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We propose to expand the current-hadron scattering amplitude as a double power series in the mass
of the current and its laboratory energy. The series is summed by a double Sommerfeld-Watson
transformation. Scaling is seen to provide a powerful constraint on the location of singularities in a
complex parameter plane associated with the mass variable.

INTRODUCTION

Recently there has been considerable interest
in the properties of current-particle scattering
amplitudes in connection with light-cone or null-
plane commutators' and Bjorken sealing. ' The
analytic properties of the virtual current-hadron
scattering amplitude as a function of the current
mass and its laboratory energy figure significant-
ly in such considerations. suri' made a system-
atic investigation of the analytic properties of the
forward virtual brompton scattering amplitude in
perturbation theory. Abarbanel et gl.~ pointed
out that if scaling is to be consistent with Regge
behavior, then the Regge residue function must
behave in a specific manner as a function of the
current mass when the latter grows very large.

In this paper we propose to study the current-
hadron scattering amplitude by an approach ad-
vanced by Khuri' some time ago in connection with
strong-interaction amplitudes. Qur analysis in-
volves a double-power-series representation of
the current-particle scattering amplitude in the
laboratory energy variable v and the mass o of
the current. We consider nonforward scattering,
but restrict ourselves to a pairwise equal-mass
configuration. The representation is extended
outside the domain of convergence of the double
power series by summing the series using a dou-
ble Sommerfeld-Watson transform. As we re-
marked before, Khuri has applied this procedure
earlier to strong-interaction amylitudes treated
as functions of the Mandelstam variables. Fubini'
applied the same technique, but starting from a
single-power-series expansion in the energy vari-
able to current amplitudes. By analogy with the
Khuri plane we are led to introduce a complex pa-
rameter plane associated with the mass variable.
We find that the property of scaling puts a strin-
gent condition on the location of singularities in
the latter plane.

Section II is devoted to the construction of the
representation for the scattering amplitude, while
in Sec. DI we give some discussions and conclu-
sions.

II. REPRESENTATION FOR THE SCATTERING
AMPLITUDE

We consider the process

&,(e,) +P, "~.(e.)+P. , (2.1)

T=z d ge 2 g 'Tj 2+ 2 ~+ p

(2.2)

where we define

The DQS representation for T also involves the
four-vector g, where

~ Pz=&- P2

K
(As) 1/s

K being orthogonal to P. We now write the DGS
representation for the nonforward time-ordered
Green's function as'

where J', , is a scalar current operator and P„p,
designate hadronic states of the indicated momen-
ta. We shall assume for the current-hadron scat-
tering amplitude describing the process (2.1) the
analytic structure embodied in the Deser-Gilbert-
Sudarshan (DGS) representation. ' As is well
known this representation satisfies the usual re-
quirements associated with the general postulates
of quantum field theory: local commutativity,
Lorentz invariance, and the existence of a com-
plete set of physical states with positive energy.
The representation satisfies all these require-
ments but is not dictated by them. %'e take the
scattering amplitude to be given by the Fourier
transform of the T product of the local operators
J; (x) (i =1, 2):
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T(P, Q, K)

a(0 Q'+ 2P QP+ 2Q Ky-g+ is '

(2.3)

Here we shall confine ourselves to equal-mass
hadronic states, p, '=p, '=m', and we also take
the current "masses" to be equal: q, '=q, '= qZ=v.
Defining v= 2P Q, t = &', we see that in this case
T can be written as

=g Z ('(0 ' '(w'' ') ' '(,).
Z =0 X.=Z

(2.9)

The amplitude T(P, Q, 4) is a function of the sca-
lar variables v, o, and t. Substituting the ex-
pansion (2.9) into (2.4), we express T(v, v, i) as a
double power series:

I'(X+ 1)
I(z + 1)I'( A.-z + 1)

~(P, Q, ~) = 4 dPdy ~
' ' . . (2.4)

H p, , y

0

where

&&C(z, z;t), ( 2.10)

We consider nonforward scattering in general and
moreover restrict ourselves to the "normal" case
discussed by DGS' which corresponds to p. p 0.
The integration variable(6varies over the compact
interval [-I,1] . This enables us to restrict our-
selves to values of o and v such that

)v+vp~& p, + «t

or

[V 2 V[& Q+ «i (2.5)

for some fixed small t such that

(o'+ vP)"
g+ ;f -(c+ vP) ~~—(p+,'t) "'- (2.'l)

Next we expand

(2 6)

where

(
xt

t(y z) (

Rearranging sums we can now write

(2.6)

Because of (2.5) and (2.6} we can drop the ic pre-
scription in (2.4) and expand the denominator as

C(X, z;t) =- dp, dPdy(g+ t«)-»-'—
"~o

xp'H(p, , P, y}. (2.11)

The series (2.10) converges when the inequalities
(2.5) and (2.6) hold and provided C(A, z;t) exists
for large z and X. No problems arise from the
behavior at large A.. The large-z behavior is
connected to the support properties of the spec-
tral function H(g, p, y). From the analysis of DGS'
we know that the support of H(g, p, y) in p is given
by ] P (

& 1 for y e 0 and is bounded at its widest
parts, which occur for y=0, by the lines P =+1.
Thus if we requireH(p, P, 0) =0 .for P=+1,we are
assured of the existence of the integral represen-
tation for C(X, z;t) for large z. We can now pro-
ceed to sum up the double power series (2.10}
using a double Sommerfeld-Watson transform.
Double and multiple Sommerfeld-Watson trans-
forms have been considered before in the case of
the two-particle and multiparticle amplitudes by
Khuri, ' White, Goddarg and White, Weis, and
Abarbanel and Schwimmer. '

We take the right-hand side of (2.11}to provide
the analytic interpolation for C(X, z;t ) in the com-
plex X and z planes. It is clear from the above
discussion that there are no difficulties associated
with the limit Res -~ at fixed X. It is also evi-
dent from (2.11) that C(X, z;t)- (p, ,) as
Re X-~ at fixed z. We also require suitable be-
havior as Im A. -~ and Imz -~ so that we can
neglect all the contours at infinity. We can now
write (2.10) as

dz dA. « ~, I'(X+ 1)
T(v, o, i) = (pi)' . .

(~ )
(-v)'(~) '

I ( 1)1(~ 1)
C(A. , z; t), (2.12)

where C, and C~ are the contours in the complex
z and A. planes, respectively, the nature of which
will be discussed presently. Now in the case of
double-power-series expansions in the Mandelstam

variables s, t, and M, Khuri' has sh~ a that the
properties associated with the Froissart-Gribov
projection ensured that the required analyticity
conditions hold for the expansion coefficients in
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the complex index planes. Moreover Khuri's re-
sults would lead us to expect that the singularities
in the complex z plane are analogous to those
believed to reside in the complex angular momen-
tum or J plane, i.e., poles and cuts. The corre-
spondence between poles in the z plane (Khuri
poles) and those in the J plane (Regge poles) has
been established in Ref. 5. The question now is
what kind of singularities reside in the complex
X plane. We shall assume that the only singular-
ities in the A. plane are poles and cuts. We can
think of the A. plane as being associated with the
mass variable 0 and our assumption can be regard-
ed as some sort of a maximal analyticity postulate
regarding the singularity structure in the complex
plane associated with this variable. We thus re-
quire the two index planes to possess a not funda-
mentally different structure. In the ensuing analy-
sis we shall neglect the presence of cuts for ease
of discussion.

Going back now to (2.12) and using the relation

Dynarnica l

Singularities

Poles of p ()+ l ) Poles of P (-) y z )

we can write (2.12) a.s
X

Polesof &(-3+ p )

X X

x (-v)'(-o)~ 'C(X, z;t). Poles of p (-% )

(2.13)

We now discuss the location of contours in the A.

and s planes. Roughly speaking, the contour of
integration is such that the singularities needed
to reproduce the expansion (2.10) lie to the right
[e.g. , the singularities of I'(-z) and I'(-X+ z)],
and the "dynamical" singularities in C(X, z;t) to
the left. Figures 1(a) and 1(b) display the contours
in the A, and s planes. If we carry out the A. inte-
gration in (2.13) first, then clearly C(A, z;t) cannot
have any singularities in A, to the right of the con-
tour because closing the contour to the right must
produce the series expansion in A, embodied in
(2.10). Next we consider the integration of the
resultant function over ~. Again there can be no
singularities to the right of the contour because
closing the contour to the right must reproduce
the expansion contained in (2.10). Such singulari-
ties will evidently be absent if C(A, z;t) does not
possess singularities the location of which depends
on z. However, this is not a necessary condition.
In principle one can have singularities the position
of which depends on A. since they will be washed
up in the A, integration if they cannot pinch against

{b)

FIG. 1. (a) The contour C&, (b) the contour C~.

I (-A. + z).' However, our experience with the
Khuri or z plane (or the Regge plane) does not lead
us to expect the existence of these kinds of singu-
larities. Clearly singularities to the left of the
contour exist and will contribute to the asymptotic
behavior. So far we have been keeping p and o
small so that the inequalities (2.5) and (2.6) hold.
Using (2.13) we can now analytically continue out-
side this range of values.

Our central result is then Eq. (2.13) expressing
the current-hadron scattering amplitude as a dou-
ble Sommerfeld-Watson transform. Let us now
push the contour C~ to the left, picking up con-
tributions from the poles of I (X+ 1) plus those
from possible dynamical poles. We have
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~j dX r(-z)r(-Z+ z)r(X+ 1) (-v)'(-o)"-'C(!)., z;t)

d~ r -z r -~+ z r X+ 1 -v' -0 '-'C X z t

-Izaak
( )a

, r(-z)r(k+ g) (-v)'(-o)-"-'C(-k, g;t)

+Q r(-z)r(-g, + z)r(g, + 1) (-v) ( o)'(-'R, (-z;t), (2.14)

where X~ is a vertical line parallel to the imaginary axis, Re A, =O, and lying in the left half-plane. [X~] is
an integer such that -[X~] is the nearest integer lying to the right of the vertical line X&. Dynamical poles
in the A. plane are taken to occur at A. = g, and we define

R, (z;t) = res c(Z, z;t) .
X.=gg

(2.15)

Substituting (2.14) into (2.13) we obtain

T(v, o, t) = — dg dX r(-z)r(-!(.+ z)r(X+ I) (-v)'(-o)"-'C(~, z;t)2' Cg x)

- I&z1( )))

,
r(-g) r(k+ z) (-v)'(-o) -"-' C(-» g' t)

2p c. . .(k-1)!

+ g r(-g)r(-g;+z)r(g, + I) (-v)'(-o) ' 'R, (z;t) (2.16}

ln the second term in (2.16) we now push the contour C, to the left and write

T(v, v, t)= —

deaf

dh r(-z))'(-x+z)r(x+()(-v)'(-a)» '((x, a;()

- Lx))l
( ))

dz g, I'(-z}I'(k+ g) (-v)'(-o) ' 'C(-k, g;t)2v g, „,(k-1)!

+ p I'(-g)I (-g, +g)r(f, +1) (-v)'(-o)~( *R,(z;t)

)) i
+Q r(-n. )r(k+ni)(-v)"'(-o) ' "sP, ( k;t)-, , , (k-1)!

+2 Q r(-n, )r(-g, +n, )r(g, +1) (-v) "~(-o) ( "y„(t), (2.17)

where we have taken the poles in the z plane to
occur at z=o.

&
and defined

p, (-k;t) =res C( k, z;t),
Z =Cia

(2.18)

y, ,(t) =res R, (z;t) .
C=C!g

(2.19)

In all of the above equations the pole trajectory
functions 0.&and g, are of course functions of t.
In (2.17), X, is a vertical line parallel to the imag-

inary axis lying between -I and 0. Vfe have not
included in (2.17} contributions from the poles in
r(-g, +z), which occur at z=g, -m, m =0, 1, 2, ... .
This is because, as we shall argue in the next
section, Re&, ~ -1 if v ImT scales in the manner
of Bjorken. ' By moving X, to the left we pick up
contributions from these poles as well as contri-
butions from the poles in I'(k+ z). If, on the other
hand, it is ImT that scales, then Re/, ~ 0 and
some of the poles in r(-g, + z) move into the in-
terval -1&Rez& 0 and their contribution must be
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added to the right-hand side of (2.17). Finally,
fixed poles may also be present and their con-
tribution can be easily included.

III. DISCUSSION AND CONCLUSIONS

Re&, ~ -1 for all i . (3.1)

Thus the property of scaling provides a powerful
constraint on the location of singularities in the
A. plane. The relation (3.1) should be contrasted
with the constraint e& ~ 1 which unitarity places
upon the singularities in the angular momentum
plane. Relation (3.1}tells us that if dynamical
singularities exist in the A. plane then they cannot
appear to the right of ReA. = -1. However, there is
no compelling reason to have singularities at all
in the A. plane. The scaling law vfmT-F(&u) does
not require them, and we see from (2.17} that we
can have the scaling law in this form in their ab-
sence. This situation is particularly appealing,
and the absence of singularities here is analogous
to the situation with multiparticle amplitudes"
where singularities in helicity do not occur inde-
pendently of the angular momenta but are deter-
mined by the singularities in the angular momen-
tum planes. In this circumstance we can say that
scaling has a kinematical rather than a dynamical
origin.

If, however, the scaling law has the form ImT- F(&u} in the Bjorken limit, then dynamical singu-
larities in the A. plane are essential and instead
of (3.1) we will have the constraint

Re(, 0,

with the position of the leading pole being g, = 0
for nontrivial scaling to occur. Scaling is then
necessarily of a dynamical origin.

Recently the question of light-cone structure and
asymptotic momentum-space properties of two-
and three-point functions has been investigated by
Andersson" using Mellin-transform techniques.

We have obtained a representation for the cur-
rent-hadron scattering amplitude in which the
dependence on the energy v and the mass 0 is
made explicit. For the new index plane associated
with the mass variable, we made the natural
assumption that the only singularities that reside
in it are poles and cuts. So far the location of
singularities in the A, plane is quite arbitrary. We
now invoke the property of Bjorken scaling. '
Suppose then that vlmT-F(&u) in the Bjorken
limit defined by v -~,

~
o

~

-~, with -g/v = &u held
fixed. From our representation (2.17) we see that
this is possible if and only if

The same techniques, in the context of the Jost-
Lehmann-Dyson (ZLD) representation, "have been
employed by Bhaumik et al." to analyze virtual
Compton scattering. We would like to comment a
little on the relationship of our work to theirs.
These authors treated only the absorptive part of
the virtual brompton amplitude and confined their
analysis to the forward direction, which resulted in
some simplification. Qn the other hand, in this
paper we consider the full scattering amplitude
and treat the general nonforward case. Qur final
results can be specialized to the absorptive part
by taking the discontinuity. We used the DGS rep-
resentation, rather than the JLD representation,
to provide an expression for the coefficients of the
double power series in the domain (2.5) and (2.6).
Our approach is closer in spirit to the w'ay in
which the Regge plane was introduced in particle
physics following the expansion of the scattering
amplitude into a single series of partial waves.
In fact, as we mentioned earlier, our analysis
parallels that of Khuri, ' who generalized the Regge
analysis to the case of double-power-series ex-
pansion. However, in place of double dispersion
relations given by the Mandelstam representation
for strong-interaction amplitudes, which provided
Khuri with an analytic expression for the expan-
sion coefficients, here we had to use the (v, o)
connection provided by the DGS representation.
This is because a double dispersion representa-
tion in v and 0 cannot be justified in general for
the current-hadron scattering amplitude. Our
basic result is the representation (2.13) in which
the dependence of T(v, v, t) on v and g is disen-
tangled in a multiplicative manner. ' Moreover
the Regge behavior of the amplitude is clearly
exhibited. The analysis of Ref. 13 is concerned
with scaling properties and not with Regge prop-
erties. "Thus our representation is seen to make
direct contact with the work of Abarbanel et al .
In fact the conjecture made by these authors con-
cerning the scaling properties of Regge pole terms
is seen to arise naturally in our representation,
and the extra terms in Eq. (2.17) a.re seen to pro-
vide "corrections" to the form written in Ref. 4.
The observation we made about the scaling be-
havior being kinematical in origin is also appar-
ent in the results of Ref. 13.

Our representation may be of value in the anal-
ysis of current-algebra sum rules. "" Its utility
there, however, requires the assumption of the
exchange of the integral entering the sum rules
with those over X and z occurring here. It would
also be of interest to examine the situation with
vector or axial-vector currents and spin states.
The invariant amplitudes in such a situation are
obtained by derivatives w'ith respect to v and the
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external current masses' from the amplitude de-
scribing a scalar situation like the one we consid-
ered here.
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The expansion, in the Regge-slope parameter a', of simplified meson Born amplitudes comprising the
Euler 8 function and its multiparticle generalization is considered in order to proceed towards a
Lagrangian density 8 which goes beyond the zero-slope limit of Scherk. A discussion of the
Laurent-Taylor expansion of the four-meson amplitude leads, at least formally, to a Lagrangian density

in terms of a scalar field $; this density is, however, noniocai since it contains an infinite number of
derivatives. Certain approximation schemes, in terms of higher-mass poles of the full amplitude, are
introduced. Dimensionality arguments applied also to the multiparticle extension lead naturally to the
expansion of 2 in the Regge-slope parameter a'. The full Lagraagian density is given, up to order a'
relative to the zero-slope limit. At this order it is necessary to consider only the four- and five-point

functions.

I. INTRODUCTION

The zero-slope limit of the scalar-boson Born
amplitudes in the dual resonance model was first
investigated by Scherk. ' He has shown that the
four-point amplitude represented by an Euler beta

function and the N-point amplitude represented by
the generalization of the beta function reduce, in
the zero-slope limit, to the convention ~.1 Ps La-
grangian theory. This demonstration ~nd further
work' along these lines are of considerable inter-
est because they provide a linkage between the


