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The causal methods of source theory are used to calculate the triangle anomalies of weak bosons (W *
and Z) in a unified gauge theory of weak and electromagnetic interactions (not involving heavy
leptons). The pseudoelectric form factors for these particles are also presented.

It is well known that unified gauge theories'™
without heavy leptons*'® possess axial -vector
anomalies®'” (the so-called triangle anomalies)
which adversely affect the renormalizability of
such theories.® To our knowledge there has been
no explicit evaluation of the anomalies for the weak
bosons (W* and Z) which occur in Weinberg’s? and
Schwinger’s! models. In this note we will calculate
these anomalies using the causal methods of
source theory.?

In order to determine the triangle anomaly one
compares a certain pseudoscalar coupling with the
divergence of the axial-vector one. This can only
be done if the variable with respect to which one
differentiates is fully generalized and is not sub-
ject to the kinematic restrictions of being a free
particle. Thus we consider the causal arrange -
ment indicated in Fig. 1 rather than that of Fig. 2.

In the models considered, the primitive inter -
action between leptons and weak bosons and pho-
tons is, in part,
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where the +, 0 labels refer to the charge of the
incoming particles and ¢, refer to either electron

or muon. Here, in Weinberg’s model,? the cou-
pling constants are

A= gIZ(g2+gl2)“1/2
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Ag = ‘/—El'g s
while in Schwinger’s model,! g= g’ =V2e.

Using the causal methods of source theory® we
generate the vacuum amplitude corresponding to
Fig. 1. There a virtual W (Z) produces a neutrino
and a charged lepton (a lepton pair). These par-
ticles then propagate and scatter by exchanging a
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virtual lepton to produce a real W (Z) and a photon.
The vacuum amplitude for the process of Fig. 1(a)
is?
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where y = A’, and (m = lepton mass)
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Here we have considered only the y; part of the
trace, since only this contributes to the anomaly.
In order to perform space -time extrapolation one
must enquire whether there are any physical re-
quirements which render necessary contact terms.
There does not seem here to be any normalization
requirement but there is a requirement of consis-
tency among different causal arrangements. In
particular we will see later that the corresponding
process [Fig. 2(a)], in which the photon is time -
like and both W’s are real, yields a pseudoelectric
form factor which vanishes (by gauge invariance)
for a real photon. This in turn imposes the re-
quirement that the generalized amplitude I, van-
ish when all particles are on shell. We thus have,
after space -time generalization,
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Here B, and B, are given below, and |uvik|

= €, ok, etc. The factor (Q%+my?)/my® —M?)
(which equals 1 under the causal situation) is
necessary in order that the amplitude ve ‘sh when
all particles are real, when Q%= —m,>.
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FIG. 1. Lepton triangle with incoming virtual bosons.

From this point we can obtain the anomaly essen-
tially by following the procedure given in Appendix
A of Ref. 10. The first step is to consider

QUL = f” dn® 1
AT ) 2 @2+ M? —ie (M? —my?)
+m
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(6)

The anomaly is the difference between the actual
divergence and the naive divergence which is
obtained, in this case, by the replacement y” - —m
in Eq. (4). This is just Q”IL,,)\ , which upon space -
time extrapolation leads to the naive divergence

= ~m | | G e G 000 9]
)
where
- mI(M?)= —B,(M?) =M?B,(M?). (8)
Then the anomaly, ¢, is defined by '
iQ"Iyn = Iy + clAQR|. (9)

For this case, the anomaly is

f (M"’ 2)2 [Mz o

The direct evaluation of Eq. (4) yields

> +BZ(M2ﬂ . (10)
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The anomaly cited in the literature® is independent
of the lepton mass; to see if this holds here, we
first consider the normal threshold case, where
m®>my2. We find then

C=_}2_+1=%, (12)

which is indeed mass-independent. The other
case, m2< my 2, leads to an unstable anomalous
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FIG. 2. Lepton triangle with incoming virtual photon.

threshold. One could proceed there by performing
mass extrapolation'! upon the constant result, Eq.
(12). (This is probably equivalent to the contour
deformation of Fronsdal and Norton,'? so that the
integral runs from m? to —. Explicitly, such a
prescription also leads to the anomaly c = 3.)
Finally, there is a prescription which is based
upon a physical interpretation of the singularity
present at M?=my®. We know why this singular -
ity is present: The W source is not localized for
M?=my? so we must exclude this value from the
mass spectrum when m?2< my 2. Following the
example of the p meson®® we take
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The result being mass-independent, the muon and
electron contribute equally, giving a total anomaly
of 2¢=1.

The anomaly corresponding to the Z can be ob-
tained in a very similar manner. The vacuum am -
plitude corresponding to Fig. 1(b) differs from Eq.
(3) in that W— Z and now y = 2(3,% -1,%); in place of
Eq. (4),

Fon = 27T [ du,duag (2718(@ — g - ¢')
X[, (m+ v@)yys + v vs(m+ vakyl

xm)‘)’x(m—’}@')- (14)
The extrapolated amplitude is of the form of Eq.
(5) and its divergence has the form of Eq. (6).
Here the naive divergence is again the generalized
form of Q”I:,,,x [which arises only from the second
term of Eq. (14) and is obtained by replacing

7, ——2m there]. As before, the anomaly is
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B! (M?)= — M®mz% + m?(M?® +mzz)1ni+Tz ,
(16)
BL(M?) = my2 -Zmzlnitz ,
and
2
=1 —% a7

Again it is straightforward to perform the integra-
tions; we find, whether 4m? is greater than or
less than m,?,

=3-1=-4 (18)
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giving a total (electron + muon) anomaly of 2¢’
= —1. These results were also obtained by non-
causal calculations.

In the above discussion, to obtain the space-
time generalized form, Eq. (5), we used the fact
that the pseudoelectric contribution from Fig. 2
vanished when all particles were real. This can
be easily verified by explicit calculation. The
vacuum amplitude for the coupling of a photon to
two real W’s is (y = A,?)

!
(0,]0-) = 1% (gdf)l Egiﬂ)f Wa (=P [\ W2(-p)ANQ),
(19)
where, corresponding to Fig. 2(a), the pseudo-
electric part is

Iy =8 f dw,dw, (27)*6(Q —q - q')

XTr [(m+ YO mni ¥s(m - yq')n] .

(20)
F'(M?)= —%2’—4{-3+ 482 g+ [3 - £2(1+ 40%) + £4(5 -
where
2 q _41_:%_ , 27)

Incidentally, note that this is the only form factor
for the Z, since it is a neutral particle having no
chargelike property. Therefore, this result is
complete (there is no contribution to the Z form

After simplification, we obtain (in a Lorentz gauge)

Tipn =1 F(M?) [uwa(p - p"), (21)
where

F(M?)= - §v§1—4[5£2 - 302 - 22(£% + v?)
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and where v is defined in Eq. (17), and
2
g2=1 -%ZL ) (23)

Equation (20) is gauge-invariant, and we must take
care to see that space-time generalization does not
destroy this property.’* In a Lorentz gauge, this
can be done by supplying the factor —Q*/M2. Then
the generalized pseudoelectric part is

'y = (@) | uvalp -p |, (24)
with
FlQr)= - [aME _FOL) (25)

21J M? Q*+M? ~ie ’

Because of the factor of @2 (due to gauge invari-
ance), the pseudoelectric form factor indeed van-
ishes for a real photon, f(0)=0.

Again for the Z [Fig. 2(b)] the result is expressed
in terms of Eq. (19) [with W~ Z and y = 2(3,2 =2,?)]
with the same spectral form as Eq. (24), where now
in place of F(M?)

40?) + £°] L

1+ &2+ 20¢
E’ In -————————} s (26)

1+£% - 20¢

factor from boson intermediate states).

Observe, again, that normal threshold behavior
holds only when m%> my?, so then the integral runs
from 4m? to <. For the unstable anomalous
threshold regime, m2<my?, one must perform
mass extrapolation. This subject, in general,
merits detailed investigation.

*Work supported in part by the National Science Foun-
dation.
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Asymptotic behaviors of the axial-vector-current—two-photon vertex and of its divergence equation are
studied in the region where virtual-photon squared masses are large compared with the nucleon mass.
By assuming a sum rule of asymptotic functions, we derive some anomalous commutation relations. We
also study the asymptotic properties of some particular two-photon processes.

I. INTRODUCTION

It has recently been established by several au-
thors! that the 7%y vertex does not vanish in the
soft-pion limit, as a consequence of the anomaly?
in partial conservation of axial-vector current
(PCAQ) in the presence of electromagnetism. Wil-
son® showed that the PCAC anomaly is essentially
caused by the short-distance behavior of products
of local operators appearing in the anomalous ver-
tices. Crewther®* found on the basis of Wilson’s
theory® of broken scale invariance that the anom-
alous constant which appears in the 7°— 2y decay
amplitude can be determined by a product of pa-
rameters in high-energy electroproduction and
annihilation cross sections. Also, using Wilson’s
operator-expansion technique,® Brandt and Pre-
parata® showed that the scaling limit of the anoma-
lous vertices is strongly controlled by the light-
cone behavior of products of local operators. In
the framework of a gluon-quark model, Gross
and Treiman® investigated extensively the scaling
limit and the Bjorken-Johnson-Low” (BJL) limit
of an amplitude appearing in an arbitrary two-
photon process. Terazawa® studied the behavior
of the 7%y vertex in terms of off-shell form fac-
tors associated with the axial-vector-current—
two-photon matrix element in the limit of large
virtual-photon mass squared and found some in-
teresting results.

In this paper we study an asymptotic limit of the form

factors which appear in the axial -vector-current—
two-photon vertex and in its divergence equation.

In Sec. II we introduce some asymptotic functions
associated with the form factors and consider a
sum rule satisfied by the asymptotic functions.
We also derive anomalous commutation relations
by applying the BJL theorem to the matrix ele-
ment of the divergence equation for the axial-
vector current. These results are compared with
those derived from the triangle diagrams in spinor
electrodynamics. In Sec. III we consider some
particular two-photon processes such as 1°—~e*
+e +yand e*+e” ~p " +u” +7° in order to study
the off-shell behavior of the 7%y form factor.

II. THE ASYMPTOTIC LIMIT, SUM RULE, AND
ANOMALOUS EQUAL-TIME COMMUTATORS

Let us define the off-shell form factors F,(p, q)
(¢=1,...,4) by the equation®

(0133001 p, €; 4, € ) (2m)°2p,2q, ]2

e? »
= F €u€1;po¢qﬂ [(deakuﬁ - qaeu)\uB)Fl(p, q)

+(pﬁeuo¢>\u _pueua)\B)Fz(p’ ‘I)

+ (ppecx)\uﬂ _paeu)\yB)F:;(py q)

+ (qﬁepa)\v - quepoO\B)Fq(p; q)];
(1)

where p, g and ¢, €’ denote the four-momenta and
polarization vectors of the two photons, respec-
tively. Note that gauge invariance is automatical-



