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of tIt can always be set so as to forbid trilinear Q-lepton-
@ couplings. This question arises if and only if 9 con-
tains Q and lepton representations which are abstractly
identical. (Among the numerous other ways to forbid
such couplings one may note the possible existence of
lepton-number gauge fields. ) I want to thank H. Pagels
for a discussion on this point.
For the technical meaning of this term and for earlier
references see, e.g. , T. Hagiwara and B. W. Lee,
Phys. Rev. D 7, 459 (1973). The symbol Z(8) is meant
to imply that specific choices for lepton, quark, and
scalar field representations have been made.
To be precise, one more term should be added to 2,
namely, ( Q(

t times a linear superposition of all

H&'~~II&'& where the H&'~ are the Higgs fields of repre-
sentation type (i), as they appear in Z(9). These terms
do not affect the argument.
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The partial-wave series is converted without approximation to a Fourier-Bessel expansion based on a
new (infinite series) expansion for the Legendre function. The direct connection between the
Fourier-Bessel phase shift and the partial-wave interpolating phase shift is established as an infinite
series in powers of X ' (X = wave number). The series contains the Glauber eikonal approximation as
a leading term and reproduces the results of an eikonal expansion about the Glauber propagator.
Corrections to the eikonal approximation are developed and rules are given for an unambiguous
interpretation of the eikonal expansion. The relativistic eikonal expansion is discussed for forward and
backward scattering without small-angle approximations.

I. INTRODUCTION

The problem of obtaining high-energy limits of
scattering amplitudes is one of general interest in
physics. In this paper, attention is focused on the
high-energy expansion of the Fourier-Bessel rep-
resentation of scattering amplitudes, as it has
been obvious for a long time that high-energy scat-
tering through small angles is very conveniently
treated by means of eikonal (or straight-line path)
approximations. One of the simplest and most
successful theories of this type was developed by
Qlauber, ' who noted the advantages of a straight-
line path parallel to the average momentum. By
introducing such a path, Glauber obtained a
Fourier-Bessel representation of the scattering
amplitude which embodies approximate unitarity.
The Fourier-Bess el representation is advantageous
because its existence can be justified for all angles
on general grounds of analyticity in the momentum
transfer as shown by Blankenbecler and Gold-
berger. 2

However, all derivations of eikonal approxima-
tions require a small scattering angle in some

sense. As a result many variants of the approxi-
mation' have arisen in attempts to extend the an-
gular range of validity. In principle, the number
of possible variants of the eikonal approximation
is unlimited. This is because, for nonforward
scattering, the set of rays which represents the
eikonal approximation to the scattering wave func-
tion can be imagined to propagate through the in-
teraction in innumerable ways, each of which gen-
erates a new variant of the approximation. Since
the question of angular range of validity for any
particular variant of the approximation has re-
mained open, there has been no compelling reason
to believe any of them was good for large-angle
scattering. 4

Several studies of the high-energy limit of scat-
tering have been made by means of converting the
partial-wave sum to an integral over impact pa-
rameters. For example, Glauber showed that his
average-momentum-direction eikonal approxima-
tion could be obtained in such a manner if the Le-
gendre polynomials were replaced by a Bessel
function J,(qb), where q =2K sin-,'8 and 5 = (f +-,')/K.
Similar methods have been used to examine for-
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ward or small-angle scattering in relativistic
models. ' Even though assumptions about ray paths
are eliminated in this approach, generally a small-
angle approximation remains, as there are terms
ignored which are only small when the scattering
angle is small.

Cottingham and Peierls and also Adachi and
Kotani ' have shown that an exact Fourier-Bessel
representation could be obtained which is valid for
all physical angles 0 &8 &m provided the scattering
amplitude is identically zero for angles beyond
the physical range. This assumption is of course
too restrictive, as it destroys analyticity in the
momentum transf er.

Another type of approach to short-wavelength
scattering has been to systematically expand the
scattering T matrix using the eikonal-expansion
approach. In this vein, corrections to Glauber's
approximation have recently been obtained by de-
veloping without approximation a tedious eikonal
expansion about the average-momentum-direction
propagator of the Glauber theory. ' For small-
angle scattering, unambiguous results were ob-
tained. For large-angle scattering some questions
remain open due to non-Fourier-Bessel terms in
the eikonal expansion. However, a conjecture was
advanced that all the non-Fourier-Bessel terms
cancel in the average-momentum-direction eikonal
expansion which proved numerically successful at
large angles.

The present paper develops a complete high-
energy expansion of the Fourier-Bessel represen-
tation of the scattering amplitude. The expansion
is exact in the sense that no small-angle approxi-
mation is employed. For this reason many of the
questions about angular range of validity of the
Glauber-type eikonal approximation, which is the
leading term in the expansion, can be unambigu-
ously discussed and corrections can be developed.
The expansion is developed in Sec. II by direct
conversion of the partial-wave sum to a Fourier-
Bessel integral based on an expansion of the Le-
gendre function developed in Appendix A.

Section III discusses high-energy approxima-
tions to the interpolating function for the partial-
wave phase shifts for the case of potential scat-
tering. The Glauber approximation is derived
without use of a small-angle assumption, and
some obvious corrections to it are discussed.
Section III also develops the leading terms in the
Fourier-Bessel expansion and shows that they
agree with the results of an eikonal expansion
about the eikonal propagator of the Glauber the-
ory. Based on this agreement, some rules are
given for interpreting the content of an average-
momentum-direction eikonal expansion. Section
IV considers the higher-order corrections to the

Fourier-Bessel amplitude Sz (b) .By using known
results in the classical limit, a large class of
contributions to S~(b) are summed to given con-
necting formulas between the Fourier-Bessel and
partial-wave phase-shift functions.

Section V considers the relativistic (spinless)
partial-wave sum. Some results of Blankenbecler
and Goldberger are reviewed, and the relativistic
Fourier-Bessel expansion is developed. The
equivalent of the Qlauber theory for small-angle
scattering and for large-angle scattering by an
exchange interaction is discussed. Finally Sec.
VI provides some concluding remarks.

II. FOURIER-BESSEL EXPANSION
OF SCATTERING AMPLITUDE

We start with the partial-wave sum' for the
scattering amplitude at fixed wave number K
(k=c =1):

f (8) = Q A& ~& (1 —2y'), y = sin-,'8,
)=0

A,. = (-i/K)(j +-,')[exp(2il&) —1] .

(2.1a)

(2.1b)

The index j in this sum can be continued from the
discrete integer values to the complex angular-
momentum plane as shown by Regge, ' who con-
sidered the behavior of the radial Schrodinger
equation for arbitrary values of a variable A. . The
physical angular momenta are realized when A.

assumes positive half-integer values:

Z =j +-,'; Z' ——,
' = j (j +1) . (2.2)

Assuming a potential in the SchrMinger equation
which satisfies the bounds

5(Z/K) =O(1/~). (2.5)

Also, for R(A. ) &0, Regge has obtained the bound

—6(~/K) &-,'w.
dA,

(2.6)

The properties above have been reviewed be-

f

�1~'
V(r) l

& M =co~t (2.2)
0

and is no more singular than r ""(c& 0) as y 0,
Regge found that the A,. in (2.1) are smoothly in-
terpolated by a function which we write as

A. (A.) = -i (A/K) (exp[2 i5(A/K)] —1j . (2.4)

Some established properties of A(A. ) are that it
is analytic for real values of A, in the range R(A. )
=-C to +~ (if C&1) or R(A. )& -1 to +~ (if C& 1).
The Froissart-Gribov continuation of the relativis-
tic partial-wave amplitudes similarly leads to an
A(A. ) analytic for R(A. ) & --,'. For large, real values
of A., the phase shift tends to zero as
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cause they permit the partial-wave sum to be con-
verted to an integral over ~eal values of X using
the Euler summation formula, "i.e.,

with respect to A. at the lower limit of integration,
i.e., A. =O:

f(8) = JP dZ A(Z)Z, „,(1 —2y') R, (y). (2.7)
0

R, (y)=, , R,„(-.')~""-"(0;y).
1

2n ! (2.9)

Z(X;y) -=A. (X)f, „,(1 -2y'), (2.8)

The standard interpolation of the Legendre poly-
nomials I'& by the Legendre function Pg y/2 is
used "

A drawback to Eq. (2.7) is the complicated re-
mainder R, (y) which arises from derivatives of
the argument of the integral

Similar terms for A. =~ arise in the Euler formula,
but they vanish under the conditions stated above.
In (2.9), B,„Q) is the Bernoulli polynomial of or-
der 2n and argument —,'." Carrying out the differ-
entiations, which we assume to exist at A. =0, and
separating the remainder into derivatives of A(A. )
times coefficients depending on y' = sin'(-, 8) pro-
duces

00 n-1 2k ~W

A. = 0

oo oo

2g +2Q —1
(2.10)

+o(K "')- ;2.11)

Eq. (2.7) leads to the well-known classical, "cat-
tering formulas.

However, the remainder R, (y) can be eliminated
without approximation when Eq. (2.7) is converted
to a Fourier-Bessel form with finite K (8 NO).
This conversion is based on an expansion of the
Legendre function which is developed in Appendix
A. The expansion takes the following form involv-
ing the Bessel function J,(x):

1 d
(2k)! dX dl ' )

x go(2g[(1+ ~)/2]'~') . (2.12)

Thus the object is to convert Eq. (2.7) to Fourier-
Bessel form using this result which is valid for
~1+x

~

&2. In Eq. (2.12) the polynomials b~(x) are
of degree 0 in x and are defined in terms of gen-
eralized Bernoulli polynomials as follows:

b, (x) =a&;"'(x).

These polynomials are discussed in Ref. 14. Table
I lists the first five of the b~ polynomials. Note
that the highest powers of x take a simple form.

In the classical limit 5-0, K becomes large but
A/K =b is the impact parameter which remains fi-
nite. Then if the remainder R, (y) is ignored and
the Legendre function is replaced by the asymp-
totic form"

'1/2

Px~ », (cos8)- . cos(Kb8 -+m)
~K& sln8

For orders higher than 5 the polynomials are ob-
tained from those in Table I by means of a recur-
sion formula [see Eq. (A5) of Appendix A]. Actual-
ly the first three terms in the expansion are very
old, as they are equivalent to results derived in
another form by MacDonaM" in 1914. When we
write g = 1 —2y', the leading term is J,(2Ay) and it
has been-often used to show that a Fourier-Bessel
integral can be used as a small-angle approxima-
tion to the partial-wave series. To remove the
small-angle assumption it is necessary to keep
the higher-order terms in the expansion.

When (2.12) is substituted into the integral in
(2.7), the derivatives of the Bessel function can be
integrated by parts to cast then onto A(A). The
Fourier-Bessel expansion which results takes the
form

TABLE I. Generalized Bernoulli polynomials b& (x)
=—Bg"!(x)

bo(x) =1

bg(x) = ——x1
6

b, (x) =x(5x+1)/60

b3(x) = -x(35x +21x+4)/504

b4(x) =x(175x3+210x +101x+18)/2160

b5(x) =-x(385x3+770x +671x +286x+48)/3168

A-f
(2A)1 ~ P t 12 5 (jg 2)t ( i2
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y(s)=f d.z(2.y)g, „',s, (=:.—,",)(—,",)»(.) previous one, i.e.,

R(y) =R.(y) -R, (y)

+R, (y) -R, (y) . (2.13) =0 (2.15)

A second remainder R, (y) appears in this formula
because there are nonvanishing terms from the in-
tegrations by parts which are given by

1
20-1

R (y) =g g (-)&+'a«)(O)
k=l(2»t l=o

x &, —,'~ Zp 2'
(2.14)

Again corresponding terms from the A, = limit
have vanished.

The remarkable feature of the expansion is that
the new remainder R, (y) in Eq. (2.13) cancels the

This property is demonstrated by direct calcula-
tion. Using the expansion [see Eq. (A2) of Appen-
dix A] of the Bessel function Jo(2Ay), we find from
(2.14) tha.t

k=1 »=0

" (2b.2q)t'"" '
(2.16)

Similarly, using (2.12) to evaluate (2.10), we find
that

2n+2k —1 1~ (qt)' 4 (2n+2u) t
'"+'" ' rn (2q-2n)( (2 17)

So both remainders involve the same derivatives
of A (A, ) at A. =0 and also the same powers of y'.
The difference lies in the factors contained in
curly brackets, which involve the generalized
Bernoulli polynomials in a nontrivial way. In Ap-
pendix B, we show that these factors are also
identical, which then suffices to prove (2.15).

With the usual identification b = A/K of the im-
pact parameter, it becomes clear that (2.13),
when it exists, is the expansion of an exact
Fourier-Bessel representation of the scattering
amplitude. The partial-wave sum has been con-
verted, without approximation, to the integral

f (e) = (K/i) db b J,(qb)[S (b) —1],
dp

q =2K sin —,'e (2.18)

x exp [2ib (b)]. (2.19)

If the exponential phase factor is commuted left-
ward, the expansion factors into separate func-
tions of the impact parameter as follows:

where the amplitude Sz(b) is defined by the follow-
ing expansion in powers of K '.

W[6] =b 'Q b» ibb'--ob
k=0

X
K Kdb (2.21)

and a finite positive length 9 exists which bounds
the range of the interaction in the sense

as an expansion in powers of K ', with unity as its
leading-order term. Equation (2.21) defines W[6]
as the function of b one obtains by substituting the
bk (x) polynomials from Table I [now with powers
of x replaced by powers of the operator -ib5'
=,'b (d/db)] and then performing the indicated dif-
ferentiations of 6(b). Equation (2.20) is enlighten-
ing, in that it clearly displays the distinction be-
tween an exact Fourier-Bessel amplitude and the
interpolating function of the partial-wave phase
shifts.

For a fixed value of b, the expansion obviously
will only be well defined provided K is sufficiently
large compared with the derivatives of the phase-
shift function. Qualitative conditions which must
hold if the series is to converge, for fixed 5, are
that a positive length a exists which bounds the
derivatives of the phase function

lb(")(b)l & a "I6(b)l,

Sz (b) = exp [2ib (b)] W[6], (2.20) (b'6'"'(b)( & (R/a)" (6(b)( (2.22)

where using 5'—= (d/db)5 (b), we write Then if Ka & 1, R/ (Ka') & 1, and
~
5

~

& 1, the series



1850 STEPHEN J. WALLACE

converges. Generally the series converges faster
for larger values of b ~R due to Eq. (2.6). When
the series does not converge, it is asymptotic.

The role of the factor W[5] is clarified some-
what by considering the exact unitarity constraint'
on Sz(b). For potentials no more singular than
x ' as ~- 0, the elastic unitarity constraint in the
form (4m/K) Imf (0) = v [f (0) =forward scattering
amplitude, cr =total scattering cross section] is
satisfied, provided ~S~(b)~ e1, i.e.,

2v db b[iS~(b)(' —1]=o'
0

Q' . 2.23
4E

Here o' is a small [0(K ')) positive number which
represents the total scattering cross section to
unphysical momentum transfers, q'& 4K'. One
way of expressing the above unitarity constraint
is to write (for later convenience)

that time was to justify the use of 2 sin-,'8 in the
Bessel-function argument as in (2.18) as oppo'sed
to sin8 or 8. It is apparent that the approximation
involves no intrinsic small-angle assumption even
though the original derivation of (3.2) did assume
8 was small. Glauber's approximation contains
the Born approximation when expanded to leading
order in 5, (b), embodies approximate unitarity,
and has the property of reproducing the exact
Coulomb scattering amplitude except for a con-
stant phase.

It is worth emphasizing the fact that the high-
energy approximation of Glauber does not depend
upon the existence of a potential. This is because
5,(b) is defined to be the leading term in the ex-
pansion of the phase function in powers of the cou-
pling constant. By performing the inverse Fourier-
Bessel transformation of the leading-order term
from a perturbation-theory calculation [which we
denote by fs (q')] the phase 50(b) can be defined
from

S (b) =[1 —2~(b)]'"e'~"' (2.24) qq, (q) -=qq 'J dqq J,)qq)f )q').
0

(3 3)

The Fourier-Bessel phase function X (b) contains
25(b) plus contributions from W[5]; however, the
factor [1 —2+(b)]'~' arises solely from W[5].'~

The angular range of validity of Eq. (2.18) is, in

principle, now only limited by the singularities of
Sz(b) since the Bessel function is an analytic func-
tion. In practice, the angular range of validity is
limited by the accuracy to which we can construct
X(b) and &u(b) in Eq. (2.24).

III. CONNECTION KITH THE GLAUBER
APPROXIMATION AND ITS EXTENSIONS

In the high-energy limit (K- ~, v =K/Z-const)
of scattering, the phase function 5(b) can be ap-
proximated by its Born approximation value:

Then Eq. (3.2) can be used with this extended def-
inition of 50(b).

Still it is worth pursuing the simple potential
scattering case further to explore the corrections
to Glauber's high-energy approximation. One as-
pect of improving upon (3.2) is to use a more
sophisticated phase function 5 (b) even if the ap-
proximation W[5] =1 is not improved. For exam-
ple, it has been suggested" that the WEB phase
function be used for 5(b). If there is a single turn-
ing point (r, ) in the radial motion, the WEB phase
function is

pOO

5„„~(b)=K
~

dr [1 —b'/r' —2eU(r)]"'
t'0

25(b) = 25, (b)
-K dr [1 —b'/r'], (3.4)

d V([ '+b']'") . (3.1) where we define a dimensionless expansion pa-
rameter e by the equations

Then the leading term of (2.20) produces the
Glauber approximation:

e = V0/(Kv), V(r) = VDU(r), (3.5)

Sr(b) = S„'(b)

= exp [2i5, (b )] . (3.2)

Although the cancellation of the remainders in
Eq. (2.13) was not known, essentially this method
of deriving the high-energy approximation was
given in Glauber's 1958 lectures. ' The purpose at

5wK8(b) = Z 5&(b)
n=0

(3 6)

and xp is the zero of the first integrand. Here the
Langer form which involves b as defined previously
is assumed. In this form the WEB phase contains
the Glauber phase function 5, (b) as its leading
term in an expansion in powers of the potential,
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The general term in this expansion may be de-
fined in several ways but always involves n+1
powers of the potential and, regarding V, /v fixed,
a coefficient of order K ". For a Yukawa potential
V (r) = V, e "'/r the expansion (3.6) involves the
modified Bessel function K„(x) of integer order, '

(+ + 1 )n-1( )k

2I

K, ((n+1)pb),
[(n +1)p,b]' (3 '!)

where N = ,'n o-r —,
'

(n —1). The expansion is useful
because the 5„(b) are analytic functions of the im-
pact parameter for the special cases of Yukawa
and Gaussian potentials. Thus an impact-param-
eter amplitude containing WKB corrections to the
phase function is

S~ (b) = SwKs(b) = exp [2i5wK~(b)], (3 6)

00

5„v(b) = — drr '[1 —b'/r' -2cU(r)$ "'
24K „t'p

with W[5] still approximated by unity. There is a
disadvantage to this modification in that it no
longer reproduces the Coulomb scattering ampli-
tude.

While the WKB phase function is an obvious ex-
tension of the Glauber approximation to 5 (b), it is
of course not exact. Corrections to the WKB phase
shift may be similarly incorporated. The leading
correction to the Langer form (3.4) has been de-
veloped by Rosen and Yennie. " Their result is
equivalent to the following expression:

where for a Yukawa potential'

y, (b) = ———(ge)' — [K,(2!g.b) +2 p, bK, (2gb)]
1K, p,

'

(3.11)

SMwK& (b) = exp [2i5wKg(b) + 2i5Rv(b)] (3.12)

Clearly the procedure can be continued to higher
order so long as the WKB expansion converges.
Thus for high-energy potential scattering, it is
possible to interpolate the phase shifts in an ob-
vious and well-defined manner, and in this way
several suggestions for improving upon the
Glauber approximation have been made. However,
the situation is not quite so simple due to the
higher-order terms from W[5], which are com-
petitive with the above-defined WKB phase expan-
sion.

A. Connection with Eikonal Expansion

At some point, it is clear that one can no longer
ignore the correction factor W[5] which involves
derivatives 5'(b) of the phase function with re-
spect to b. Consider, for example, a term like
5,(b), obtained from (3.6), which is of order Kes.
This is the same order as the leading term
Kb[5,'/K]' =O(Ke') which comes from the deriva-
tives involved in W[5], i.e.,

is of order K (regarding V, /b fixed as is our
convention), which accounts for the subscript. The
functions 5, (b) and 5, (b) are as given above in Eq.
(3.7). A modified WEB approximation to the im-
pact-parameter amplitude is then

where

d dx—r F(r), —(3.9a) W[5] =1 - -,' iKb[5'/K]' --,'b5'V25/K2

+,'i[b5)"'/K'+O(-K-'), (3.13)

F(r) = In[2 —4m U (r) —2erU' (r)] . (3.9b)

5Rv(b) =,
db b[50(b)+5, (b)]

-1 d

+24.(b)+o(K '), (3.10)

To check the validity of the WKB approximation
at high energy it is sufficient to consider only the
leading terms in 5vR(b) obtained by expanding in
powers of e. We find that these can be expressed
as follows:

where V'5 =5"(b)+b '5(b) is used. Neither type
of correction can be said to dominate the other in
a systematic grouping of terms of the same order.
Thus starting from order Ke', the expansion of
Sz(b) generally involves combinations of terms
from expanding exp[2i5(b)] and also W[5] by use of
Eq. (3.6). In this manner systematic corrections
to the Glauber formula (3.2) can be obtained. When
like powers of K and e are grouped together, one
obtains correction terms to (3.2) identical to a
subset of the corrections previously found from
an eikonal expansion of the T matrix':

S~(b) = exp [iX,(b)](1+iX, (b) +iX, (b) —~, (b) +[iX,(b)]'/2!

+[iX,(b)]'/3 '+iX, (b)[iX.(b) —~.(b)]+i[X.(b)+V.(b)] —~.(b)}+O(K ') . (3.14',
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Omitting the argument b upon which all these

functions depend, the eikonal corrections are
equivalent to those given in Ref. 7:

@0=2&0

X~ =25,

x, = 25, —3b[6,')'/K'

x. =25.-», '[5.')'/K'

(u, =—,
' b50'9'50/K'

=0(K~),

=0 (Ke')

=0 (Ke'),

=0 (K~4),

=0 (e'),

(3.15)

,' b[ —6,'V'
5, +6,'V'5, ]/K'=0(e').

In the present notation we write X„(b) in place of
7'„(b).' Note that the high-order derivatives from
the term involving [b5)'" in (3.13) have canceled
with the leading portion of 2i5Rv(b) from expanding
Eq. (3.12)." Just the portion y, (b) of the Rosen-
Yennie phase remains to order e'/K. Indeed the
systematic grouping of powers of K and e has an
intriguing consequence: Each of the correction
terms to the Glauber phase X, in Eqs. (3.15) as
well as y, from Eq. (3.11) vanishes for the special
case of a Coulomb potential. This is shown in Ref.
7, where the eikonal expansion containing Eq.
(3.14) is developed. Thus even though the 5„do
not vanish (except for 6, ) if U(r) =r ', the com-
binations in Eqs. (3.15) do vanish. It is intriguing
because the Glauber approximation already gives
an exact result for the x ' potential. As empha-
sized by Moore's analysis, ' this seemingly ac-
cidental property of the Qlauber approximation
should persist to all orders in perturbation theory
and thus must be a property of the exact Fourier-
Bessel expansion. However, to preserve the Cou-
lomb symmetry of the Fourier-Bessel amplitude,
the expansion must be carried out consistently in
terms of powers of K and e as above. It then fol-
lows that the simpler extensions of the Qlauber
theory afforded by Eqs. (3.8) or (3.12) are not con-
sistent beyond 6 (b) = 5, (b) + 5, (b) because they ig-
nore all but the leading term W[5] = 1 of the
Fourier-Bessel expansion.

The term-by-term correspondence between the
eikonal expansion and the Fourier-Bessel expan-
sion (2.18) taken together with the WKB phase-
shift expansion (3.6) is not complete. In addition
to the terms shared in common, the eikonal am-
plitude Ss(b; q') has been shown' to contain the fol-
lowing additional terms, through order K ', on
the right side of Eq. (3.14):

where V' differentiates all factors. These terms
however produce no contribution to the scattering
amplitude as V'+q' is the null operator of the
Fourier-Bessel transformation (2.18), i.e.,

l dbb J,(qb)(V'+q')f (b) =0; all q. (3.17)
0

In other words, there are some terms in the lead-
ing-order eikonal expansion amplitude Sz(b; q')
which do not contribute to the scattering amplitude,
to order K ' at least, and the remaining subset of
terms which do contribute to the scattering am-
plitude are precisely those obtained from the
Fourier-Bessel expansion (2.18) as described
above.

B. A Conjecture Regarding the Eikonal Expansion

It is clear that the corrections to the Qlauber
theory of high-energy scattering involve two in-
gredients. First, there are the corrections to
5, (b), which derive from expansion of the phase
functions as in Eqs. (3.8) and (3.12). In addition
to these corrections, extra terms arise from
W[5], which represents the transformation of the
l-representation interpolating phase function
S(b) =exp[2i5(b)] into a Fourier-Bessel ampli-
tude Sz (b)The ,r. esulting Fourier-Bessel ampli-
tude, in turn, has been found through order K '
to be connected in a term-by-term way with the
amplitude obtained from an average-momentum-
direction eikonal expansion. It is this connection
which helps to clarify a previous conjecture re-
garding the eikonal expansion.

The average-momentum-direction eikonal ex-
pansion is unambiguous for forward scattering
(q =0). However, for nonzero q, the expansion
yields a Fourier-Bessel representation of the T
matrix only in the following sense:

(-M/2~)(k, ir$,.) =(K/z)

dbb J, qb S~ b;q' —1,
0

(3.18)

i.e., the eikonal amplitude generally depends on
q2 in a nontrivial way. For this reason an obvious
connection with the standard Fourier-Bessel rep-
resentation is lacking. A formal expression for
the eikonal impact parameter amplitude Ss(b; q')
explicitly displays the extent of the q' dependence
through a parameter

V +
8K (I -fxo(b) -~x (b)[2+~x, (b)l) e'" "', P = 1/cos-,'8 = [1 -q'/(4K')] "'. (3.19)

(3.16) The following expression together with (3.18) gen-
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crates the average-momentum-direction eikonal
expansion of Ref. 7,

S (b;q') =P 'exp[iPX. (b)]

xb exp -i 2K dZN r, p, 3.20

incorporates corrections to the linearized propa-
gator of the eikonal approximation. It involves
the momentum operator p = -iV and the position
r = (b, Z) through

2
X,(r) =-v ' dz V([b'+z']"'). (3.21)

The operator N(r, p) does not commute with it-
self at different points r. This necessitates Z or-
dering of the integrals obtained by expansion of the
exponential function. The Z ordering is repre-
sented by 3 in (3.20). It enforces the ordering
constraint Z, -Z, -Z, . . . on the integration argu-
ments starting with Z, leftmost, etc.

At first sight the eikonal amplitude Ss(b; q') ex-
hibits no obvious connection with the Fourier-
Bessel expansion. It is only by explicitly carry-
ing out the expansion to leading-orders as in Ref.
7 that the very definite connection discussed above
emerges. As expressed in Eq. (3.20), the apparent
K- ~ limit is not Glauber's approximation at all
but rather a related approximation attributable to
Abarbanel and Itzykson" (AI), i.e., by approxi-
mating N (r, p)/K- 0, one obtains

S (b; q') - Sz&(b; q') =P
' exp [iPX, (b )] . (3.22)

This only agrees with the high-energy limit of the
Fourier-Bessel expansion when q'=0 (P =1). In
order to resolve the conflict, it becomes neces-
sary to understand the q' dependence and why
N/K- 0 is not a valid high-energy limit.

The way out of this difficulty in interpreting the
eikonal expansion has been discussed in Ref. 7.
All q' dependence in the eikonal expansion (3.20)
was conjectured to disappear in the following way.
By expanding Eq. (3.20) in powers of N/K and ex-
panding P

' according to

P
' =1 -q'/(8K') —'q'/(128K') —~ ~ ~,

it is possible to perform a systematic regrouping
of like powers of K ' (regarding now q' fixed as
well as V, /v). Then the conjecture is that the re-
grouped terms in the expansion of eikonal ampli-
tude Ss(b; q') are related to the Fourier-Bessel

when (1) it is expanded in powers of N/2K and (2)
the parameter P is expanded about unity. The op-
erator

N(r, p) =exp[iPX (r)](p+q) p exp[-iPX (r)]

amplitude S~(b) in the following way:

Ss(b; q') =S~(b) + Q [(q'+q')/K']"t„(b) . (3.23)
n=l

Here all of the q' dependence in the eikonal im-
pact parameter amplitude is of the type explicitly
found in the leading orders in Eq. (3.16), i.e., it
is of the type that does not contribute to the scat-
tering amplitude for any scattering angle due to
Eq. (3.17). There is no doubt that all powers of
q'/K' will be present on the right side of (3.23) as
they come directly from the expansion of P. Thus
the conjecture is really that the (V'/K')" terms
also arise in just the right way when the expansion
of Eq. (3.20), through order 2n inN(r, p)/2K, is
carried out.

The reason for emphasizing this conjecture is
because the Fourier-Bessel expansion of this
paper can be seen to provide just the conjectured
form. We find an exact term-by-term agreement
for S~ (b) to order K ' between the eikonal expan-
sion and the Fourier-Bessel expansion modulo
the null-type terms in Eq. (3.23). More impor-
tantly, the Fourier-Bessel expansion proves that
the only dependence on q' arises from the Bessel
function J,(qb). The q' dependence in Ss(b; q'),
therefore, must all cancel in the end.

The correspondence with the exact Fourier-
Bessel expansion provides, we believe, the es-
sential rule to a sensible interpretation of the
average-momentum-direction eikonal expansion.
To obtain the physics from the eikonal expansion,
one should expand systematically in powers of K '
(q', v fixed) and retain only those terms consis-
tently determined. For example, powers such as
(q'/K')" in Eq. (3.23) are known to exist in
Sz(b;q'). However, if one does not know the com-
peting terms from [N(r, p)/K]'", the exact K '"
term has not been consistently determined and
therefore all K '" terms should be dropped. The
point is that [N(r, p)/K]' can never be regarded
as negligible compared with q'/K'. Clearly this
rule relies on the Fourier-Bessel symmetry of
the eikonal expansion conjectured in (3.23). It ex-
plains why the AI approximation (3.22) fails to be
a good approximation whenever the deviation of P
from unity is significant. Indeed the above discus-
sion points out a general pitfall which should be
expected when expanding in an operator involving
the kinetic energy as does N(r, p).

The reason for emphasizing the above rule is
because it is necessary to properly interpret the
content of a simple eikonal expansion (i.e., for
potential scattering) before systematic correc-
tions to the Glauber multiple-diffraction theory
(for scattering by compound targets) can be de-
veloped using the eikonal expansion method.
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IV. . HIGHER-ORDER CORRECTIONS
TO SF(b): EXPONENTIATION

The Fourier-. Bessel expansion of Eqs. (2.20)
and (2.21) gives a rather complicated recipe for
constructing the amplitude S~ (b). However, some
relatively simple results can be obtained. The
first is obtained by using the leading term in the
generalized Bernoulli polynomials given in Table
I. Then summing the leading portion of each term
in the series (2.21) leads to

W[6]=g —( —,', ib5')'(2i5'/K)2"
~=0 &t

= exp [--,' iKb (6'/K)'] . (4 1)

Thus the Fourier-Bessel phase X(b) defined in
(2.24) is approximately

X(b) =26(b) ,'Kb[5'-(b-)/K]', (4.2)

i.e., the eikonal corrections defined in Eqs. (3.15)
have exponentiated. This is just what was as-
sumed (but without definite proof) in Ref. 7, where
analytic forms for these phases are given in the
cases of Yukawa and Gaussian potentials.

A good deal more insight into the structure of
S~(b) is obtained by considering the classical limit
(5-0, K-~). The well-known classical expres-
sion" for the scattering amplitude takes the form,
for fixed scattering angle 6I,

where an error term of leading order K&' arises
from the K ~ portion of W[5], which is not incor-
porated in (4.1). Still Eq. (4.2) completely defines
the first four terms in the expansion of X(b) to be

X(b) =X.(b)+Xl(b) +X,(b)+X.(b) +o (K~'), (4 3)

I

f(8) =(K/) qlx" (b) I

«xpb[X(b) -bX'(b)]+i~[X(b)]], (4 7)

where the same functional defines the phase con-
stant n Ho. wever, the value b(8) at the Fourier-
Bessel stationary phase point is given by

+q =+2K sin~ 0

=x'(b) . (4.8)

=2K sin[5'(B)/K],

x(b) —bx'(b) =2[6(B)—Bb'(B)],
b Is~(b) I'/x" (b) =B/[2 cos-,'86" (B)] .

(4 9)

(4.10)

(4.11)

Condition (4.9) implies a function B(b) so long as
there are unique stationary-phase points b and B
for each 0. A simple example of this situation is
scattering by a monotonically decreasing potential.
In this event we may differentiate both sides of
(4.9) and (4.10), with respect to b, and eliminate
0 to obtain the relation

b(1 —[X' (b)/2K]2P" = B (4.12)

In general b(8) WB(8) as is apparent from (4.6) and
(4.8).

Obviously the content of (4.4) and (4.7) when k-0
is the same only if there is a definite relation be-
tween 6(B) and X(b). The constant phase factors o.

and absolute values do not affect this relationship
since 8 is the same sign as q and also d8/dB is
the same sign as dq/db If on. e demands that both
values of f (8) he the same in the classical limit,
the following conditions must be satisfied at fixed
6I ~

X'(b) =~2K sin(-', 8)

where

-I/2

[2 ~ inc
~

5" (B)~,

x exp/2i[5 (B) —Bb'(B)] +i n[6 (B)]], (4.4)

From (4.10) and (4.12) it follows that

dB bx" (b)
db 2B5"(B)

bX'(b)v'X(b)
1

x'(b)
4K

a[6 (B)]= (-,'v) sgn[5'(B)] + (-,'n) sgn[5" (B)] (4.5)

and B is the point of stationary phase in the inte-
gral obtained from Eqs. (2.7) and (2.11). B is
given by the condition

(4.13)

and finally one obtains an interesting result by us-
ing (4.12) and (4.13) in (4.11):

+8 =26'(B)/K, (4.6) IS (b)l' =1-bX'(b)v'X (b)/(4K') . (4.14)

and we have assumed a single stationary phase
point for each value of 8. Equation (4.6) can al-
ternatively be thought of as defining B(8).

The above result is to be compared with the one
obtained when Sz(b) =

IS+�

(b) Ie'x+' is substituted into
(2.18) and the integra. l evaluated by the stationary-
phase method. The result is

~(b) =bX'(b)V'X(b)/(6K'), (4.15)

a Fourier-Bessel amplitude which reproduces the
classical approximation to the partial-wave am-

The magnitude of the Fourier-Bessel amplitude
is simply obtained from the phase X(b). Thus if
we define



HIGH-ENERGY EXPANSIONS OF SCATTERING AMPLITUDES 1855

plitude is given by Eq. (2.24). The phase X(5) is
given a complex mapping:

X(b =B/cos[5'(B)/K]) =25 (B)+ 2KB

x (tan[5' (B)/K] —5' (B)/K),

(4.16)

which follows from conditions (4.9), (4.10), and
(4.12). For example, the WKB approximation to
5(B) could be used to determine X (b) by this equa-
tion. By construction, Eq. (4.16) sums all the
contributions to S~(5) which do not vanish in the
K- ~ (finite but arbitrarily large z) limit. If the
expansion parameter e = Vo/(Kn) is small, X(b)
can be alternatively calculated from Eq. (4.3).

It is not difficult to deduce an expansion for y(5)
which contains corrections to Eq. (4.3) by expand-
ing the right side of (4.16) in a Taylor series about
B =5 and using (4.12). However, it is important to
observe that the connection between y(b) and 5(b)
does not depend on the existence of a potential but
rather upon the knowledge of 5(B). This is the
reason that the connection obtained above using
the notion of classical scattering by a monotonic
potential has much more general content. Al-
though the classical limit was used to find the
mapping between y(b) and 5(B), this procedure is
really only a simple trick for summing the terms
in W[5] which survive the K- ~ limit for fixed z.

For this reason, (4.3) or (4.16) together with
(4.15) can be used for any potential. For non-
classical scattering the integral (2.18) must be
carried out numerically and nonclassical correc-
tions such as y, (b) from the Rosen-Yennie phase
shift correction may be needed. Still, the above
formulas go well beyond the Qlauber approxima-
tion and should prove quite useful in improving
the angular range of validity of the eikonal approxi-
mation.

V. RELATIVISTIC FOURIER-BESSEL EXPANSION

It is almost self-evident that a similar connec-
tion between the partial-wave expansion and
Fourier-Bessel representation will hold in the
relativistic case. However, whether or not such
an expansion is used to relate the two, a Fourier-
Bessel representation exists and is as interesting
for relativistic scattering as is the partial-wave
expansion. This was first emphasized by Blanken-
becler and Goldberger 2 (BG), who established
most of the formal properties of the exact Fourier-
Bessel representation by using analyticity in the
momentum transfer in place of the potential scat-
tering notions stated at the beginning of this paper.
This section reviews some general results of BG
as a preliminary to showing the explicit conver-

x[S~(b; s}-1], (5 1)

where the Mandelstam variables s, t, u are defined
in terms of the mass m (assumed to be the same
for each particle), c.m. momentum K, and z
=cos8 by

s+t+u =4m~,

t =-2K'(1 -z),
u =-2KI(l+z),
4K'=s -4m2,

and the normalization is such that

(5.2}

1
SR (s, t}2s

The Fourier-Bessel amplitudes in (5.1) can be
defined in terms of the spectral functions A, (s, t)
and A„(s, u) (which include Born terms) in the
Mandelstam representation

SR(s, t)=1r ' " dt'(t'-t) 'A, (s, t')
"tp

+s ')t du'(u'-u) 'A„(s, u'). (5.3)
"o

Blankenbecler and Goldberger define Fourier-
Bessel amplitudes equivalent to the followiag ones
(using 5 =[&(&-4m')]"'):

S'(5, s) -1=—t dtA, (s, t)K0(bt' ')
p

Sg(5, s)-I == duA„(s, u)K, (bu' ~) .
Np

By use of the Fourier-Bessel transform of the
modified Bessel function K,(Z) which appears
above,

(5 4)

(5 5)

(5.6)

one can easily verify that (5.4) and (5.5) are equiv-
alent to (5.3). The Mandelstam representation is
known to be valid for scattering by Yukawa poten-
tials; however, the spectral function A.„(s,u) van-
ishes if there is no exchange potential. "

sion of the partial-wave sum to Fourier-Bessel in-
teg rais.

The Fourier-Bessel scattering amplitude equiv-
alent to the Mandelstam representation is

f(s, t) =(K/i) t dbb J,(b(-t)'I')[S~(b;s)-1]
0

+ (K/i) ~ db 5 Jo(5(-u)'~z}
0
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The important restriction on the Fourier-Bessel
amplitudes of (5.4) and (5.5) arises from the as-
ymptotic unitarity condition. Ignoring small s '
contributions [equivalent to ignoring &u(b) and o' in
Eqs. (2.23) and (2.24)] BG showed that if the sig-
natured amplitudes

S~2 (b, s) = Szd (b, s) + S~~ (b, s) w 1 (5.V)

are unimodular, then elastic unitarity can be satis-
fied in both the forward and backward directions.
Dispersion relations can be written for the ampli-

S~(b, s) =-exp[i}t'(b, s)] . (5.8)

The + and —denote signature, and the phases
X'(b, s) are real for elastic scattering but become
complex when absorption is present. In terms of
these signatured amplitudes the scattering ampli-
tude (5.1) becomes

tudes S~ —1. However, it is more interesting for
our purpose to express unitarity by introducing
two Fourier-Bessel phases" in analogy to (2.24)
as follows:

/(s, t)=(K/t)f d(»M, (2( t)" )['2+-((», s)+-—', 2 ((»s) —2]+, (X /)ftdt id ((»( s)"')[-2-(i»s'),—'—'2, ((», s)] .
0 0

(5.9)

dzI J z z'-z '= J z' . (5.10)

By separating the two independent parity compo-
nents, the amplitudes

A'(A. , s)
r

00

=-i(»/2() =f dtd, (s, t)dt» „,(1+t (2 /'))tt
tp

du A„(s, u)Q~, /, (1+u/(2K') }ws
0

The Fourier-Bessel phases g' can now be related
to the signatured partial-wave amplitudes.

The Froissart-Gribov projection" defines the
correct interyolating functions for the partial-wave
amplitudes by using the integral 24

It is customar'y to express the unitarity constraint
by writing the partial-wave amplitudes in expo-
nential form involving phase shifts rather than as
in Eq. (5.11):

A'(~, s) = -a (~/X}{exp[2ib'(X/Z, s)) —I). (5.14)

Together with (5.11), (5.14) defines the interpo-
lating functions for the signatured phase shifts.

The set of relations is now complete and the
partial-wave sums of Eq. (5.13) can be converted
to Fourier-Bessel integrals in the manner of Sec.
II. The only difference arises from the Pq(-z)
sum which [see Eqs. (2.12) and (5.2)] produces the
second integral of (5.9) involving J,(b(-u)'"}.
The high-energy expansion can be written down
by inspection:

(5.11)
S~~(b, s) = exp [2ib'(b, s)]W[5'(b, s)], (5.15)

are found, which interpolate the physical ampli-
tudes A. =J+-,'. In these formulas Q„2/, (z) is the
Legendre function of the second kind and is analyt-
ic for Re%.& =,'. The partial-wave expansion can
be written as a sum over the physical values as

f (s, t) =-,' Q A'(J+-,', s}[P~(z)+P~(—z)]
Jeven

+-,' gA-(J+-,', s}[P,(z) -P, (-z)],
J odd

(5.12)

or alternatively as

f (s, t) =-,' +{[A'(J+—,', s) +A (J +—,', s)] P~ (z)

where the factor W[5] is just as defined by Eq.
(2.21). The Fourier-Bessel phases X'(b, s) are
related to the partial-wave interpolating phases
5'(b, s) in the same way as was found in Sec. IV.
The present treatment shows that the 0 dependence
resides in the Bessel functions as in (5.1) rather
than J,(Kb sin8) as found by Noble. " As before,
if 5'(b, s) can be expanded as in Eq (3.6) in p.owers
of the coupling constant, then by virtue of (5.15)
an expansion just like Eqs. (4.3}and (3.15) for
]t'(b, s) will hold.

Clearly the Born approximation can be used to
define the leading portions of the phases X'(b, s)
just as was done in Eq. (3.3). Yukawa terms in
the Born approximation like

+[A'(J+-,', s) -A (J+-,', s)]P~(-z)).
(5.13)

g2 gf2
Kz(S, t) =, +

p2 t p" -u (5.16)
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correspond to a. term sg'5(t —p, ') in the spectral
function A, (s, t) plus a term sg"5 (u —p. '2) in the
spectral functionA„(s, u) of Eq. (5.3). These one-
"particle" exchanges produce Fourier-Bessel
phases which are obtained from (5.4) and (5.5):

S~(b, s) -1=i(g'/s)K, (gb)

=-,'i[)(o(b, s}+Xo(b, s)], (5.17)

Sg (b, s) -1=i (g"/s)K, (p, 'b)

=-,'i[y.o(b s) -}to (b s)] ~ (5.18)

Here we have written leading-order contributions
for the phase functions X'(b, s) as y,'(b, s). The
solution of the above equation is

X:(b, s) =[g'K.(eb)+ I"K.(u'b}]/s,

X. (b, s) = [Z'K. (Ib) -d'Ko(u'b)]/s

(5.19)

(5.20)

Some interesting features are: (1) The limit
p, '» ~ eliminates the u-channel contribution and
reproduces the result of Eq. (3.1) for a Yukawa
potential. (2) The limit p'= p, g'=g causes
X, (b, s) to vanish and gives the Pauli symmetry in
Eq. (5.9). Equations (5.19) and (5.20) with (5.8)
provide a simple and unambiguous method of uni-
tarizing the single-particle exchange contributions
in general.

We know that there are contributions to y'(b, s)
in Eq. (5.8) to order g' and g" and the point is that
they must be given by the Born amplitude. Ex-
ponentiation of the phases X,'(b, s) is forced by
unitarity. What is not evident is whether exponen-
tiation of the leading-order contributions to }t'(b, s)

will produce the leading contribution to the scat-
tering amplitude as s -~.

A. Relativistic Eikonal Expansion

In some very impressive papers, " ' Cheng and
Wu and others have perforce extracted the leading
terms in the high-energy limit (s-~, t finite)
from infinite sequences of Feynman diagrams.
By summing the sequences of leading terms, they
have shown that an eikonal (Fourier-Bessel) rep-
resentation can emerge. One result is that when
no particles are produced (virtually) in the inter-
mediate state, a simple eikonal result equivalent
to (5.19) is found. However, as the energy in-
creases, Cheng and Wu find that absorptive am-
plitudes due to many-particle intermediate states
(tower diagrams) become dominant and these con-
tributions indeed grow very fast with increasing
energy. By summing the leading-order contribu-
tions from multitower diagrams, they find that
the absorptive contribution from one-tower dia-
grams exponentiates. It becomes apparent from
such examples that the perturbation expansion is
often equivalent to an expansion of the eikonal
phase. If the results of Cheng and Wu are not
misleading, such a relativistic eikonal expansion
is needed in order to extract field-theoretic pre-
dictions for high-energy processes. Fried" has
also considered such an expansion based on an ab-
sorption picture arising from bremsstrahlung of
soft mesons.

To simply understand what the relativistic eikon-
al expansion may mean, it helps to inspect the
exact formula for two-particle to two-particle
scattering:

oo

X'(b, s) = -i ln 1+ (i/m%)
J

dtA, (s, t)K, (bt'~') + (i/vs) du A.„(s,u)KO(bu"'),
tO dg

(5.21)

which restates the connection given in Eqs. (5.4)
to (5.8). Consider the perturbation expansion of
the spectral functions:

X'(b, s) = g }t„'(b,s}.
n=O

(5.23)

A, (s, t) = g A',"'(s, t},
n=O

A„(s, u) = P A'„"'(s, u),
n=0

(5.22)

which we assume to exist and where n =0 desig-
nates the Born contribution, i.e., the power of the
coupling constant is n +1. The relativistic eikonal
expansion is the corresponding expansion of the
Fourier-Bessel phases in powers of the coupling
constant obtained from using Eqs. (5.22) in (5.21)
and expanding the logarithm:

The leading term is the eikonal approximation
}t'(b, s)=}t,'(b, s), which is given by (5.19) and
(5.20).

The motivation for the expansion of the Fourier-.
Bessel phase is twofold. First, it is a perturba-
tion expansion which order by order automatically
incorporates asymptotic 2-particle - 2-particle
unitarity. Second, the expansion can be safely as-
sumed to converge when the impact parameter is
large enough. The reason for convergence at
large b is that the lowest mass which contributes
to each order in the perturbation expansion of the
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spectral functions is (n+ 1)g or (n+1)p'. This
means that the }t„'(b,s) will fall off as
exp[-(n+1)pb] or exp[-(n +1)p, 'b], whichever is
decreasing more slowly as 5- ~. In this respect,
the behavior is analogous to Eq. (3.V) for Yukawa-
potential scattering. So for a fixed energy, the
ratio of two consecutive terms X~2, /y,' for large b

is proportional to e ~' or e ~ ' and may be made as
small as we please. However, the short-distance
behavior (b-o) is not well understood. For the
present it will be assumed that one does not make
the behavior as b-0 worse by exponentiating the
perturbation expansion.

In the above generalization of the eikonal expan-
sion, there is a systematic way of generating
unitary approximations for scalar two-particle
scattering. The leading-order correction to the
eikonal (at least for large b) is found from (5.21)
to be

2, (b, s)=(sii) 'I dtAt, "(s, t)K (bt'i')
to

a (si) 'Jt du A'„"(s,M)K, (bu'~')=,'i[X20(b, s)],
so

(5.24)

where the yere i.maginary term comes from ex-
pansion of the logarithm. To see why the imag-
inary term is needed, it is helpful to consider
Yukawa-petentkai [V(r) = V, e « "/r] scattering.
Then the specbtral function A',"(s, t) comes from
the well-kaowtbn secend Born amplitude. The spec-
tral functien A(2)(s, u) can he ignored since there
is no exeha@ge potenttiaI.

As shown ie Ref. 7, the result of carrying out
the inverse Foufrier-Bessel transformation of the
second Bern amtp1itude is to produce the following
expansietn fer the integral term in (5.24):

OO 2

(ms) ' dtA(22)(ss t)KO(bt'12) =~i -2 —peKO(pb) +2—(p )e'K (2opb)
to ~s I

-I { t)t's[ 'ttbK (ttb)K,-(lib)] ——'

(its) (
—
) [If (2ttb) +2)tbK, ( 2)])tb0{+/ 2)K

(5.25)

~S„(b)~'=e '"2")=1-2(u,(b). (5.26)

This is the same as the result of Eq. (2.24) with
&a(b) approximated hy its leading term ur, (b). The
above considerations show that Eq. (5.24) contains
the known results in the potential scattering case
where it is clear that X, (b) exponentiates. The
succeeding correction terms to the eikonal phase,

The leading imaginary term here is just
—,'i[X,'(b, s)]' and this cancels the imaginary term in
(5.24) when we substitute (5.25). The cancellation
then explains that (1) the eikonal correction is
predominantly real as it should be for potential
scattering and (2) the term in Eq. (5.24) which
came from expanding the logarithm is necessary
to cancel the leading imaginary term in (5.24).
What survives when (5.25) is substituted in (5.24)
corresponds exactly to the following terms defined
in Eq. (3.14):

X, (b) +i&a, (b) +ps(b)+0(e'/K'),

that is, the definition given in Eq. (5.24) contains
all the terms proportional to c'= (V, /Kv)' which
appear in the expansion of the eikonal phase for a
Yukawa potential.

The first nonvanishing imaginary term i&a, (b) is
of order K ' relative to the leading eikonal phase
}t,(b) and is equivalent to the elastic unitarity cor-
rection discussed in Sec. II, i.e., it produces

}(,'(b, s), etc., can he found from the expansion of
(5.21). In the potential scattering limit (infinite
mass of one particle) the expansion must be equiv-
alent to the results of Secs. III and IV. Isn this
case all terms which arise from expanding the
logarithm actually cancel with terms of the same
order arising froxa the t and u integrals. In a
fieM theory calculation, the absorptive effects
arise from X,'(b, s) and much higher-order con-
tributions in the analyses of Cheng and Wu.

This discussion of the relativistic eikonal expan-
sion is not intended to produce predictions for the
eikonal phases X'(b, s), but rather to clarify the
basis for their calculation and to clarify the aagu-
lar range of validity of the eikonal expansion. In-
deed the justification for the relativistic eikonal
expansion given above is in the spirit of 8-mbatrix
theory (since we have only assumed analyticity
and unitarity) rather than field theory The only.
new connection developed is the relation (5.15) be-
tween eikonal and partial-wave phase shifts. How-
ever, just as in the potential scattering case,
there is varying opinion about how to extend the
small-angle approximation which generally must
be made in deriving eikonal approximations. The
small-angle approximation is absent in the above
discussion of the eikonal expansion.

It is believed that the problem discussed in Sec.
IIB generally arises when one linearizes the



HIGH -E NERG Y EXPANSIONS OF SCATTERING AMPLITUDES 1859

propagator in the momentum. Thus linearized
propagator expansions are generally valid only for
small-angle scattering unless one finds some
rules, like those given in Sec. IIIB, for avoiding
the problem and extracting the physics.

VI. CONCLUDING REMARKS

In this paper a direct connection between partial-
wave and Fourier-Bessel descriptions of scattering
amplitudes is developed. This connection is most
useful at high energies and provides some unam-
biguous corrections to the well-known Glauber
theory. The content of the present expansion is
equivalent to that of an eikonal expansion about the
Glauber propagator, provided a proper interpre-
tation of the eikonal expansion is made.

The essential question of angular range of validi-
ty of the eikonal approximation has been found to
be complicated. For classical scattering, expres-
sions were developed in Sec. IV which show how
to add the missing curvature effects back into the
straight-line path approximation of the Glauber
theory. The corrections are complicated but
tractable. For nonclassical scattering, we believe
that the expressions developed in this paper will
extend the angular range of validity of the Glauber
theory as was in fact demonstrated in Ref. 7 using
equivalent forms of the eikonal corrections. It is
essential however that unitarity be maintained
throughout a sequence of approximations to obtain
improvement. This is accomplished by expanding
consistently the Fourier-Bessel phase shift as in
Eq. (4.3), where unitarity is guaranteed by Eq.
(2.24).

Many variants of the eikonal approximation in-
volve use of the Glauber approximation as io ~ .

(3.2) but also use g, (Kb )8or J,(Kb sin8) in place
of Jo(2Kb sin —,'8) in the impact-parameter integra-
tion. These other forms are not likely to be valid
away from 0 =0.

The present work has dealt only with the spin-
zero scattering amplitudes. It is a trivial rnatter
to handle also scattering of a spin=,' particle by
one of spin zero since the only difference" arises
from the presence of (d/dz)P~(z) in the partial-
wave sum. Equation (2.12) shows that such a sum
can be converted to an integral involving
z A[(1 —z)/2] "'J,(2k[(1 -z)/2]'") in place of
Z,(2m[(1 -z)/2]"') .

For higher sp'ns, the usual partial-wave sum is
replaced by the Jacob-Wick helicity expansion. '
As shown in Eq. (A9) of the Appendix, an expan-
sion of the Wigner d functions appearing in the
Jacob-Wick expansion can be made which is quite
analogous to the expansion developed for the Le-
gendre function. However, an exact Fourier-

Bessel expansion is not readily obtained because a
suitable impact parameter is lacking. One expects
the impact parameter to range from 0 to . How-
ever, the usual definition b = (J + —,')/K fails in this
regard since J ranges from A. to ~ in the helicity
sum. (A =maximum helicity& 0.) For this reason
approximate Fourier-Bessel integrals can be ob-
tained, but not exact ones. The correct definition
of the impact parameter appears to be
b =[(J+—,')' —A. (A. +1)]'"/K, which is effectively
(J'~ +—,)/K, where J~ is the component of total
angular momentum perpendicular to the momen-
tum. However, in this event, Eq. . (A9) does not
provide the appropriate expansion of the d func-
tion.

The discussions of eikonal expansions given in.
this paper provide evidence that the straight-line
path propagation assumed in the eikonal approxi-
mation is not arbitrary after all. To obtain the
Fourier-Bessel high-energy limit, it i " necessary
to use the Glauber propagator'g '=v (k-p)
—V(x)+i@, where k=-,'(k, +k ) is the average mo-
mentum and v=(K/M)k is the velocity of the inci-
dent particles. This propagator is not the one ob-
tained by simply expanding p about k since that
procedure gives v„, = k/M as discussed in Sec.
GI B. The reason that the choice of eikonal propa-
gator is not arbitrary is that there is a Fourier-
Bessel symmetry of the scattering amplitude
which must be respected to obtain unambiguous
results for nonforward angles. The appealing
choice of expanding about k,. (the initial momen-
tum) is valid for 8 =0 since it then agrees with the
Glauber propagator, but for nonforward scattering
the Fourier-Bessel form is not obtained.

APPENDIX A

An expansion of the Legendre function Pz, q, (az)
in terms of the Bessel function+0(2&[(1+z)/2]' ')
and its derivatives with respect to A. is developed.
The expansion is similar in spirit to the expan-
sion developed by Fields for hypergeometric func-
tions; however, it differs in some essential de-
tails. Luke (Ref. 14, p. 52) has summarized
Fields's results and also gives formulas for the
generalized Bernoulli polynomials (Ref. 14, p. 18)
which are used in this Appendix.

The Legendre function is uniquely defined in the
circle ~1 -z ~(2 and for arbitrary A. by the hyper-
geometric series

Pq ~(~(z ) =
~ E,(-A. + z, A, +2; 1; (1 -z)/2)

r(n+Z+-,') [--,'(1 -z)]"
I'(-n +A, +-,') (n!)'

For large A., the ratio of 1" functions tends to
A.'", in which case one obtains a well-known limit
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valid when
l
1 -z

l
is small:

X =2h[ (1 -z)/2]'" . (A2)

The corrections to this formula become impor-
tant when l1 -zl is not small. MacDonald (see
Ref. 11, p. 147) has developed the leading correc-
tions to (A2). However, the entire expansion which
contains (A2) as the leading term can be developed
quite simply by expanding the ratio of I functions
in (A1). Using a formula due to Fields (see Ref.
14, p. 34), we obtain

( + 2 / g B(2n+2) (
2

) h2n-2«(A2)

In the present case, the series for the ratio of I'
functions terminates because n is an integer. It
gives an exact result. The generalized Bernoulli
polynomials B2(«/')(p) appearing in (A3) are poly-
nomials of order k in the parameter p. For our
purpose it is convenient to emphasize this poly-
nomial character by introducing a new notation:

f, (p) =B""(p).
Table I of the text lists the polynomials b«(p),
k =0(1)5. For values of k greater than 5, the poly-
nomials can be calculated from the recursion

0-1
2k —1 B2r+2 g, (P) =- P~ 2, 1 2,2, „,(P),

r=0

where B,„+, is a Bernoulli number.
The expansion (A3) is equivalent to the following

derivative operator acting on A.'":

since the derivative operator of order 2k annihi-
lates all terms added by this change. The inter-
change of sums is permissible because the Bessel
function J', (!()possesses continuous derivatives to
all orders. Thus the expansion for the Legendre
function which contains (A2} as its leading term is

(22)! (dX) (gg. )
x d', (2A, [-,

'
(1 z)]2/') .

This expansion converges for l1-zl &2 since it
is just a rearrangement of the original series
(Al).

The expansion of (A8) is fairly rich in mathe-
matical content since many related expansions of
special functions commonly used in mathematical
physics can be obtained by slight generalization
of the derivation.

Associated Legendre functions P"„(z) and gacobi
polynomials P,("'8) (z} as well as the Wigner rota-
tion functions d/h„(z) can all be expanded in a
series of Bessel functions in the manner used
above. For example, an expansion for the Wigner
rotation functions which appear in the Jacob-Wick
expansion of the scattering amplitude is

d„,"'(z) =sgn(p, , v)C „„(h——,')
1

«o (2k)! dh dA.
xQ — f/ ——,'h [-,'X'(1 +z)]8/'

x Z~(2h[-,
'

(1 z)]»'),
where A =

l p, —v
l

is the helicity change,

r(n+h+-,') ~ 1 d " d,
r(-n+h+ —,') «~o (2k)! dh «dh'

Powers of n +« in the polynomial b«(n+ —,') of (AS)
are here replaced by powers of (d/dh) —2h acting on
A.
'" . Similarly the binomial coefficient (,'„") is re-

placed by 1/(2k)! times an over-all 2kth-order
derivative of the factor A,'", which survives the
action of (2)«((d/dh) —,'h). Now substituting (A6) into
(A1) leads directly to the desired expansion:

1 d 2« d [
2 2])2

(2k)1 dh «dh ( !)2

,—,(22)!(gg) '(gg* }~ ( ~)'

The k andn sums have been interchanged in writing
down the second line of (A7) and the proper lower
limitn =k of then sum has been replaced by n =0,

4 h-« r(h+-,'+P -A)r(h+-,' -P) '"
r (h+-,' —p +~)r (h+-,' +p)

(A10)

1, p, -v~0
sgn(g. , v)=I( )„„' (A11)

The expansion in (AS) is not developed in detail
because it does not appear to give a desirable im-
pact-parameter representation for scattering as
discussed in Sec. VI. However, the expansions of
the above special functions P"„(z) and '„P(z8))can
be simply obtained from (A9).

and sgn(p, , v) is a phase factor reflecting the rela-
tions

d', .(z) = (-)" 'd'„„(z)
=(-)" 'd'„, .(z)
= d', „(z),

and is given by
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APPENDIX B: A RECURSION RELATION FOR
GENERALIZED BERNOULLI POLYNOMIALS

B,"(x) = (-) B,"(a -x), (BS)

In this appendix, a key formula which is used in
Sec. II of the text is derived. The formula involves
a nontrivial relation among the generalized Ber-
noulli polynomials B,'»"'(a) = b»(a), which is not
available in the literature. Thus it is necessary
to show that [see Eqs. (2.16) and (2.17)]1, v' 2n +2k -1
(2k, 2 },b„,(q+-') = ~ 2„b, .(q+-.')

B.„.„(-')
(2q —2n)! (2k +2n)! '

where B»„„(x)is the ordinary Bernoulli polyno-
mial. The ordinary and generalized Bernoulli
polynomials are discussed in Ref. 14, where one
also finds the two basic formulas

aB»'+ "(x)= (a k)B»»'—(x)+k(x —a)B»",(x}, (B2)

which relates polynomials of differing superscript
order, and

which shows that when a =2x, as in the present
case, only even-order (in k) polynomials are non-
vanishing.

From (B2) one obtains {by using a-2a —1,
k-2k, x =a)

(2a —1)B",»" (a) = (2a —1 —2k) B",„' "(a)
+ 2k (1 —a)B"',"(a) .

Now using (BS) to replace B",„' "(a) by B~' "(a —1)
and again applying (B2) to reduce each superscript
from 2a —1 to 2a —2 on the right side, one finds a
recursion for the polynomials b»(a) as follows:

(2a —2)2b»(a) = (2a —2k —2), b»(a —1)

—(2k —1),(a —1)'b», (a —1), (B4)

where

(n) =n(n+1) ~ (n+m —1).
To derive (B1), first substitute a=q+ —,

' and
k =k+q in (B4), where q and k are integers, to ob-
tain the recursion

(2q —1)2 b»+ (q +») = (—1 —2k)2 b»+, (q -~z) —(2k +2q —1)2(q -~2)2b„(q -» ), (B6)

and then iterate this formula q —1 more times to reduce the argument q —2 of the b polynomials on the
right side down to +-, . For example, two more iterations of (B6) help to illuminate the progression which
results:

(2q —~)eb„,(q+2) = (-6 —2k)gb„, (q —»)

+(2k+2q —1),(-3-2k),[-(q --,')' —(q --,')' —(q --,')']b„+, , (q --,')
+ (2k+2q —3) (-1 —2k),[(q --,')'(q ——,'}'+(q --,'}'(q ——,')'+ (q —2)'(q —&)']b„„,(q —»)

+ (2k+2q —5},[-(q -»)'(q - 2) (q 2)']b„, , (q -2) ~

The coefficients in square brackets here arise from derivatives with respect to x of the polynomial

[x —(q —»)'] [x —(q —»)'] [x —(q —»)'],

evaluated at the point x =0. Thus the progression above can be generalized to the following formula valid
for p iterations of (B6):

(2q —2p + 1)»b „+,(q +» ) = g (-1 —2k —2 n ),„(2k + 2q —2p + 2 n +1)»,„
n=0

&&b„, »,.(q -P+») —~[x —(q -2)'] [x —(q —2)'] [x+(q -P 2)'+]
x=0

The factor in the curly bracket is now evaluated
by noting that it involves the ratio of two I' func-
tions when we set p =q:

1 d" I'(vx +q+»)
nt dx" I' x -q+ —,

'

and can be evaluated by use of the expansion (A3}

of Appendix A. The result is

29'
f ).=.=). .(~+-. )

~ ~„)

Then choosing P =q in (B7), using b», „(-,') =B»„„(—,),
and substituting (B8) for the curly bracket pro-
duces
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(2q)!b„+,(q+ —,') = g(-1 —2k —2n),„
n=0

x (2k + 2n —1)„,„B„„„(—,')

Finally, one obtains (Bl) from this formula by re-
placing the Pochammer symbols by factorials us-
ing (p5), Which completes the derivation.
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Etiual-Time Commutator ef Charge Densities in Quantum Electrotiynanues
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We show that one-electron and one-photon expectation values of the equal-time commutator of charge
densities in quantum electrodynamics, which are usually assumed to be zero, contain 8-function
derivatives of order n p 4 when evaluated in fourth-order perturbation theory.

I. INTRODUCTION

A few years back Drell and Hearn' obtained a sum rule from dispersion relations and the low-energy
theo&rem which relates the anomalous magnetic moment of the proton to an integral over photoabsorption
cross sections. Many authors' have given an equal-time commutator method of derivation of this sum
rule which is applicable to any spin--, particle. In this derivation it is assumed that the electric charge
densities commute at equal times. On the other hand, in the derivation given by Drell and Hearn, it is
assumed that the spin-flip Compton amplitude satisfies an unsubtracted dispersion relation. As we shall
show, this would be true if the electric current j(x) commutes with the potential A(y) at equal times. This
assumption is equivalent to the vanishing of the commutator of the charge density with itself at equal times.
The vacuum expectation value of this commutator can be shown to be zero. It is however, not clear
whether its one-particle expectation value is also zero. A simple way to settle this question is to examine
how far unsubtracted dispersion relations for Compton scattering as well as photon-photon scattering are
satisfied when cross sections and amplitudes appearing in these relations are approximated by their per-
turbation-theory values. We find that these are not satisfied, showing thereby that j(x) does not commute
with A(y) at equal times. Consequently p(x) does not commute with p(y) at equal times. We give explicit
expressions for the one-electron and one-photon expectation values of

I p(x), i (S)J~(». —y.).

II. ONE-ELECTRON EXPECTATION VALUE

To obtain the one-electron expectation value of the commutator under discussion, we start with the on-
shell forward Compton scattering axgplitadoe

,,f~ &= &„&au &&if o~~" o&~&&pl&j &-o& i&'&~&&Ip&+&ra f o xe" o&~ &&pllj'&o&a'&~&]lp&, ,
where

i&~& if p'~~" ,p, &~&=&pl&&&o&;&&~&&lp&. , ,
It follows from the structure of t„s(&p&) that the dispersive part ( &f),&osgiven by


