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We show that one-electron and one-photon expectation values of the equal-time commutator of charge
densities in quantum electrodynamics, which are usually assumed to be zero, contain 8-function
derivatives of order n p 4 when evaluated in fourth-order perturbation theory.

I. INTRODUCTION

A few years back Drell and Hearn' obtained a sum rule from dispersion relations and the low-energy
theo&rem which relates the anomalous magnetic moment of the proton to an integral over photoabsorption
cross sections. Many authors' have given an equal-time commutator method of derivation of this sum
rule which is applicable to any spin--, particle. In this derivation it is assumed that the electric charge
densities commute at equal times. On the other hand, in the derivation given by Drell and Hearn, it is
assumed that the spin-flip Compton amplitude satisfies an unsubtracted dispersion relation. As we shall
show, this would be true if the electric current j(x) commutes with the potential A(y) at equal times. This
assumption is equivalent to the vanishing of the commutator of the charge density with itself at equal times.
The vacuum expectation value of this commutator can be shown to be zero. It is however, not clear
whether its one-particle expectation value is also zero. A simple way to settle this question is to examine
how far unsubtracted dispersion relations for Compton scattering as well as photon-photon scattering are
satisfied when cross sections and amplitudes appearing in these relations are approximated by their per-
turbation-theory values. We find that these are not satisfied, showing thereby that j(x) does not commute
with A(y) at equal times. Consequently p(x) does not commute with p(y) at equal times. We give explicit
expressions for the one-electron and one-photon expectation values of

I p(x), i (S)J~(». —y.).

II. ONE-ELECTRON EXPECTATION VALUE

To obtain the one-electron expectation value of the commutator under discussion, we start with the on-
shell forward Compton scattering axgplitadoe

,,f~ &= &„&au &&if o~~" o&~&&pl&j &-o& i&'&~&&Ip&+&ra f o xe" o&~ &&pllj'&o&a'&~&]lp&, ,
where

i&~& if p'~~" ,p, &~&=&pl&&&o&;&&~&&lp&. , ,
It follows from the structure of t„s(&p&) that the dispersive part ( &f),&osgiven by
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f„,((d) = 5„,d, ((u') + i(ue„„o,d, ((u'),

and the cross section [o~(&u) —o„(&u)] are related by
oo I2

d(td')= —,[a (e') —rr (v'))+ —.a„„s J dec' *()(x )(p[[j,(0) A(x)[[)t) .
0

Note that the commutator

(3)

being proportional to 5„„contributes only to the spin-nonf lip amplitude. The last term on the right-hand
side of E(I. (3) is usually taken to be zero. If this were so, one would have

1 " dc@'2
d, (0) =

2 „,[o (&u') —o„((d')]
Q)=0

(4)

(5)

In order to decide whether E(ls. (4) and (5) are valid or not, we calculate d, (up) in fourth-order perturba-
tion theory. The fourth-order Compton amplitude can be written as4

(6)

where

rs
&s =

i(p+k) —m i(p+k —q) —m d q i(p+k) -m' (p+k)'+m' "(p+k —q)'+m' "q'+A.' (p+k)'+m' y"'

d q i(p —q) -m i(p+k —q) —m i(p+k) —m
q'+ A.

' " (p - q)'+m' ' (p+k —q)'+m' " (p+ k)'+m'

i(p+k) -m i(p+k —q) —m i(p —q) —m d'q
'(p+k)'+m' " (p+k-q)'+m' "(p —q)'+m' " q'+&~'

J i(p —q) -m i(p+5 —q) —m i(p —q)-m d q
"(p —q)'+m' '(p+k —q)'+m' "(p —q)'+m' "q'+Z'

(6)

Here p (k) are the electron (photon) momenta, and A, is the small mass given to the photon in order to
eliminate the infrared divergence. The y', "' are obtained from y",' by interchanging r and s, and by making
the substitution k —k. The evaluation of these y's is fairly lengthy but straightforward; we give only the
final result for the spin-flip Compton amplitude, which is

s=l

k, kg S(3S+2) 28' 2(d
&()' (s+ 1)2(2s+1)' (s+ 1)(2s+ 1) m

Since e„,~e„„o,o, (5„—k, k,/uP} =0, the second term does not contribute to d, ((d2). The spin-flip amplitude
which follows from (11) is'

o ~™2
(s+ I)'(2s+ I)' (s+1)(2s+1) m

We now use the spin-flip Compton scattering cross sections'

4
1+4y 5y (1+y}1 (1 2y)
y(1 + 2y)2 2y2 (13}

on the right-hand side and the expression (12) on the left-hand side of E(ls. (4) and (5) to see if these iden-
tities are satisfied. We find that, whereas identity (4) is satisfied (both sides being zero), E[1. (5) is not:
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d , r~ (114 120 2A.
~ d2 (o& + ln— (14)

while the right-hand side is

1 d
" d+12, , r,' 194 120 2A, &

0 QJ= k

Clearly the right-hand side is different from the left-hand side, which shows that

5(x.) &P lb. (0),&,(x)] I p& «
Assuming

(15)

5(,)&pl[j.(0),&,( )]I&& =

where Go, G', , G'„. . . , are
the various coefficients Go,

(16)ie„„o, G;+ P G'„(-V'}"5'(x),

constants, we find, upon using Eq. (16) in Eq. (3), the following formulas for
e e.G„.. . , G„:

1 " d(u'2
G' = d, (0) ——, 4'/((d') —o/((o&')]

F 0 (d" -(d'
(d 0

d"
2

d" 1 " de' . [o&(~') —o~(~')1des'" ', ), des'" 2n, co" —(u'

(1V)

(18)

We see from Eq. (17) that the Drell-Hearn sum rule will be modified if Go is different from zero. The
coefficients G„can be explicitly calculated in fourth-order perturbation theory by using Eqs. (12) and (13)
in Eqs. (17) and (18). We find

G8 0

8 80r'
1 9 m2~

1984 r~2
G~ = —

45

(20)

Since the equal-time commutator [j,(0),A,„(x)]5(x,) is related to [E,(0), E„(x)]5(x,) as well as [p (0), p (x)]
x5(xo) by virtue of Maxwell's equations, we have

5(x,) yl[E, (0), E„(x)]ij» =f~„,o, G', + P G'„(-~')" 5'(x), (22)

5(x.-~.) &pll p(~), p(x)]I p& =f~„.,o,s.'5"„G;+ p G'„(-~')" 5'(x-y),
/=1

as a consequence of which the equal-time commutation relation for dipole moment operator becomes

&pl[D, (f)e D.(t)]Ip&=fe,.ootG'.

(23)

(24)

The modified Drell-Hearn sum rule given in Eq. (1V) can be derived from the above commutation rela-
tion by employing techniques used in Ref. 2. As noted earlier, Go=0 in fourth-order, which is in keeping
with the fact that d, (0) as well as the integral appearing in Eq. (17) are also zero in this order. If G,
happens to be nonzero in sixth-or higher orders, the Drell-Hearn sum rule would no longer be valid; it
would have to be replaced by our Eq. (1V).

III. ONE-PHOTON EXPECTATION VALUE

We shall now show that in addition to the one-electron expectation value, the one-photon expectation
value of the commutator of electric fields at equal times is also nonzero. To obtain this, we start with
the one-shell forward photon-photon scattering amplitude represented by

M„;.(te)=ee„.(te)-(e f O'ee'eO(e)(O, e, (f&.(O) W, (e&}(O, e,. &
re' O'ee"*O(e)(O, e, lf&, (O), w, (e})IO, e, ),

(25)
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with

t,„„(~)=i~ Jf &'»e""e(»,)(k, e, )[j,(0), j„(»)]/0, e~).

Here the polarization of one of the photons during collision changes from e„ to e„while that of the other
remains unaltered. If we decompose the amplitudes in the manner

M&„„(&u)= 5&„5„E(&u)'+5»5„E(-~')+ 5,~5„,H(ur'),

we find that Eq. (25) is equivalent to

D(~') = 2Re[&(~') —&(-~')]

1 f d(d oo.[o (~')-o, -(~')]+ p G„"~'",

(2V)

(28)

where

5(»0)(&, egl[j.(0),&,(»)]l&, e~}=i~„.A g G "(-&')"&'(») (29)
It= 0

S being photon spin and o~ (o, ) being the total cross sections for collisions between two circularly po-
larized photons with parallel (antiparallel} polarizations. Note that the second term on the right, -hand side
of Eq. (25), being proportional to 5„,, does not contribute to D(&u'). It follows from Eq. (28) that

1 4(d
G,"=D(0) —— —[o (~) —o,-(~)],

0
(30)

1 d"
G "= — D(aP)

gl duP"
1 &" de

,„;,[o~(~) —o, (~)], q =1, 2, . . . .
7T p 4) .

(31)

Let us now calculate these coefficients in fourth-order perturbation theory The a.mplitude D(~'} to
order e' given by Karplus and Neuman' is

r2
D(&o~) =, (3[B(y') B( y')]——[T-(y ) - T(-y )]], y =su/m, (32)

where the transcendental functions B(u) and T(u) are defined by

B(u}=3
~

dyln[1 ie- 4uy-(1-y)] ~ —3u- —u - u
2, 8

I
J~o t„)((, 15 105

T(u) =g
cap

1 n[1-i e- 4uy(1-y) ]~ -u--, u ——u
8'

& X(1-X) 45

The cross sections appearing on the right-hand side of Eqs. (30) and (31), to order e', are the pair pro-
duction corss sections for collision of circularly polarized photons which are given by the Breit-Wheeler
formula

o~ (ur) -o, (e) = wro' —cosh 'y — z (y' —I)'~3 (33)
y

Usings Eqs. (32) and (33) in Eqs. (30) and (31), we find GO=0, while all other G~& are nonzero. The typical
low-order coefficient G~& is given by

28m~~
Gi"=

45
'2 (34)

We therefore conclude that the one-photon expectation value of the equal-time commutator of j„with 3„
and hence that of E„with E„or p(y}, is nonzero. It will be noticed that G, for the one-photon expectation
value given above is different from the corresponding coefficient in the one-electron expectation value
given in Eq. (20). We therefore. conclude that the 5-function derivatives of arbitrary order rl & 4 in the
equal-time commutator of electric charge densities in quantum electrodynamics are q numbers.
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Projection operators are derived which split the electromagnetic interaction into a "pair-
like" interaction and a "fieldlike" interaction. The separation is applied to lowest-order
electromagnetic phenomena. All first-order electromagnetic scattering of charged particles
is shown to arise from pairlike transitions. For Compton scattering, the pairlike interac-
tion is shown to yield the Klein-Nishina formula. The primitive self-energy of an electron
is shown to vanish for the pairlike interaction alone, if related boundary conditions are im-
posed on the photon propagator. The usual ultraviolet divergence can thus be attributed to
the fieldlike interaction.

I. INTRODUCTION

The divergences of electrodynamics, in both
classical and quantum theory, originate in the
simplest electromagnetic interactions. In the
classical theory, radiative reaction yields "run-
away" or, alternatively, noncausal solutions to
the equation of motion. In the quantum theory, the
nonvanishing amplitude for forward Compton
scattering may be identified as the (nonsummed)
source of the infinite primitive self-energy of the
electron. While the existence of the divergences
suggests that the electromagnetic interaction is
in some way "nonminimal" or redundant, the close
relationship of the divergences to observed physi-
cal phenomena (including the I,amb shift in higher-
order interactions) seems to imply that the diver-

gences are essential elements of the theory, w'hich

cannot be avoided except by a procedure of renor- .

malization. The overwhelming success of the re-
normalized theory, as evidenced by the precision
of its agreement with numerous experiments, leads
further to this conclusion that the postulated inter-
actions are correct.

Nevertheless, we have sought a "more minimal"
interaction to explain simple electromagnetic
phenomena. We have been at least partially suc-
cessful. We introduce projection operators to
split the electromagnetic interaction into a ". field-
like" interaction and a "pairlike" interaction. The
pairlike interaction is shown to account for lowest-
order electromagnetic phenomena, and to yield a
vanishing primitive self-energy of the electron.

The derivations are carried out in the formalism


