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APPENDIX

Using the DGS representation, it is easy to
show" that

vW, —= W(v, v)

~ i ~ 00

= gv db dao(a, b)b(g+2bv —a)e(v+ b) .
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Scaling then requires that

From this it follows that

1 p oo

J d~E, (~)/u&= ——,
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Mass spectrum condition and smoothness require
o(a, I)=0. In the non-Pomeron case (or for the
non-Pomeron part), Brandt and Ng incorrectly
assume that F(ar)-0 as ur-0 requires o(a, 0) =0
and they get the sum rule

d(u E,((u)/(u = 0,

4 p
dao(a, b) =0, where they argue that E,(z) = E,(~) —E,(0).
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We show that the residue of the J = 0 fixed pole in the virtual Compton amplitude has itself a pole with
the positive residue at the value of t where n(t) = 0; here a(t) is a Regge trajectory appearing in the t
channel and this point is the so-called sense-nonsense point. Hence the residue of the J = 0 fixed pole has a
positive sign at t = 0 [where a(t) & 0], which is the sign opposite to the Born term. The experimental
relevance of our result to the electroproduction off nucleons is discussed.

I. INTRODUCTION

It is well known that nonstrong amplitudes can
develop J-plane fixed poles at nonsense points
due to the linear unitarity relation in t channel. '
These fixed poles are characteristic of current
amplitudes, and are distinguished from wrong-

signature fixed poles due to third-double-spectral-
function effects. In the virtual Compton amplitude
the fixed poles may appear at J=1, 0, -1, -2, . . .
in a t-channel helicity double-flip amplitude. The
fixed pole at the wrong-signature nonsense point
J= 1 has been extensively studied by many authors
in connection with the coupling of the Pomeron to
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T T + T

T, = 2T,' /(1+ v'/q'),
(1.2)

where T ~„ is the t-channel helicity amplitude, with
X and p, the helicities of the virtual photons. The
helicity double-flip amplitude T,' may have fixed
poles at J= 1 or 0, while the helicity-nonf lip am-
plitudes T,', and T QQ may not. It should, however,
be noted that, due to the constraint at pseudothresh-
old t=0,

photons. In fact, it has been argued that the J=1
fixed pole (possibly including the fixed pole due to
the effect of the third double spectral function)
serves to eliminate the nonsense factor, o.(t) —1

at t=0, from the Pomeron residue in the brompton
amplitude, thus allowing a constant high-energy
photoabsorption cross section. '

The J=0 fixed pole has the right signature and
hence is directly measurable in the inelastic scat-
tering of electrons off hadrons through dispersion
relations or, equivalently, finite-energy sum rules
(FESR). There has been much controversy about
its existence and about the peculiar behavior of its
residue as a function of -q', the mass squared of
the virtual photon. ' '

Let us denote by e" T,(q, P)e" the forward vir-
tual brompton amplitude, where q and P the four-
momenta of the photon and nucleon, respectively,
and c' is the polarization vector of the photon.
Spin averaging, with respect to the nucleon spin,
should always be understood. The amplitude T„,
is decomposed in the usual manner,

T„=T,(v, q') ( g„. q„q,/q') +—T,(v, q')

x(P„q„Pq/q')-(P. -q.P q/q')/M', (1 1)

where v = -P q/M, with M the nucleon mass. Using
the s tcrossing -relation for the helicity ampli-
tude, ' one can express invariant amplitudes T, and

T, in terms of t-channel helicity amplitudes. At
t=O we have
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FIG. 1. The q~ dependence of Rz from Ref. 4. The
solid line corresponds to our phenomenological fit with
C =1.5 and a =0.03. See Eq. (4.1). The dashed and
dot-dashed curves correspond to the Born and parton
terms, respectively.

fixed pole since it has the wrong signature. '
Because vT, is the s-I crossing-odd amplitude,
we can write down the following supereonvergence
relation:

G '+(q'/4M')G '
, g4M, +, dv(vW, -R) = —R~ &+9' / 9'

uQ

(1.4)

where G~(q') and Gv(q') are the charge and mag-
netic form factors, respectively, W, = (1/w) ImT„
and

R=(1/~)ZP, (q')v ~" ',
(1.5)

R~ =MP~(q')/q'.

At q'=0 Eq. (1.4) reduces to the FESR for the real
photoabsorption cross section. Some analyses of
experimental data suggest that R~ &0 and R~- -1
at q'=0. ' For large q', i.e. , q'a2 (GeV/c)', Eq.
(1.4) becomes

t t tT ++ + T +~ T QQ

these helicity-nonf lip amplitudes must have
Kronecker 5's at J= 1 or 0.' According to the
Hegge-pole analysis, one obtains the following
asymptotic form as v- ~ with q' fixed:

e-i 7f aq(Q)

p(q') """'
sinn a,-(0)

+ p~(q')/v+ 0(v 't '),
where the index j is either P or P'(A, ) and where

P& is the residue of the trajectory j and Pz is
the residue of the J=0 fixed pole. Because of
exchange degeneracy the P' and A., trajectories
are the same. We have not considered the J= 1

d(u[F, ((u) —R(ur)] = -R~,

where ~=2Mv/q' and E,(~) and R(&o) are the Bjor-
ken sealing limits of vW, and R, respectively.
We have assumed the existence of the limit of R~
as q'-~. From the experimental data on the
structure function given by deep-inelastic scatter-
ing, some Ruthors have concluded that R~&0 and
R„-1.5.' For the nonscaling region, i.e., for
q'& 1.5 (GeV/c)', the same analysis has been done
on Eq. (1.4), and it has been concluded that R~ &0
and possibly Rz-const (-1.5) (see Fig. 1). This
result seems to support the so-called polynomial
residue" " (P~~q') for not-too-small q', but the
sign of R~ there is opposite to that of the Thomson-
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limit value at q'= 0.
If the zero intercepts of the Pomeron trajectory

n~(t) and of the P'(A, ) trajectory cgv, (t) were nega-
tive, the amplitude vT, —P~/v would be supercon-
vergent, and Rz in Eq. (1.4) would be negative-
definite. As np(0) and nv (0) come up to the physi-
cal values 1 and —,', respectively, we have to sub-
tract Regge terms from vT, —Pz/v in order to get
the superconvergence relation. The above experi-
mental situation suggests that for not-too-small
q' the Regge terms overcompensate the other
terms in the left-hand side of Eq. (1.4) to result
in the positive R~. In the present paper we shall
give a theoretical justification" of the positive
constant R~ for relatively large q'. The problem
of how this positive constant R~ squares with the
negative value of R~ at q'= 0 which is consistent
with the Born term will not be resolved, but some
speculations on the problem will be given.

In Sec. II we examine the sign of R~ in the dual
model for the virtual Compton amplitude proposed
by Landshoff and Polkinghorne. " We find that

R~ &0 if gg(0) &0, where n(t) is a Regge trajectory
appearing in the t channel. The mechanism pro-
ducing the positive R~ is clarified: The J=O fixed-
pole residue R~ for arbitrary t has a pole at the
nonsense point, 1/n(t), with positive residue
The model also suggests that the fixed poles at
j = 1,0, -1, -2, . . . in T, are dual to the meson

II. MODEL CALCULATION

In this section we investigate the behavior, in
particular the sign, of the J=0 fixed-pole residue
Bg in the region q'a 1 (GeV/c)' in the Veneziano-
like parametrized model of Landshoff. ' The argu-
ments in this section and in Sec. III are restricted
to the region of q' quoted above, because the mod-
el in this section and the parton picture in Sec. III
are designed to reproduce properties characteris-
tic in the deep-inelastic region. As a result, we

shall obtain a positive sign for R~, R~ &0. We
also investigate what mechanism gives the positive
sign to Rz in Landshoff's model. '

In the present model T,(s, t, q') is given by'»

T,(s, t, q') =2M[A(s, t, q')+ A(gg, t, q')j, (2.1)

poles connected with the virtual photons. "
In Sec. III the results obtained in the model in

Sec. II are generalized to a certain extent by apply-
ing the parton picture as discussed by Landshoff,
Polkinghorne, and Short. '6 In fact, we show that the
mechanism producing the positive R~ as shown in
the model is quite general.

In Sec. IV concluding remarks are given and, in
particular, speculation about the sign change of
R~ as a function of q' is presented.

with

""dvdwdz z(v+w+vw) —
1 z 8(~) -i/2

1+ 1 + 1+
vzz (+zzvzz z Zzvz/((zzzzzz))

" (' -')("=').
"'(""" )

'
(2.2)

where gg(t) =Og't+ o(0) and t}(s)= n's+P(0) are the Regge trajectories exchanged in the t and s channels, re-
spectively, and K is the normalization constant fixed by the Fubini-Dashen-Gell-Mann sum rule" so that
N= 1/B(m, 1 —n(0)), where B is the beta function. In Eq. (2.2), m is a positive parameter which is related
to the asymptotic behavior of the elastic form factor E(-q'), given in this model by

E( q) =NB(m, -1 —n(-q')) ~ N(n'q )
Q2 '& ao

(2.3)

In order to extract the fixed-pole terms of A(s, t, q') with J =1,0, -1, . . . from Eq. (2.2), we look for the
fixed-power terms which behave like s ', s ', s ', . . . as s- -~. We easily see that such terms arise from
the region v, w-~ in Eq. (2.2). Hence we make a change of variables from v and w to v' and w' such that
v = -P(s)/v' and w = -tl(s)/w'. We perform v' and w' integrations to get

oo 1 f}t(~)

A(, t, ') - — —,l
—1+— (1+ ) +'+0( )

fixed pole S S „0 Z Z

I (t) mZ(t) q'

(2.4a)

(2.4b)

where we have neglected a term independent of
q' in the coefficient of 1/s', since such a term
should be canceled out when gauge invariance is

correctly taken into account. " It is apparent in
Eqs. (2.4b) and (2.3) that the residues of the fixed
poles of A(s, t, q') at J = 1, 0, . . . have nonsense
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poles at a(t) =1,0, . . . , respectively .These poles
are not present in A(s, t, q'), and should be can-
celed by the nonsense poles appearing in the ordi-
nary Regge term, P(t, q')s" "-'. It is easy to see
that the cancellation takes place in this model.
The cancellation mechanism works generally if
the fixed poles only occur multiplying the Hegge
poles. For the case of J= 1, this mechanism has
been extensively investigated. " Noting that v
= (s —u)/4M we get

R~(q') =
(0)

—1. (2.5)

The second term of the right-hand side of Eq. (2.5)
comes from the term —E(t)/s of Eq. (2.4b) and the
corresponding term E(t)/u -of A(u, t, q'). Ob-
viously A~ &0 if 0& o.(0) & m and 8~ &0 if n(0) & 0.
It should here be remembered that the integral
representation of Eq. (2.4a) converges only when
o.(t) &0, i.e., t& t, where o.(t,) =0. The case where
o.(t) &0 with n(0) &0 should be reached by an ana-
lytic continuation of this term in t from t&tp to
t =0 (see Fig. 2). Equation (2.4b), when t & to, rep-
resents the analytic function obtained by this con-
tinuation. The sign of the second term of Eq.
(2.4b) is the same as that of o(t) in the region
t & t„where o(t, ) = 1. Thus this term changes
sign as a(t) changes its sign in the continuation
process. The sign of the second term of Eq. (2.4b)
at t=0, in which we are interested, is positive
[because o(0) &0]. Thus the nonsense pole factor
I/~(t) in the 4 =0 fixed pole residue of-A(s, t, q')
is essential for the positivity of A~.

Another important point to be noted is that the
fixed-pole terms of A(s, t, q'), Eq. (2.4), are ob-
tained by estimating the large v and zo. contribution
in Eq. (2.2). The region v, w -~ is, in duality
language, dual to the region v, se-0 which contrib-
utes to poles in q' at o.(-q') =1, 2, 3, . . . . Hence
we notice that the fixed poles at J= 1, 0, -1, . . .
are dual to the meson poles at o.( q') =1,-2, 3, . . . .~
Since we are picking up only the ground stateat
v =w =~, we recognize that Eq. (2.4) may be ex-
pressed diagrammatically by Fig. 3 with the
ground-state particles coupled to the photons.

FIG. 3. Feynman diagram relevant to the fixed pole.

In Sec. III we study whether the mechanism de-
scribed here works generally; we discuss whether
the nonsense pole factor in the J=O fixed-pole
residue of A(s, t, q') exists in the general frame-
work.

III. GENERAL CONSIDERATION:

NONPERTURBATIVE PARTON PICTURE

We now try to make more general the above
model-dependent argument. As suggested by the
preceding discussion, we assume that the ampli-
tude corresponding to the diagram in Fig. 3 is the
dominant contribution to the fixed-pole term. It
is the same diagram as the one discussed by Land-
shoff, Polkinghorne, and Short. ' We adopt their
nonperturbative parton model as a more general
framework in the sense that the underlying parton-
proton amplitude is not restricted to a specific
form.

The Feynman diagram of Fig. 3, with a six-point
parton-proton amplitude, contains the diagrams
with four-point amplitudes in Fig. 4 which are
dominant over others when q' is large enough, say
q'Zl (QeV/c)' where scaling is realized. In fact,
the contributions to the fixed-pole term of the
gluon-exchange diagrams (shown in Fig. 5) con-
tained in the connected six-point amplitude are
independent of q' and are of order 1/v"' ' as v-~
with q' fixed, where n is the number of exchanged
gluons.

Here only spinless partons are dealt with for
simplicity. The generalization to the spin- —, case
is straightforward, and we get the same result
for the fixed pole as in the spinless case, except
for a slight modification of the invariant parton-
proton amplitude.

The diagrams which contribute to the amplitude
T, are Figs. 4(a) and 4(b). The seagull diagram
in Fig. 4(c) contributes only to T,. We evaluate
the contribution of Figs. 4(a) and 4(b) to the J=O

0 O

(a) (c)

FIG. 2. The Regge trajectory G. (t), where a(to) =0
and n(t&) =l.

FIG. 4. Dominant diagrams for large q2 contained
in Fig. 3.



J = 0 F IXED POLE IN THE VIRTUAL COMP TON AMPLITUDE 1901

fixed-pole terms in T, by using the Sudakov para-
metrization for k in Fig. 4(a): k = xp+ yp+ x, where
z is a vector orthogonal to p and q, and is space-
like. In terms of these variables T, can be ex-
pressed as the coefficient of p„p„/M' in the expan-
sion of T&„and the contribution of Fig. 4(a) to
T2 1S

(a)

cl ossed

(b)

+ crossed
d I Qg I'Q Al

T2' - M2 Jdxdyd2ltdo
(2w)' v+ k'

r„«s + crossed
d I Q g I Q ITI

(c)

x T(s', p'), (3.1)
FIG. 5. Gluon exchange diagrams.

where J is the Jacobian and behaves as M v when
v tends to infinity, p(o) is the Lehmann spectral
function, and T(s', p'} is the forward off-shell
parton-proton amplitude (nonamputated, i.e. ,
including parton propagators) with s' = -(P+q —k)'
and t(,

'= -(q —k)' the parton mass squared. The
variables s' and p' may be expressed by x, y,
and z as follows:

s' = {x-1)'M' —(y —1)'q'

+2(x —1) (y —1)Mv —~',

p,
' = x'M ' —(y —1)'q'+ 2x(y —1)M v —~'. (3.3)

In the following we extract the dominant part of
Eq. (3.1) in the limit v- ~ with q fixed. Since it is
assumed in this model that T(s', p, ') decreases

sufficiently rapidly as p,2- -~, the dominant con-
tribution arises from the part of the integration
where p,

' is finite. As v- ~ with q' fixed this re-
gion is concentrated around the point y= 1. Hence
we introduce the new variable y' with

y = 1+y'/2 M v (3.4)

and change the y integral into a y' integral. By
studying the cut structure of T(s', p') in the y'
plane" we easily derive an expression for the
dominant part of Eq. (3.1). The contribution of
Fig. 4(b) can be estimated in the saine way except
that q is replaced by -q, and the dominant contribu-
tion in the integral comes from the region y= -1.
Combining the contributions of both diagrams we

get

2q2 (" / ~ Qx dx7
( ~

—
~

d K — ds ImT (s , p.') + ''', du IraT(u , g')) . ''2 fixed pole +2
JQ x JQ ~] + x g p

(3.5)

p'= —(xs'+ (t')/(1 —x) + xM', (3.6)

where we used Eqs. (3.2), (3.3), and (3.4) and
neglected the terms of order 1/v'. It is also rea-
sonable to assume that the s' integral does not
diverge at the threshold of the parton-proton
scattering. Then only the end point s' = ~ need be
handled carefully. Let us now concentrate on the
contribution to Eq. (3.5) coming from the region

Note that terms independent of q' are neglected in
Eq. (3.5) because of the gauge-invariance require-
ment. 2'

Since ImT is proportional to the parton-proton
cross section with a positive proportionality con-
stant, it is apparent that the right-hand side of
Eq. (3.5) is negative-definite for spacelike q . We
must, however, beware of its singular structure.
If we require that ImT be a smooth function of p,

'
with s' fixed, the integral (3.5) converges at the
ends of the ranges of the variables x and x. In
fact ImT depends on these variables only through

and

near this end point. Since if p,
' is bounded then

xs' is also bounded for large s' as seen in Eq.
(3.6), the region of small x is important in the
x integral. Hence we make a change of variable,
x=s'x. If T(s', p, ') is essentially the same as the
hadronic amplitude in its structure, we may para-
metrize it in Regge form for large s'.

ImT(s', (u') - P(y, ') (s')

with o.(0) the zero-intercept of the Regge trajec-
tory exchanged in the t channel of the parton-pro-
ton scattering. We finally obtain from Eq. (3.5}
for the contribution to R~ coming from the region
s'-0 and x-0

A~i = -2M d'x dxP( —x+ i~') ds'(s')"'" '
wp &L

{3.7)

where I. is some large number. We see that Eq.
(3.7) is convergent only when o(0) &0 and then Bzz
&0. Since a(t) is expected to be an ordinary
Regge traj ectory, the positive interc ept is reason-
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able. For such a case we must first perform the
integral in Eq. (3.7) with o.(0) &0 and continue the
result analytically to the region o,(0) &0. By this
procedure we get R» = B/o(0), where J3 is a posi-
tive constant. Hence for n(0) &0 we obtain R» &0.
If the contribution to R„coming from the other
region in Eg. (3.7) is unimportant, the mechanism
changing the sign of R~ is just the same as the one
discussed in the I andshoff model.

We have shown that the contribution of the par-
ton diagram (Fig. 4) to the J=O fixed-pole term
is of the form

q'RF(q') = Cq'+ C„C& 0

where the constant C, was neglected in Eq. (3.5).
As we have remarked earlier in this section, the
diagrams with gluon lines as shown in Fig. 5 con-
tribute to the J=0 fixed-pole term as constant
terms: q'Rz(q') = C, . Since our framework here
is gauge-invariant, the constants C, and C, cancel
when we sum up all the contributions of the dia-
grams including those in Figs. 4 and 5 to the J=0
fixed-pole terms. Hence we finally have Rz(q')
=const&0. One may notice that, as we have con-
sidered all possible Feynman daigrams in deriving
the above result, it should hold for any q' and
hence predicts a positive value at q'=0 which con-
tradicts the experimental result. The following
comment, however, is in order: A hadronic Born
term with form factor, if it persists at high en-
ergy, contributes to the J=O fixed-pole terms; its
residue is, in fact, the first term in Eq. (1.4).
This form of the q' dependence of R~ cannot be
accommodated by our result in this section. The
example suggests that our way of calculation in
the parton picture is incomplete in the sense that
it cannot generate the hadronic one-particle state
as a bound state of many partons (or our frame-
work itself might not be suitable for describing
the hadron as a bound state of many partons). Ac-
cordingly we note that our result on R~ in this
section should not be taken seriously in the small-
q' region where many diagrams other than those
in Fig. 4 contribute. In Sec. IV we speculate on
the behavior of R„ for smaller q'.

We have investigated the above-mentioned me-
chanism in other avail. able models and obtained
the following results: First, in the model of
Ademollo and Giudice, "the relevant amplitude in-
volves a term which shows our sign-change me-
chanism. Second, the situation is the same for
the model of Kikkawa and Sato" in the planar and
one-loop approximations, and the diagram which
contributes to the fixed-pole term in this model
is Fig. 6 alone. Third, in the dynamical reso-
nance model of Manassah and Matsuda, " the same
mechanism works, provided L, the dimension of

FIG. 6. The planar one-loop diagram in the model of
Kikkawa and Sato which is responsible for the fixed-
pole term.

the new harmonic oscillator introduced by them,
is equal to unity. This can be easily understood
by noting that the zero intercept of the Regge tra-
jectory exchanged in the t channel is 1 —&L and it
is positive only when J,=1.

( 2) Gs +(q /4M )G~2 Cq
1+q'/4M' q'+a' ' (4.1)

with C&0 and a' the constant to be determined.
Here we have modified the constant C coming from
the parton diagrams by the factor q'/(q'+a') purely
phenomenologically in order to suppress the par-
ton contribution at q'= 0. The experimental data
in Fig. 1 can be reproduced reasonably by Eq.

IV. CONCLUDING REMARKS

We have given a theoretical basis for the fact
that the residue of the J=O fixed pole for relatively
large q' is positive and constant. Qn the other
hand, experimental analyses of FESR (1.4) at q'=0
seem to favor the Thomson-limit value for R~,
i.e., R~- -1.0. This result may be a formidable
challenge to our conclusion. There are several
ways of trying to resolve the discrepancy between
the negative R~ at q'= 0 and the positive constant
R~ for relatively large q'. Qne of the possible
solutions is that R~(q') is discontinuous at q'= 0.
High-energy e-p scattering experiments at very
small q' are essential to test this possibility.
Another possibility is that, for small q', R~ is not
constant, i.e., the fixed-pole residue is not
polynomial, and R~ for q'0 is smoothly continued
to its value at q'=0. This somewhat peculiar be-
havior of R~ may be possible if diagrams other
than the ones in Fig. 4 contribute for smaller q'
to modify the constant R~ at larger q'. In fact the
nucleon pole term in the virtual brompton amplitude
cannot be generated only by such parton diagrams
as those in Fig. 4, while, as is well known, the
nucleon pole term, if it persists at high energy,
contributes to R~(q'). Thus one may push forward
the following speculation: The fixed pole has two
parts, one coming from the nucleon pole term
which is dominant at smaller q' and one coming
from the parton diagrams as in Fig. 4. These
two components get together to show the behavior
of R~(q') for all q'.
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(4.1) if C = 1.5 and a'=0.03 (GeVjc)', where we

have used experimental data for G~ and G„. The
functional form (4.1}may also be applied to the
case of the neutron target. The neutron pole term
in Eq. (4.1}vanishes at q'=0, and so Rz(lf') should
be zero at q'=0." The constant C may be differ-
ent in magnitude from that of the proton target.

Finally we emphasize that in order to go further
we definitely need more experimental data on elec-

troproduction off the proton and deuteron at very
small q' and high energies.
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