0), u, (0)]]=0.

Using the J'acobi identity together with Eq. (2) and
the fact that 8„„is conserved, we obtain
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g00 gii (13)

For single-particle states at rest, normalized to
unity, Eq. (1) yields to

& n(p)l 8"In(p)&lp, = m„.
Ordinary perturbation theory leads to

(14)

»e&no(p) I
8-+euol n, (p)& lp=. = o

By inserting Eqs. (13) and (15) into Eq. (12), we

obtain

(15)

»e&n. (p)lu. l n, (p)&lp~

4
c&n,(p)lu, lno(p)&l-, =. (16)

Standard techniques in perturbation theory en-
able us to evaluate the left-hand side of Eq. (16)
in terms of matrix elements of u0 and u, between
SU(3) symmetrical states. The result is

g &n. lu. l && & p I u. l n. &

Z -E„d-48 n

(17}

The sum includes all those states which do not
belong to the same irreducible representation to
which In, & belongs. In particular, the sum also
involves an integral over the continuum.

Due to the success of the Gell-Mann-Okubo
mass formula, we have good reason to believe
that matrix elements of u, between physical states
are well approximated by matrix elements be-
tween SU(3) states. Therefore, we can replace in

Eq. (17) SU(3) states by physical states. The
right-hand side of Eq. (17) can then be determined,
for various states, from the mass spectrum.

Let us now consider matrix elements of I9"„be-
tween states of equal momentum. From Eq. (4)
we have

„=& (p)l 8"„I (p)&

=(4-d)~& (pn)i , u+clun(p)). (18)

Using Eq. (6) and the fact that masses are well
approximated by keeping only terms up to first
order in SU(3) breaking, Eq. (18) can be approxi-
mated by

tion to the symmetric state, and so on.
Inserting Eq. (10) into Eq. (9) and equatingto zero

each order in SU(3) breaking, we find

& n. (p)l 8"—(3 —d)~u, l n. (p)&lp =.=0

and

2Re(n, (p)I8" —(3 —d)euol n (p)&l =o

= (3 —d)ec( no(p)l uBI no(p)) Ip o. (12)

From Eqs. (4) and (5) it follows that

m„= (4 —d) (n, l u, l n, &+ c( n, l u, I n, ) . (19)

(nl8-I n), =2m„2,

where the subscripts u and c stand for unit and co-
variantly normalized states, respectively. In par-
ticular we notice that ( n, l u, l n, )„ is constant over
the octet while ( n, l u, l n, ), is not, so that a dif-
ferent grouping of terms is required in order to
write the mass formula in the general form:

(mass}= (constant piece over the octet)

+(varying piece over the octet).

Thus, using

&niu, in), =2M (niu, in&„

and the definitions

u,'=& n, iu, i n, &„,

u', =2Re(n, l u, l n, )„,
u,'=(n, iu, i n, &„,

we have

(n Iu, I n), = 2(8,"+u,'+ cu', )(u', + u', ) + ~ ~ ~,

where the first term on the right-hand side is just

~.=(nI8OOI n)„

=(n, i8"+u, i n, &+c(n, iu, in, )+
Using Eqs. (11) and (16), we obtain, keeping

terms up to first order in SU(3),

Equations (1), (13), and (18) imply

&n. l 8-ln. &lp=. =(3-d)~(n.(p)l u. ln. (p)&lp=. ,

(20)

which is the same as Eq. (11}.
From Eq. (20) it follows that if d=3, then 8"

does not contribute to the masses, which are then
given by matrix elements of e(u, +cu, ). This,
however, does not necessarily imply that in the
SU(3) xSU(3) limit all masses vanish. '

We want to point out that had we used covari-
antly normalized states, we would have obtained
a similar sum rule to that given by Eq. (17}, ex-
cept for the factor 3-d, which would then be re-
placed by a factor 2-d. Hence, d=2 implies that
first-order SU(3) corrections to matrix elements
of Q 0 between single -particle states vanish. In
other words, the assumption that matrix elements
like (n(p) I u, l n(p)) can be approximated by their
SU(3) values for covariantly normalized states' is
equivalent to the assumption that d= 2.4 In order
to prove this result let us consider

(nl8 "In)„=M„

and
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(aim, ln), =2m.'(4-d)(w', +4 ~cu,'),
which means that the first-order SU(3) correction
to matrix elements of u, between covariantly nor-
malized states, namely, (u', )„ is given by

given by Eq. (17) might be an indication that d =3,
the reason being that if

~
o.o) is an octet, then

~ P)
in the sum can only belong to an octet. On the
other hand, we know, due to the accuracy of the
Qell-Mann-Okubo mass formula for the —,

' baryon
octet (-1%), that there is very little, if any, mix-
ing of two or more —,

' baryon octets. ~ This means
that

Hence our claim that the assumption that matrix
elements of u, can be approximated by their SU(3)
values is equivalent to the assumption that d = 2,
for covariantly normalized states. '

Finally, we want to point out that the sum rule
is extremely small compared with & no~u, (oo)
Hence, unless & nol uolP&»& o'ol uolP&» d=3 ~
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In this paper some aspects of the two-component alternative to the Dirac equation, recently proposed
by Biedenharn, Han, and Van Dam (BHvD), are discussed. We consider the possibility that the BHvD
equation can be interpreted as another two-component form of the Dirac equation, being brought about
by a unitary transformation which resembles the Foldy-Wouthuysen transformation. This point of view
also enables us to derive more two-component alternatives to the Dirac equation.

I. INTRODUCTION

Recently, Biedenharn, Han, andean Dam
(BHvD) proposed an alternative to Dirac's factor-
ization of the Klein-Qordon equation which yields
two-component, m gO equations describing a
particle with spin ~.' ' The essential point in
their procedure was to present a factorization of
the Klein-Qordon equation in terms of two-dimen-
sional matrices in contrast to the usual Dirac
factorization which uses four-dimensional matri-

ces a, P. The important difference with Dirac's
procedure is that Dirac demanded the matrices
a, P to be independent of space-time, whereas
BHvD use matrices which are explicitly space-
time-dependent. Both in the usual Dirac equation
and in the BHvD equation the momenta appear
linearly only. When electromagnetic interactions
are present, BHvD factorize the Kramers equation.
The Kramers equation is a two-component second-
order wave equation which can be obtained from
the iterated Dirac equation. The two-component


