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A variational principle of the Kohn type is formulated for the scattering of three charged particles,
with particular attention given to the breakup process. In addition, an effective-potential theory, which
also allows for variational formulation, is derived for the three-body system with long-ranged Coulomb
interactions properly accounted for. These results generalize previous work done for systems with
short-ranged interactions; the difference lies, essentially, in the use of Coulomb-modified plane waves to
describe the asymptotic states. To establish the physical justification for this modified version of
scattering theory a section is included containing a time-dependent description of the collision process
in which the wave packets follow classical, Coulomb-modified, trajectories in the initial and final states.

I. INTRODUCTION

It is well known that in the time-independent
formulation of multiparticle-scattering theory
special consideration must be given to the case
where the interactions have long-ranged Coulomb
components. For example, the integral-equation
approach as formulated by Faddeev' cannot be
applied directly to the Coulomb case. Indeed,
the Faddeev amplitude, defined for complex val-
ues of the energy parameter, is in general sin-
gular when continued to physical energy values.*?
Presumably, the physical amplitude could be ob-
tained from modified Faddeev equations in which
the plane-wave basis functions are replaced by
functions which properly account for the long-
ranged Coulomb effects.* Because of the difficulty
in constructing the propagator which appears in
the kernel, such equations seem to be of negligi-
ble practical utility, although they may serve
some purpose as a formal tool (see Appendix).

The other traditional approach to time-indepen-
dent scattering theory is one based directly on
the Schrddinger equation in its differential form.
In particular, since variational principles of the
Kohn type®~® have been useful in few-body prob-
lems involving short-ranged interactions, we
have set out to examine the extension of such
methods to include Coulomb effects. The methods
developed in Secs. III and IV of this paper should
be suitable for application to electron and photon
ionization processes in light atoms, as well as
nuclear processes such as proton-deutron scat-
tering and breakup.

The first problem which arises in this analysis
concerns the choice of boundary conditions. As-
ymptotic solutions of-the Schrdodinger equation of
the (Coulomb-modified) plane-wave® and outgoing
spherical-wave'®!! types have been written down
previously. A physical justification of this time-

independent formulation of the scattering problem
can be obtained by showing how it arises from a
time-dependent formulation in which particles

are described by wave packets following classical,
Coulomb-modified trajectories in the precollision
and postcollision stages. This time-dependent
analysis is outlined in Sec. Il below. We have
followed the standard discussion,'?altering it here
by the introduction of Coulomb modifications to
the plane waves from which the wave packets are
constructed. As we shall show, this is equivalent
to altering the form of the wave operator. For-
tunately, the mathematical core of this derivation,
which is the proof that this modified wave oper-
ator has a well-defined limit as the time variable
is extended to infinity, is provided by a theorem
of Dollard.!® With the convergence problem
solved, the remainder of the derivation, in which
the scattering amplitude is represented in terms
of a Green’s function for the system, or, equiva-
lently, in terms of a time-independent solution

of the Schrdodinger equation satisfying Coulomb-
modified boundary conditions, is fairly straight-
forward. The discussion in Sec. II serves the
purpose of combining known results and methods
in a way which emphasizes an underlying coherent
physical picture and which places the subsequent
applications, in Secs. III and IV, on firmer theo-
retical footing.

In the derivation of the Kohn variational prin-
ciple (Sec. ITI) we concentrate on the breakup (or
ionization) problem in which three charged parti-
cles are free in the final state. This derivation
is somewhat heuristic in its treatment of the
limiting process in which the complex energy
parameter approaches the real axis from the up-
per half-plane. An alternate derivation based on
Coulomb-modified Faddeev equations is given in
the Appendix to provide additional mathematical
justification. Similar methods have been used
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previously”’ ® in the context of scattering by short-
ranged potentials. Section IV is devoted to an
effective-potential formulation of the scattering
problem. Calculational methods for constructing
the effective-potential matrix are not discussed
explicitly here. We believe, however, that the

8

viously to problems involving short-ranged inter-
actions,'* and which can be generalized using the

method of Sec. III, should prove useful in a num-
ber of atomic and nuclear scattering problems

in which long-ranged Coulomb effects play a sig-
nificant role.

variational approach, which has been applied pre-

II. TIME-DEPENDENT SCATTERING THEORY
A. Coulomb-Modified Wave Packets

We follow the standard procedure for constructing wave-packet states describing the system in its pre-
collision and postcollision stages, but rather than use pure plane waves we take a superposition of Cou-
lomb-modified plane-wave states. This properly accounts for Coulomb modifications in the trajectories
followed by the center of each packet, as indicated below. We consider a system of N charged particles;
the ith particle has charge z;e and mass m;. To simplify the present discussion we omit explicit reference
to internal degrees of freedom of the particles as well as effects of particle identity.

The modified plane waves x‘*) are chosen such that in the region where all interparticle distances are
large they take the form given by Redmond.® This asymptotic form is

N
XEE, Ty o380, Th) ™ (21r)'3”’2exp(ijz‘, 4 F,) expl:ii ¥ nyInlg,,r,; ¥4, r,.,)] . (2.1)
=1 airs
(1)
Here h’ﬁu and F“ represent the relative momentum and position variables for the pair (ij), respectively,
and n,; is given by

‘ =z‘zie2
ij ﬁv” ’ (2'-2)
with

Uu:h—g‘L‘gL

m . (2.3)

Equation (2.1) represents a direct generalization of the well-known two-body version.'®
Consider now the time-dependent functions'®

N
‘b(i)(ﬁv Fi5...5080 Ty )= f aqy e J. ayl 11 aj(i -51)6"“’("’)""]x‘*’(§1, T ayty), (2.4)

J=1

where €;(q;) represents the energy of the jth particle,

h‘Z 2
€,(q,)=2—3;j— - B, (2.5)
and ¢;(q; - P;) is a function normalized to unity which peaks at §, =p,. It is understood here that in the
function &(*) the time ¢ is large and negative and the velocities V; =/, /m;, are chosen to correspond to
particles approaching one another in the initial state, while in (™), which describes the final state
t—+, the particles are receding from one another. In the usual approximation, which amounts to the
neglect of wave-packet spreading, the functions ®®) can be represented as

. > > ¥ s - - z,2,6% (T
M 2y Fii. .. Py, rN)exp[—z » e,(p,)t/h]HG,(r, 2725 _J_k._z(dm)lnm) ’ (2.6)
i1 [E =y ilie \"sn

where G, is the Fourier transform of @;, and is therefore peaked for vanishing values of its argument.
It follows that the wave packets are concentrated about the classical trajectories®

> - zjzkez (?‘ >
T, =Vt - L= (=&} 1In|¢|. (2.7)
! ;j M50 \7

In particular, these packets are well separated for |¢[—. Since the functions x*) are asymptotic solu-
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tions of the time-independent Schrddinger equation,® one easily verifies that the functions ®®) satisfy the

time-dependent Schrodinger equation.

We note for future reference that near the classical trajectory, where T,; ~¥,,¢, we have

In(q;;74; Q45+ Typ) =n(2g,50;t]) -
This allows us to write

) o™ iHoa(t/M x|

(2.8)

(2.9)

where H(t) is the modified Hamiltonian introduced by Dollard'® in his construction of a convergent wave
operator, and X is the time-independent wave-packet state composed of pure plane waves,

N
X(ﬁv-fﬁ'-';ﬁm —fn):fdsql'”fd:;qlvn[aj(qi—ﬁl)
i=1

B. The Scattering Matrix

We represent the wave function for the system
at some time /, in the remote past as ) (¢,);
to simplify notation we have suppressed the posi-
tion variables and have introduced a single sub-
script a to denote the momenta and internal
quantum numbers which define the state. The
time evolution of this state is given formally, in
terms of the Hamiltonian H, by

I ARPRLE AT TITAN @.11)
The scattering-matrix element is defined as
Spo = lim (25 (1), ¥ (t; £)). (2.12)

to—> =

Here, and in the following, we differ from the
usual treatment!'? only in the inclusion of Cou-
lomb effects in the asymptotic solutions ¢ and
&%), With the use of the asymptotic form shown
in Eqs. (2.9) and (2.10), along with Eq. (2.11),
we can express the scattering matrix ?.s

Spe = lim (X, et foc(B:0)/N gmtHE/M
o t—>+o
to--—uo

CHER —i sto) /R
X gt Hto/M g~ ifloc( st/ x ) (2.13)

Here H,(B;t) is the version of Dollard’s modified
Hamiltonian'® appropriate to channel 8. (This
channel notation is necessary since we allow in
general for rearrangement and breakup collisions
in addition to elastic scattering.) According to
Dollard the limits in Eq. (2.13) exist; we can
write

Spe = (X5, 29 TQ0X ), (2.14)

which is unitary by virtue of the unitarity proper-
ty'3 of the wave operators Q).

The problem of computing the scattering ma-
trix can be reduced, in the standard way,'? to
that of solving the time-independent Schrédinger
equation. While no attempt is made in the deriva-
tion given in Ref. 12 to treat the time limits in a

g‘.a!'—;f
W ] . (2.10)

rigorous way, this is no cause for concern since,
as we have just seen, convergence is assured.
At this point we could take over the argument
given in Ref. 12, in its entirety were it not for a
technical detail: The modified plane waves x*),
unlike the pure plane waves which appear in the
short-ranged case, will for practical reasons
not be chosen to be eigenfunctions of an energy-
independent Hermitian Hamiltonian if more than
two charged particles are free at infinity. Con-
sequently, we have no assurance in general that
they form a complete orthonormal set. Fortu-
nately, the derivation can be carried through
without making use of this completeness property,
as we shall now show.

From Eq. (2.11) we have
O 1) =e Mg (0;t,), - (2.15)

where, assuming a two-body initial state,
‘I’a (0; to) = f dsqlf d3q2a1@1 - 51)42(62 - 52)
x @i (H=E g)to/h

X%, (2.16)

with E  =€,(q,) +€,(q,). Proceeding formally, we
write

- i (0 . iHeE e
el Ea)’O"‘:l-%j;o at' et B E It NH ~ F ).
(2.17)
The integral can be expressed as
i 0 i lh
_%f dt’ et (H=Ea =in)t" (H—Eu)
‘O
=(Ey+in-H)™YH-E,)
i ‘o i(H=E, =in)t'/h
+;-if ' HAE TN LB ), (2.18)

with the limit - 0+ understood. Now the second
term on the right-hand side of Eq. (2.18), when
inserted in Eq. (2.16), gives vanishing contribu-
tion in the limit /,—~ ~« since the wave-packet
construction gives weight only to those configura-
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tions for which the interparticle separations grow
without bound as £, ~«; for such configurations

(H - E )x% becomes vanishingly small. We con-

clude that

¥, (0; =) =f aq, f daqzal(al _51)

X ay(q, - D), (2.19)

where

V) =xQ + (Eqrin—H)H-E XD . (2.20)
Since

(H-E ) ¥ =0, (2.21)

we have, from Eq. (2.15),
Vot =) = [ Pad0,0,@ -5, - )

X e iEat/My ) (2.22)

The S-matrix element, Eq. (2.12), is expressed
as a sum

Spe =SB +S8, (2.23)

corresponding to the representation of ¥, which
appears in Eq. (2.22), in the form shown in Eq.
(2.20). The term x& gives rise to the contribu-
tion

S = 1im (89 (2), 2V (2)) . (2.24)

t—>+oo
If the process under consideration is of the re-
arrangement or breakup type, in which channels
a and B correspond to different groupings of par-
ticles, then S® vanishes since the wave packets
have no overlap in the limit {-«. The same con-
clusion holds for the elastic process. Here,
even in the case of forward scattering, the inte-
gral vanishes due to the presence of a rapidly
oscillating logarithmic phase factor [essentially
the one shown in Eq. (2.8)] in the integrand for
t- =, The absence of disconnected contributions
to the S matrix is an understandable consequence
of the long-ranged nature of the Coulomb force.
The remaining contribution to the S-matrix

element arises from the use of

¥ (E)=(E-H)™ (H-E X%, (2.25)

with E=E , +in, in Eq. (2.22). To simplify the
formulas, we anticipate that the transition prob-
ability of interest can be expressed in terms of
the S-matrix element in which initial and final
states have sharply defined momenta. In this case
we obtain

St = lim lim ! EEEMNGO § (B)).  (2.26)

N0+ >

The limit { - can be carried out with the aid of

the identity
. ei(Ba=Ey)t/n .
}Ln: m = —(27”)5(Ea—E5) . (227)

This allows us to write

S@) =~ (2mi)8(E , - Eg)US),, (2.28)
with
USh = lim U, (E), (2.29)
n->0+
and
UsolE) =(E - Eg)x$, ¥ (E)). (2.30)

We obtain an alternate form for U, ,(E) by writing
(E - E)¥ (E)=(E -~ H)¥ (E)+ (H - Eg)¥ (E),

(2.31)

and making use of Eq. (2.25) in the form

(E-H)¥ (E)=(H-E X% . (2.25")

Equation (2.30) then becomes
UsoE) =, (H = E x®) +(x§), (H - Eg)¥ (E)).
(2.32)

The second term on the right-hand side can be
transformed with the aid of Green’s theorem.
Since the surface terms vanish for n>0, we have

Uggt = (X(B—)’ [H - Ea]x(;))
[~ E.1)

(2.33)

+ lim([H—Eu]

n->0+

o, 1
BYE,+in—H

As a check on the above analysis we can verify
that for two-body elastic scattering, the S matrix
takes the expected form'” provided we replace the
modified plane waves x{! in initial and final states
by exact Coulomb wave functions ). This re-
placement leaves the wave packets <I>(;’ unchanged
for t-(¥)», as can be seen by a stationary phase
argument.'® Equation (2.24) becomes!?

Sba = W2, ¥5%), (2.34)
which can be expressed in terms of the pure Cou-
lomb amplitude using standard techniques.'® In
the usual treatment of scattering by a modified
Coulomb potential (e.g., proton-proton scattering)
one can arrive at the decomposition expressed
by Eqgs. (2.28) and (2.34) by summing contributions
from individual partial waves. The present deri-
vation is more direct and the physical justifica-
tion of the result is clearer since we have seen
how it arises from a time-dependent formulation.
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III. VARIATIONAL METHOD

A. Boundary Conditions in Configuration Space

We restrict our attention in the following to the
three-body problem in which a pair is bound in
the initial state. Only the breakup (or ionization)
process is treated explicitly. Our purpose is to
extend the basic result of Ref. 7, in which a Kohn-
type variational principle was derived, to in-
clude Coulomb effects.

We begin by recording the asymptotic form of
the wave function ¥¢) in the region where all inter-
particle distances are large.!®'!! The general
asymptotic form, including correlation effects
associated with a finite value for one of the inter-
particle distances, is not completely known at
present, although some progress has been made.?®
The amplitude, 7%), of the outgoing scattered
wave in the center-of-mass frame will be related
[see Eq. (3.5), below] to the S-matrix element
defined in Eqs. (2.28) and (2.33). Since we must
exclude the asymptotic regions where a pair is
close, this relation is established here only for
scattering to three-body final states in which the
relative energy of each pair is positive. We ex-
plicitly restrict the following discussion to this
case.

Let p be the six-dimensional configuration-
space vector in the center-of-mass frame; the
conjugate momentum is represented as ZK. The
vectors are scaled in such a way” that the total
energy is E = (7%/2m)K? with m a conveniently
chosen reference mass, and K2=K-K. In the
region where all interparticle distances are large
the scattered part of the wave function

¥ = lim ¥ (E, +n) (3.1)

n—>0+

takes the form

¥ ~cT§) p'5’2exp[i<Kp - :;f{ 1n2Kp> ],
(3.2)
with ¢ defined by
3 Eze L (3.3)
Yy P

pairs

(if)
A factor (27)"¥2exp(iP , - R /%) describing the
motion of the center-of-mass has bzen removed.
(To simplify notation we do not introduce a new
symbol to distinguish center-of-mass wave func-
tions from those defined in Sec. II.) It is easily
verified that the above form, with ¢7§) indepen-
dent of p, is an asymptotic solution of the Schro-
dinger equation, as required by Eq. (2.25’). The

choice of the outgoing, rather than incoming,
wave form is consistent with the defining relation,
Eq. (3.1), which implies that the scattered wave
remains bounded when K takes on a positive
imaginary part. The flux at infinity associated
with ¥¢) can be computed, and the differential
cross section can be expressed in terms of

| T$)J2. With the modulus of ¢ chosen as

lc|= (21.[)1/2;_ﬂ2 K¥2, (3.4)

this expression takes the conventional form,?
thus establishing T'§), as the breakup amplitude.
The phase has not yet been fixed.

We now show that by appropriate choice of
phase T§) can be related to the amplitude U§),
of Eq. (2.33) according to

U =8By -P T, (3.5)

where P, and P represent the total momentum
before and after the collision. To establish Eq.
(3.5) it is sufficient to show that 7§, can be
written in the form shown in Eq. (2.33), but eval-
uated in the center-of-mass frame. This is
equivalent to showing that, in the center-of-mass
frame,
T = lim
E—~>Eg+io+

(E-EgXx5, ¥ (E)), (3.6)

as the discussion leading from Eq. (2.29) to Eq.
(2.33) implies.

Now Eq. (3.6) can be derived by adaptation of
an argument applied by McCartor and Nuttall? to
a closely related problem.'® Sketched briefly,
the argument is based on the observation that as
E approaches E4 from the upper-half plane a pole
in (x5, ¥(E)) develops as a consequence of a
divergence in the spatial integration. The exis-
tence of this pole can be established and the res-
idue computed by application of the method of
stationary phase to evaluate the dominant contribu-
tion to the integral in the asymptotic region. The
final-state function, evaluated in the center-of-
mass frame, has the asymptotic form

x5~ (2n)‘3exp{i[é’ p— T myIn(gyry +de F“)] }
pairs
(i)

(3.7

The phase is stationary when K=Q and p is paral-
lel to Q. In this case the factor #;, becomes

z;2,€ _mz,zie2<_P) 3.8)
fuy, By \Q )

for each pair (j). Furthermdre, since the rela-
tive position and momentum vectors are parallel,
we have
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In(q;;7;; +y * T4y) = In(2q,,7,)

=1n2@p +1u<% %i)

=1n2Qp
i (5) )
(3.9)

Collecting these results, we see that in the neigh-
borhood of the point of stationary phase, with
p ~=, the final state function has the form

- el (- B )],

(3.10)

Q

where the angle-dependent phase factor A is de-
fined as

p \ mz,z;e? mm; (&)2
A= — 1n .
1§<7“> 7%Q l:m(m,-+m,) P

(i4)

(3.11)

With the aid of Eqs. (3.2) and (3.10) the dominant
contribution to the integral in Eq. (3.6) can be
evaluated. The computation is straightforward
and we omit the details here. We find that with
the choice

argc=4T-A, (3.12)

and with |c| given by Eq. (3.4), Eq. (3.6) is in-
deed satisfied.

Let us emphasize that the preceding discussion
has been included here since the usual argument,
valid for short-ranged potentials, which identifies

]

T =0, [H-E )+ 1im {([#-Ez ]S,
n—->0+

The second term on the right-hand side can be
written as lim I(n), with

70+
Im)=([H-E; X, ¥ ,(E)
=(x§, [H - ExJ¥ (B, (3.19)

valid for n> 0. We then have
1) = (E - E)x§, ¥ (E)) +(x§, [H - E]¥ ,(E)).
(3.20)
We can evaluate the limit n— 0+ in the first term
on the right-hand side of Eq. (3.20) with the aid
of the stationary-phase method employed earlier

in connection with Eq. (3.6). The result is TS,
the trial breakup amplitude, defined in terms of

the integral expression for the scattering ampli-
tude with the amplitude of the outgoing wave in
configuration space, makes use of the simple
form of free Green’s function which is unavailable
in the present case. Furthermore, the analysis
of this subsection provides the necessary back-
ground for the following derivation of a variational
principle.

B. Kohn-Type Variational Principle for Breakup Processes
We have seen that the center-of-mass breakup

amplitude 7§ which appears in Eq. (3.2) can be
represented as

T4 =5, [H-E X&)
+ lim ([H - E; xS, GE)H - E ),
n->0+
(3.13)
with E=E , +in, E,=Eg5, and
G(E)=(E-H)™. (3.14)

A variational expression which should be useful
for approximate evaluations of the scattering am-
plitude may be obtained by introducing the identity”

G(E)=G,(E)+G(E)[1+ (H - E)G,(E)], (3.15)

where G,(E) is a trial Green’s function. With the
definitions

¥ o (E) = G,(E)H - E )x& (3.16)
and
F5(E*) =G(E*)H - Eg)x§, (3.17)
Eq. (3.13) becomes

¥ (BN +(Fg(EX), [H - E D)+ (Fg(E¥), [H - EIF L(E)}. (3.18)

T
the asymptotic form of ¥{) by an equation similar
to Eq. (3.2). If we formally set n=0+ in the inte-
grand of the second term on the right-hand side
of Eq. (3.20), as well as in the last two terms on
the right-hand side of Eq. (3.18), the resulting
three terms combine to give

(T, [H -E D) + &, [H - EJ¥D)
+ (39, [H-E KO .

We shall assume here that these integrals con-
verge rapidly enough to justify the interchange
of the order of limit and integration. To support
this assumption we have included an appendix in
which the results of this subsection are repro-
duced with the aid of modified Faddeev equations
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which are presumably well defined in the limit
of real energies.* The identity, Eq. (3.18), then
takes the form

7§, =T+ (@, [H - E NG, (3.21)
where
v =x+¥Q (3.22)
and
VP =x§ + ¥ (3.23)

The variational expression is obtained from this
identity by replacing ¥%) with some estimate,
¥§). As discussed previously,” the error thus
incurred is of second order if the trial functions
are correct to first order.

The identity, Eq. (3.21), is of a form which is
familiar in scattering theory. The usual method
of derivation, for elastic and rearrangement scat-
tering, involves the use of Green’s theorem and
the evaluation of a surface integral at infinity.
In the present case such an approach would be
difficult due to the complicated and, as yet, in-
completely known asymptotic form of the wave
functions, as well as the ill-behaved nature of the
integrals when evaluated for real values of the
energy.” A virtue of the derivation given here
(which is based on methods developed previously
for the case of short-ranged potentials”) lies in
the fact that only the 1eading contribution to the
asymptotic form of ¥, shown in Eq. (3.7), is
involved explicitly. Furthermore, the integrals
encountered are all well behaved.

With regard to applications, let us represent
the trial function ¥§) as

¥E) =9+ ¥ (3.24)

In the region where all interparticle distances
are large, ¥§) may be taken to be of the form*°

\i(ﬁ;“A,p's’zexp[ (Qp ﬁfQ 1n2QP>], (3.25)

with A, a variational parameter. The asymptotic
form of x§ is shown in Eq. (3.7). We may expect
that corrections to this leading term, which fall
off less rapidly than p~3/2, are present in the ex-
act wave function. Since the form of such correc-
tions is unknown, x§ is to be treated as a trial
function subject to Eq. (3.7). For example, we
might take the product form?®

Y5 = (@) aexp[@ *)]Hg &), (3.26)

= pairs

if

where g7 is defined by expressing the two-parti-
cle center-of-mass continuum wave function as

ll)s;)(.f,-j) (277)_3’29Xp[l(qu * r,,)]g(')( ;/) (3.27)

Note, incidentally, that in the limit of vanishing
charges Eq. (3.26) reproduces the exact single-
scattering corrections to the leading plane-wave
term.

IV. METHOD OF EFFECTIVE POTENTIALS

The utility of the effective-potential formula-
tion of the scattering problem has been recog-
nized for many years. Recently, minimum prin-
ciples for energies below the breakup threshold
and unitary variational approximations at arbi-
trary energies have been discussed,* but without
explicit consideration of long-ranged Coulomb
effects. We are now in a position to take such ef-
fects into account in the formalism. We would
anticipate that the required modification would
amount, essentially, to the replacement of pure
plane waves by Coulomb-distorted waves. This
is the case in a problem such as proton-proton
scattering, as discussed at the end of Sec. II.
Here we show that the modification is indeed of
the above-mentioned character. We treat expli-
citly the three-body problem, including the effects
of target breakup, making use of the time-indepen-
dent theory described in Sec. II. To simplify the
discussion we consider a problem (such as proton-
deuteron scattering) in which no more than one
bound state exists for each pair. The formalism
is easily generalized. (In the atomic case, of
course, it is not possible in practice, nor is it
necessary, to build an infinite number of target
states into the effective potential matrix.)

The amplitudes for elastic and rearrangement
scattering will be represented in the form??

T8 =1mE&P | 7, (B)|kP), (4.1)

with E; =E;. Here and in the following the notation
“lim” indicates that the complex energy E ap-
proaches the physical energy from above the real
axis. For i#j, Tﬁj) represents the rearrangement
amplitude in which pair j is bound in the initial
state and pair 7 is bound in the final state. For
i=j, a pure Coulomb contribution must be added
to obtain the physical elastic amplitude, as dis-
cussed earlier in connection with Eq. (2.34). The
states |k{*)) describe the relative motion of pro-
jectile and target; they satisfy

35, [B) = &, [ . (4.2

The effective one-body Hamiltonian 3C; is the sum
of a kinetic energy term and a potential U; which
accounts for the long-ranged Coulomb interaction
in channel j. For j=1, e.g., we define
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- mT,+m, T, |7t
V,=e%,(2,+2;,) r‘—_i;z_::_ﬁ:_a . (4.3)
The complete initial-state vector is |x{?) = |¢) [k,
where |¢,), the target bound-state vector, satisfies

Hj ‘¢’J> =-B; l¢1> ’ (4.9)

with H; = K; + V; representing the Hamiltonian as-
sociated with the internal state of the pair. The
total energy in channel j is E, = §; - B,.

We look for integral equations to determine the
operators 7' ;;(E) in Eq. (4.1). Toward this end
we combine Egs. (2.25) and (2.30) to obtain, in
the notation of this section,

TH =1im(E -E,Xx{ [GE)H -E) XS,  (4.5)

with G(E) given by Eq. (3.14). A more symmetric
version of this equation is obtained by writing

G(E)H -E,)=G(E)E -E;) -1, (4.6)

valid for InE> 0, and noting that only the first
term on the right-hand side of Eq. (4.6) contrib-
utes to the residue at E=E;. We therefore have
the alternate form

T =lm(E - EXxOGE) xNE-E).  (4.7)

Another version of this equation will be useful in
the following. Recalling the stationary phase meth-
od for evaluating the integral [see the discussion
following Eq. (3.6)], we observe that it is only the
part of the asymptotic form of the scattered wave
[¥,(E)) in which the pair i is bound that contrib-
utes. Since this part is proportional to |¢,) we

can replace the state (¢;| in Eq. (4.7) by A{T;|,
restricted only by the normalization condition

A(T;le) =1. (4.8)
Then Eq. (4.7) becomes
T =lim(E - E)AEP KT G(E) ¢,) [KSNE - E,) .
(4.9)

To obtain the desired integral equations for
7;;(E) we follow the resolvent operator approach
of Grassberger and Sandhas,?® suitably modified
to include Coulomb effects. Thus, we write the
three-body Hamiltonian as H=K+ V, where K is
the total kinetic energy operator and V=3}i., V,
is the sum of the pair interactions. We now de-
compose V in the form V=V, + Vy, with

VB=£)1A,II})(I“I. (4.10)

While greater generality is possible, we shall

make the specific choice

IT)=V,lop, (4.11)

R CAYATIE (4.12)
We now introduce the resolvent

Ga=(E-Hy)™, (4.13)
with H,=K+ V,, and consider the identity

G(E)=G (E)+ G ,(E)V5zG(E). (4.14)

Premultiplication by (T;| and the use of Eq. (4.10)
gives

<rilG=(ri‘GA*‘é;l(ri’GA]Fk))\k(PklG~ (4.15)

To put this equation in a form with a connected
kernel we define

Gia=(E-H,,-3)7", (4.186)
with H; ,=K; + V,; ,, and introduce
(T;1G 4l Ty) =<riIGAIFj)C+<Fi|GiAlrI>6iJ .
(4.17)

Equation (4.15) then becomes
(=2 (T51Gy 4l T (T |G

=(I}| G,,+kzz)1 (T;1G 4T M (TWlG . (4.18)

To make contact with the physical scattering am-
plitude we analyze the structure of G;,. We have
the identity

(E-H;4=3¢)" =(-B;=H, )" = (-B; —=H; )™
X(E =3¢, + B,)(E - H, ,~3C,)"".

(4.19)
Since

<¢>i|Vi(—Bi

it follows that

<E$—)[(1 - li( I"{ IGiAlri» ~ (E - Ei))‘i<E$—)I .
E—E;

1

_HiA)—1:<¢i|: (4.20)

(4.21)

This is just the factor which appears in Eq. (4.9)
and suggests that an integral equation for the
scattering operator can be obtained from Eq.
(4.18), rewritten in the form

3
Qio=<FiIGA+ 2 ViaSx 2 - (4.22)
B=1

We have defined the effective potential operator

'Uik=<rilc.4|rk>0s (4.23)
and the modified Coulomb propagator
Ge= (0" _<Fk‘GkAlrk>)-l . (4.24)
A formal solution of Eq. (4.22) is given by
3
Q(o=<rilGA+kZ> 78 T2lG 4, (4.25)
=1
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where the operators T;; are defined as solutions
of the coupled equations

3
Ty =Vis+ 25 VinSaThs - (4.26)
k=1

Our notation anticipates that 7 ;; can be identified
with the scattering operator which appears in Eq.
(4.1). To verify this we first observe that

T8 =1im(kP |Q;,l0,) |KPNE - E,) . (4.27)

Now we replace §;, in the above equation by the
right-hand side of Eq. (4.25). The first term,
arising from (T}|G ,, has vanishing residue and
therefore makes no contribution. The second.
term does contribute by virtue of the propagator
pole
8|k ~ (E-E)™ KM (4.28)
-5

[see Eqs. (4.21) and (4.24)] which arises in the
term k=j, with (I};|G, replaced by its disconnect-
ed part. Since (Iy|G, ,=(¢;| plus terms which
vanish on the energy shell [see Eq. (4.20)], we
conclude that the residue is (k{?|T;;|k{"), thus
completing the demonstration.

With obvious modifications of the above pro-
cedure we can derive the representation

Qo; =G 4ITy) +;§’1 GAlT,) 8. Ts; 5 (4.29)
with
Qo =GIT)H = ATy G, 4ITy)) . (4.30)

The breakup amplitude can then be expressed as
T8 =1im(E — EXx$ 194 1k , (4.31)

where E,=E; and x’ is the three-body modified

plane wave whose asymptotic form is shown in
J

v = 1im{<<g"

5]

k*j

Equations (4.23) and (4.37) provide definitions
of the effective potential matrix elements for
elastic, rearrangement, and breakup collisions
which are similar in form to those given earlier**
for the case of short-ranged forces. We recall
that the motivation for this effective potential
transformation lies in the simpler structure of
the modified Green’s function G, compared with
the original Green’s function G. Thus, G, is de-
fined in Eq. (4.13) in terms of a Hamiltonian H ,
involving two-body potentials which have been
weakened by subtraction of separable components.
These components [Eq. (4.10)] can be chosen such
that low-lying bound states present in the original
two-particle spectrum cannot be supported by the
residual interaction. As a consequence the con-

%;(E; + in)> +<(H —E XS |G A(E;+ in)[g;j Viea="0 ,]

Eq. (3.7). Once the integral equations for the am-
plitudes Tﬁj’ have been solved, the breakup ampli-
tude is obtained by quadratures. The term

VS =lim(E ~EXx$? |G 41Ty k) (4.32)

which arises in this computation can be put into
a more convenient form if we substitute

G=Gya+GoH 4 —H, ,—5,)G, 5 (4.33)

in Eq. (4.32). The disconnected part, arising
from the term G, ,, is dropped. This can be justi-
fied by reverting to the time-dependent wave-
packet description and observing that the integrand
contains a logarithmic phase factor, arising from
the final-state function, which is rapidly oscil-
lating as ¢—-», The argument is similar to the one
given earlier in connection with the forward scat-
tering contribution to Eq. (2.24). The second

term on the right-hand side of Eq. (4.33) contains
the factor

H,-H;,=3C;=3%, V, .=V, (4.34)
P

which represents the interaction between pair j
and the third particle with the pure Coulomb (mono-
pole) contribution removed. Then, defining

%5 (E)) =G, 4(B)|Ty) Ky, (4.35)
we have

V) =lim(E - E)(x$

GA(E)[Q Via -'o,] ‘)‘(,(E)> .

(4.36)

In a manner similar to that used earlier in going
from Eq. (2.29) to Eq. (2.33) we can transform
Eq. (4.36) to

X, (E; +in)>} . (4.37)

I
tinuum threshold E,, of H, lies above the physical
threshold E,. For scattering energies which lie
between E, and E.,, the variational principle for-
‘G,, and hence for the effective potential, becomes
a minimum principle, the sign of the error being
rigorously determined.!* The power of the varia-
tional approach is very much enhanced by this
minimum property. Techniques introduced in the
present paper allow for straightforward extension
of this variational bound formulation to problems
such as proton-deuteron scattering and to scat-
tering of positrons and electrons by He*. Numer-
ical applications for these systems appear to be
quite feasible. For energies above the breakup
threshold, the variational principle still applies
but the minimum property is lost. The effective-
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potential approach may still be useful. For ex-
ample, the residual interaction may be weak
enough for perturbation methods to apply.?* Fur-
thermore, it allows for the variational construc-
tion of scattering amplitudes satisfying unitarity
constraints.?®

APPENDIX

The variational identity, Eq. (3.21), is re-
derived here using modified Faddeev equations in
which the long-ranged Coulomb effects are taken
into account exactly in the intermediate-state prop-
agator as well as in the initial and final states.
Correspondingly, the interactions which appear
are without long-ranged Coulomb components. We
expect therefore that the essential elements of
Faddeev’s original analysis can be applied to these
modified equations* so that, in particular, the
interchange of order of integration and limit ImFE
-0+ is justified.

We take as the starting point a representation
of the three-body breakup amplitude of the form

Tg, =Hm(E -E xS, GENXOWE-E ), (A1)

with G(E) given by Eq. (3.14). The Hamiltonian
is expressed as

3
H=K,+ 3 U,, (A2)
i=1

where all the long-ranged Coulomb interactions
are contained in K,. With G,(E) defined as

G(E)=(E-K)™", (A3)

equations of the Faddeev type can be written down
for the construction of G(E), with G, and U; play-
ing the role of “free” Green’s function and poten-
tial, respectively. Unique solutions to these
equations are assumed to exist for ImE = 0, and
to be continuous in the limit ImE -~ 0+. Thus, we
define T, i=1, 2, 3 by the integral equations

T;=U;+T,G.U;, (A4)

and consider Faddeev-type equations for the am-
plitudes T ® of the form

TO=7,+ 3 TYG,T;. (A5)

i=i

One easily shows that G(E) can be represented as
3
G=G,+G, 33 TWG,. (A6)
i=1

Let us specify that it is pair 1 which is bound in
the initial state. By virtue of Egs. (A5) we can
write Eq. (A6) as

G=G,+G (T + TG, (A7)
with

G, =G, +G,T,G,. (A8)
Combining Eqs. (A1) and (A7) and defining

XolE) =(E = E)G,(E)XT) (A9)
and

Xa(EX) = (E*—E)G,(E*)XS, (A10)

we obtain the representation
T8, =lim[(E - Eg)x§, Xo(E)
+(Xe(E®), [T® + T (E))]
=lim[ 75, 4(E) + Tgs(E)]. (Al1)

At this stage the procedure leading to a varia-
tional expression for the breakup amplitude is
very similar to that described previously in the
case of short-ranged potentials.® We confine our-
selves in the following to pointing out the modifi-
cations needed in the present case; details omitted
here can be found in Ref. 8.

The term T, in Eq. (A11) can be written with
the aid of a variational identity satisfied by the
solutions 7 ®of Eq. (A5). After some algebraic
manipulation, we arrive at the form [analogous
to Eq. (2.36) of Ref. 8]

Tpop(E) =(¥5(EX), [H - E]Y (E))
+(¥5(E%), [H-EN 4(E))

3 -~
- Jzz)l(fcajw*), [K.+U, -EN¥ ,(E)).

(A12)
We have defined the functions
¥5=G, %T(j)ie
i=1
=¥g -¥3a, (A13)
Yo = 35 GTH R (A14)
71
and
X8; =GcTiXs - (A15)

In Eq. (A14), T{) represents a trial solution of
Eq. (A5). Now for ImE>0

(Res(E®), [K,+U; - EN ,(E))
=([K, +U; - EXRg;(E®), ¥ o, (E))
=—(Xa(E®), U;¥ (E)).  (A16)

The last term on the right-hand side of Eq. (A12)
can then be expressed as

% (o), Uy oy (B0 = Ro (B, [H - EJi ()
- (Xs(E*), [K, - E]¥ ,(E)) .

(A17)
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Equation (A12) then becomes
Tpop(B) =(¥5(E®), [H - E¥ ,(E))
- (Xs(E®), [K, - ENe o (E)), (A18)

with ¥ , =¥, +\ita,. The second term on the right-
hand side of Eq. (A18) is written [see (A10)]

~([K, = E*[x(E™), ¥ 4(E))
= (B - Eg)(x5, ¥ ()
==(E =Eg)X5, XoEN + (E = Eg)x§, ¥ 4 (E)).
(A19)

The first term in the last member of Eq. (A19) is
—Tg.4(E) and cancels an identical term in Eq.
(A11). The second term in (A19) becomes T§)

in the limit E—~ Eg +i0+, as discussed earlier in
connection with Eq. (3.20). After combining these
results and defining

¥ =lim¥ 4 (E*) (A20)
and
¥ =1lim¥ ,(E), (a21)

we find that we have reproduced Eq. (3.21) of the
text.
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