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We have shown that the bound-state problem in a nonpolynomial-Lagrangian theory can be solved as
in the usual polynomial theory assuming that a Wick rotation is admissible. For definiteness we have
assumed the interaction of two scalar fields interacting via the exchange of a superfield to be of the
form U(x) = exp(g $(x)], where g denotes the minor coupling constant and $(x) is a massless

neutral scalar field. The major coupling constant is introduced through the ladder diagrams in the
Bethe-Salpeter formalism. We find that the Wick-rotated Bethe-Salpeter equation reduces to a standard
Fredholm equation with a modified kernel corresponding to the exchange of the superfield U{x). To
study the physical content in the theory we have investigated the equation in the instantaneous

approximation. The resulting nonrelativistic equation is projected onto the surface of a four-dimensional

sphere by using Fock's transformation variables, The bound-state eigenvalue problem is solved
approximately in the weak-binding limit, using Heckes theorem, leading to a Balmer-type formula.
Finally, the fully relativistic equation at E = 0 is considered by transforming it onto the surface of a
five-dimensional Euclidean sphere. The approximate-symmetry property of the equation is studied, and
the eigenvalue problem is solved in terms of the coupling constants of the theory.

I. INTRODUCTION

Of late there has been some interest in the use
of nonpolynomial-Lagrangian models to study the
nature of interaction between elementary parti-
cles. While a typical nonpolynomial interaction,
viz. , H,„,=Gexp[gp( x)], where P(x) is a neutral
scalar field and 6 and g are the major and r:.inor
coupling constants, respectively, was discussed
at length by Okubo' as early as 1954, there are
two factors that have mainly caused the regenera-
tion of interest in the class of such Lagrangians.
These are (a) the demonstration by Efimov' that
the constraints to be put on the interaction La-
grangian in order to have a divergence-free the-
ory do not exclude such type of interactions, and
(b) their occurrence within the chiral group in
the framework of current algebra. The particu-
larly attractive feature of the nonpolynomial the-
ories, as has been emphasized by Salam, ' is the
presence of built-in damping effects which might
allow the calculation of renormalization constants,
and other self-interaction effects, which were
perhaps impossible to obtain in polynomial theo-
ries. As a consequence, some of the salient
fundamental features of this class of Lagrangians
have been under extensive investigation. The
criteria of their renormalizability have been dealt
with'; some attention has also been given to the
construction of the 8 matrix and investigation of
the unitarity property. ' Some of the recent in-
vestigations have been concerned with two-body
scattering processes via the exchange of an in-
finite number of bubbles. ~e

In this paper we study the existence of bound-

state solutions for two scalar particles interact-
ing via the exchange of a nonpolynomial field
U(x) =exp[gQ(x)] within the framework of the Bethe-
Salpeter equation. %e note that while it is a mod-
el Lagrangian, nevertheless it contains all the
basic features of a nonpolynomial theory. For
instance, the rules for calculating the $-matrix
elements analogous to those in ordinary perturba-
tion theory and questions of, e.g. , the uniqueness and
finiteness of results together with the conditions
of unitariiy and causality have already been dis-
cussed with respect to this interaction. It is worth-
while then to discuss the bound-state problem in
the relativistic nonpolynomial theory of the expo-
nential type. As in the usual polynomial theory,
we discuss the problem in the ladder-diagram ap-
proach. In Sec. II we give a simple derivation of
the bound-state Bethe-Salpeter equation for the
nonpolynomial interaction following the standard
method. In Sec. III we briefly take up the question
of the radially symmetric solutions of this equa-
tion for zero total energy of the system. Assum-
ing the admissibility of a Wick rotation we suc-
ceed in reducing the equation to a form from
which it is apparent that the standard Fredholm
technique can be applied for its further study. To
study the physical content of the theory we in-
vestigate, in Sec. IV, the Bethe-Salpeter equa-
tion with our model Lagrangian in the instanta-
neous approximation. The resulting nonrelativ-
istic equation is projected onto the surface of a
four-dimensional sphere by using Fock's trans-
formation variables. The bound-state eigenvalue
problem is solved approximately in the weak-
binding limit leading to a modified form of the
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Balmer formula. Finally, in Sec. V, the fully
relativistic equation at E =0 is considered by
transforming it onto the surface of a five-di-
mensional Euclidean sphere and the approximate-
symmetry property of the equation studied. The
eigenvalue problem is solved resulting in a tran-
scendental equation involving the parameters of
the theory, namely, the major and the minor cou-
pling constants.

we can rewrite hq. (2.4) in momentum space as

G" 1 1
v p)=

(2m)4i (2'8 +p) '+m' (2'Z —p)'+ m'

x Jt d'p'E(p p'—)r(p') . (2.7)

We now proceed to evaluate E(p). We know
that the factor that corresponds to the propagation
of the superfield in coordinate space between
space-time points 0 and x is E(x) -1, where

II. THE BETHE-SALPETER EQUATION FOR A
NONPOLYNOMIAL INTERACTION E(x}= exp[g'D„(x)]. (2.8)

We consider the interaction Hamiltonian

H, = G'y2(x)U(x), (2 1)

By analytic continuation we set, following Okubo, '

g2=-i~ (Z&0},

whence
where g(x) is a neutral scalar field of mass m
and U(x) stands for the nonpolynomial field

U(x) = exp[g(p(x)]; (2.2)

G' = G exp[g'D (0)],
and g determines the minor interaction strength.
In the standard way, we adopt the following defi-
nition for the bound-state wave function for the
two-body system of g fields:

x(» y) =&0I T(4(x)4(y)) I p)

where IO) and Ip) are the state vectors for the
vacuum and the two-body system, respectively.
If we regard the two-body interaction processes
to be taking place owing to the exchange of the
U(x) field alone, then

(2.3)

y(», y) = -G'2 d4»~d 4y, a~(x —x,)b,~(y —y, )

p(x) is taken to be a massless neutral scalar field,
t"' is the renormalized' major coupling constant,

E(x) = . e'""du.
2mi „u+ DJ„(»)

(2.9)

1 +oo

E(P) =
2

. f(P)e' du, (2.10)

where f(p) = Fourier transform of 1/[u+ D~(»)].
Writing f(x) =1/[u+Dz(x)], we easily find that f(p)
satisfies the following integral equation:

f(Pi = „~'(P)+„(2). (p p, ).f(P'),

where we have used the fact that
4

D~(x)= 4 J~ 2 . e *d x.

Setting

(2.11)

Then E(p), the Fourier transform of E(x), is seen
to be given by

E(»j yl)X( lt yl) I (2.4) f(p) = „~'(p)+g(p}
(2m)4

(2.12}

where b,~ is the usual Feynman propagator func-
tion for the g field and

E(», —y, ) =(o I &(U(x,)U(y, )) Io) . (2.5)

we obtain

1 i 1
2 P2 (2e)4 (P Pl)2 g(P P

Separating the center-of-mass motion from g(x, y),
we can obtain the relevant equation for the rela-
tive motion through the substitution

y(x, y) = exp[2iE(»+y)]r(x —y)

in Eq. (2.4). Introducing the Fourier transforms

(2.6a)

(2.13}

For solving Eq. (2.13}we indicate below a
straightforward method. ' By effecting Wick ro-
tation we go over from the Lorentz metric to the
Euclidean metric in Eq. (2.13). The application
of the operator Q~' converts this integral equa-
tion into a differential equation'.

Q 2 g p 2 (2.14)

E( -y)= d'P "' "'E(P),
(2m)4

(2.6b}
Taking g=g(p'), and putting s=p', Eq. (2.14) be-
comes
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(
d 14s, +8d —4, g(s) =0.ds' ds 4m'u

The introduction of a new function

v =wg(w),

where

(2.15)
III. RADIALLY SYMMETRIC SOLUTIONS OF THE

BETHE-SALPETER EQUATION WITH
NONPOLYNOMIAL FIELD

The momentum-space Bethe-Salpeter ampli-
tude for the bound state of two scalar particles
interacting via the exchange of the nonpolynomial
field U(x) = exp[gp(x) j in the ladder approximation
(for zero total energy of the system) is given by

reduces Eq. (2.15) to an equation for the modified
Bessel functions:

(2.16)

The solution of this equation which satisfies the
boundary condition, viz. ,

(P'+m')"(P)

»f -d ~.(~)
is 0 p

d4
, .exp[-i&'(P -P')'j T(p'),

(P -P')'
(3.1)

i 1 1g(p')- ——as -0
u p' 4w'u

is given by

4~'u' (P'/4m'u)' ' "(4w'u ]
Using a suitable representation8 for the E func-
tion, we obtain

where the symbols have the meaning ascribed to
them in Sec. II.

To make Eq. (3.1) tractable, we first employ
Wick rotation. This is followed by a transition
to spherical polar coordinates in four dimensions.
Then, for the radially symmetric solution, i.e.,
for T = t(p ), we obtain

p~, (~)e
~2 3 (p2 p2/4s2 )3 (2.17)

(s+m')'r(s) = —— dP
4' "

Z, (p)
m 0 P

whence the substitution of Eq. (2.17) together with
Eq. (2.12) into Eq. (2.10) yields

x ds's' exp[-ih'(s+s'. )jr(s')f„,
0

&(P) =(2x)'5'(P) —
p
—. d13

'
~o

(2.18)

where

ein'y exp[i&.'(ss')'~'cosyj
[s —2(ss')' 'cosy+s'j

Becalling that the factor that corresponds to the
superpropagator in momentum space is the Fou-
rier transform of Il(x) —1, we can drop the 5~(p)
term from Eq. (2.18). Upon substituting it in

Eq. (2.7) we obtain

and

s=P ~

pI 2

2' 1 1
in' (-,'E+P)'+m' (-,'E-P)'+m'

J, d'p'

The X integration can be performed by expanding
the denominator in the integrand in a series of
Gegenbauer polynomials. The resulting series
may be expressed in terms of I ommel functions
of two variables'.

where

xexp[-i~'(P -P')'j7(p'), (2 18) I =-,w ~+i ~+ ~+i ~U . U U . U
s s s' s'

f= (G'/4~)'

and

~' = ~/4w2P'.

where

U, =—U,(2X's', 2A, '(ss')' ) .

Consequently, Eq. (3.2) becomes

We note that our result for E(P) is the same as
obtained previously by Okubo. ' 7 (s) = (-Dj) ds'K(s, s')~(s'),

0
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where

J,(P), exp[-iA'(s+ s')]
P (s+m')'

„U~ . U U . U
+Z + ~ +g

S S S S
(3.4)

The eigenvalue condition for the existence of
solutions of Eq. (3.2) is given by the vanishing
of the Fredholm determinant of the problem. It
is thus seen that the standard Fredholm technique
can be applied to the nonpolynomial field of the
form exp[gP(x)] as in the usual polynomial theory.

IV. INSTANTANEOUS-INTERACTION APPROXIMATION AND THE BALMER FORMULA

We now proceed to investigate Eq. (2.19}in the approximation where the propagation time for the ex-
changed particle is neglected, fo11owing closely the method given by Basu and Biswas. In this approxima-
tion, Eq. (2.19) reduces to

00 d4
[p' —(P, + '&)'+ m-'][p' —(P, —-'&)'+ m' ]r(P) = —. dp ', , exp[-iA. '(p —p')']r(p'), (4.1)

SENT Q p-p
where we have used the rest frame,

Z=(0, 0, 0, ig).
We now introduce a function S(p), given by

[p' —(p, + 2Z)'+ m'][p' —(g ——,'Z)'+ m' ]r(p) = S(p),

and carry out the Po integration. Defining

( )
s(p)

(p2+m2)1/2(p2+ + E2) I

one can easily obtain

(4.2)

(4.3)

(p~+m')'"(p'+m'- &E')g(p) = dP ', , exp[-Q. '(p-p')']. (4.4)

It is thus seen that in the instantaneous-interaction approximation, the additional degree of freedom of
the relative time variable appearing in the fully covariant equation is removed. Further, since Eq. (4.4}
is O(3)-symmetric, one can write

4(p) =g (p)y (e, 0) (lpl =p). (4.5)

Substituting Eq. (4.5) in Eq. (4.4) and using the properties of spherical harmonics, '0 one can separate out
the angular variables to obtain

&(P)(1 P)g(P)= dP „, P~g(P)&( ose)

x exp[-iA. "(p'+ p" —2 pp'cosa')]

where

g2
c= 1 — 2, p =mcp

X(p') =(1+c'p')' ' and A.
" =A.'m'c'.

(4.6)

(4 I)

In order to solve Eq. (4.6) in the weak-binding limit, we follow the procedure given by Fock." Thus,
by means of the transformations

p = tan-,'g, p' = tan-,'p', (4 6)

Eq. (4.6) is projected onto the surface of a four-dimensional sphere leading to

[1+—,'c'tan'( —,'g)] sec'(ag) g, (tan-,'g) =, cos'(2g) dP
' sec4( ,'g') g, (t'—ga'n)

x exp(-ia"-,' sec'(2$)sec'(~g')(1 —cose)), (4.9)
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where 6 is the angle between two unit four-dimensional vectors of polar angles (P, 0, 0) and (g', 8', g'),

cos6 = cosg cosg' + sing sing' cos 8',

and dQ4 is the four-dimensional solid angle:

d04 = sin2$' sin8' dg'd8'dp' .

If we further define

H(0) = sec'(2%I )g, (tan(2'q) },
E(I. (4.9) takes the form

( p3cos~)H(~)
- f (1 ]) dp

2(p) (g')P, (cos8')da4
4am'c (1 —cos8)

x exp(--,'ig"(I —cosO) [1+tan'( —,'(I)) + tan'(2'f') + tan'(2$)tan (24 )]]

(4.10)

o. = (1+—,'c'), p'= (1 ——,'c') . (4.11)

In the region of extremely small binding ener-
gies, we may replace o. =P'=1 (we have neglected
terms of the order c'). In this region we see that
E(I. (4.10) possesses 0(4) symmetry if we neglect

f(g, g') = tan'( —,'g) + tan'( —,'g') + tan'(-,'P) tan'( —,'g') .

(4.12)

With this approximation, Eq. (4.10) reduces to

H(~)
~f

dp
~2(p)

4nm'c p

we easily obtain

-42'm2c 4w
"

J2(P)
Af 1V 2 p"dx(1- x')"'

(1-x)
x exp[-2iz"(1 —x)]C„',(x) .

(4.16)

In Eq. (4.16) we first perform the P integration
by a method given by Qkubo. ' Letting

f(x) = dp
' exp[--2'iA, "(I —x)]

~.(p)
2

H (g')P, (cos 8')dQ,'

(1 —cos6)

x exp[--,'ih. "(I—cos8)] .

The solution of Eg. (4.13) can be taken as

H(g) =Pi2~, ,(cosg), %=1, 2, 3, . . . ,

(4.13)

(4.14)

where

P(u)
u

-&(I —x)m'c'
8w'

(4.17)

where the functions P~'), (cosg) are related to the
Qegenbauer polynomials in a simple manner:

1
P~'), (cosg) = sin'g CN1", (cosg) .

Substituting the solution (4.14) in Eo. (4.13),
applying Hecke's theorem, and noting that

p(u) =u dp ' —exp-J2(P) iu

p p2

one can show that Q(u) satisfies the following
third-order differential equation:

f P, ( c8o')sP N(2()cg'o)sdii;
(1-cos8) du 4iu~ (4.18)

x exp[--,' i A."(1—cosa)]
+j (2)

N 1. 0( ) (I x2)1/2I"(3/2), 1-x

x exp[--'; i A."(1 —x) ]P~'), ,(c os/),

(4.15)

Using the solution' of this equation which is analy-
tic in the range -1 &x &+1 we have

1 iA(l - x)m2c2 n+1
Z(x) = --,'i

(n+2)! (n+1)!n!( 32n' )
n=0

(4.19)
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the other two linearly independent solutions being
nonanalytic at x = 0. Substituting Eq. (4.19) in

Eq. (4.16), we have

-m c 1 -g'm'c'
Af 4N ~ (n+2)! (n+1)!n! 32w2

n=0 (4.20)

where'

( +1 (1 x2)1/2dx, , C', ,(x)(1-x)""
1 (1 —x)

2"(T " ' I'(-N+1+ k)I'(N+ 1+k)I'(n+ 0+ —,') 1

(N 1)!-+ I'(-N+ 1)1'(k+—'}I'(n+ k+3) X] ' (4.21)

From Eq. (4.21) we get the corresponding Balmer formula in our model nonpolynomial-Lagrangian
theory as

-fg'v " " ' 2" -g m'c' ""I'( N+1-+k)I'(N+1+k)I'(n+k+ —,') 1
4m'N! + Z (n+2)!(n+1)!n! 32((' I( N+I) -I( k+ )2 1(n+ k+ 3) k! '

n =0 K=0
(4.22)

where the infinite series in Eq. (4.22) in terms of the square of the minor coupling constant is absolutely
convergent for all values of g'.

V. APPROXIMATE O(5) SYMMETRY FOR E= 0

Setting the masses of the f fields equal to unity, the Wick rotated Bethe-Salpeter equation with the non-
polynomial interaction under consideration may be written as

{(+jp)'r(D(=—,f ((((' p')')r(p')d'0', - (5.1)

where we have confined our attention to the case Z =0; F(p), the superpropagator for the field U(x), is
given by

&(P) = ——, dp
' exp(-~&'P').z, (p)

p'
o p

(5.2)

In order to investigate the symmetry structure of the above equation, we transform it onto the surface
of a five-dimensional sphere by following the stereographic-projection method of Fock,"Levy, "and
Cutkosky. " For this purpose we go over to a polar coordinate system in the five-dimensional Euclidean
space with polar angles y, $, 8, and Q, !/ being given by

( Pf =tan-,'!!,
and P being the angle between four-vector p and the (imaginary) relative time axis. Defining

II(X, 4 8 0) = sec'(-'X) ~(P),
we may rewrite Eq. (5.1) as

Z( & 8&) f d( (X(4, , 4)
8n' ' 1 —cosa

(5.3)

x (-2X) dp
' expI- —,'i!(.'(I —cosu)[1+tan2( 2y) +tan2( —,'X')+tan'(2!()tan'(~!t')]),

0 p
(5.4)

where dQ, is an element of the solid angle in five dimensions, and e is the angle between two five-dimen-
sional unit vectors defined by the polar angles (!/, 0, 0, 0) and (!!', g', O', P'). From the above equation we

immediately see that if we neglect

f(x, X') = tan2( —,'!()+tan'( ~y') + tan'(2!!)tan2(-,'y'),

the equation under study is invariant under all rotations in five dimensions.

(5.5}
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(5.6)

Neglecting the symmetry-breaking part f(x, )( ) in Eq. (5.4), we can obtain its solution in terms of five-
dimensional spherical harmonics as well as the corresponding eigenvalues (f)„.Thus, regarding
C»+', (cosP) as a solution we have for )( =0

(1)
1 d&, C„"',(cosp')sin')('d)('

( 2)() dp~' ) ) exp[-~X'(I —cos ')]

Multiplying both sides of Eq. (5.6) with)» ', summing over N, and using the definition of the generating
function of the Gegenbauer polynomials, we obtain

~N 1 C2/2 (1) g (~)
N-1 N

(5.7)

where
'r Oo

1 —cos)(')(I —2rcosx' +1.2)2/' (5.8)

We now make a Taylor-series expansion of R(r) about r =0, and use

C„"',(1)=-,'N(N+I).

Comparing the coefficients of r» ', we obtain from Eqs. (5.V) and (5.8)

1 1
(f)N 2(N+1)' (» 1)(0)

where

Z N "(0)=-,'(N-1)! (-2Z)dp ' (1+x)C'„',(x) exp[-—2'iX'(I —x)]dx.~(!1) "
0 1

(5.9)

(5,10)

The P integration in the above equation may be performed as in Sec. IV, followed by the x integration,
to yield

(" ')/0~ — (N —1)!
256»2 ~ (n +2)!(n +1)!n! 32N2

where

(5.11)

Q„= dx(1 -x)""(1+x)C"', (x)
1

2"" " '
I( N+k+I) 1(-N+ k 2+)I'(n +k2+) 1

(N -1)!~ I'(-N+1)I'(k+2)1'(n+k+4) I'(k yl) '
A =0

(5.12)

Equation (5.9) together with Eqs. (5.11) and (5.12)
gives the different discrete eigenvalues (f)»—ex-
pressed as an infinite alternating series in terms
of the square of the minor coupling constant. The
infinite series (5.11) is absolutely convergent for
all values of g'.

Thus, as an approximate solution we obtain the
Gegenbauer polynomials as solutions of our pro-

blem with eigenvalues given by Eq. (5.9). We
note that to obtain the exact eigenvalues, one
should assume the solution as a linear combina-
tion of Gegenbauer polynomials with unknown
coefficients, which would lead to a set of differ-
ence equations for the coefficients. One can pro-
ceed thereafter as in the ordinary Bethe-Salpeter
equation. '4
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It is pointed out that the method of characteristics gives only a necessary condition (not a sufficient

one) for causality of field propagation. It is shown that the usual theory of vector fields with

anomalous magnetic moment coupling to an external magnetic field is noncausal, contrary to what has

been believed, as one of its modes of propagation turns out to be tachyonic, with the velocity of light

as minimum velocity.

It is well known that the components of higher-
spin (s ~1) fields satisfying manifestly covariant
relativistic wave equations are subject to con-
straints (usually implicit in the field equations)
which ensure that the number of field components
is just what is demanded by the spin degrees of
freedom. When the field is in interaction with
other (external) fields, these constraints depend
in general on the latter, and this fact leads to
serious problems of self-consistency. In particu-
lar, for arbitrary external fields, causality may
be violated. The systematic investigation of such
problems by Johnson and Sudarshan' in the context
of spin- —,

' fields is well knomn. Recently Velo and
Zwanziger' have suggested that the question wheth-
er field propagation remains causal in the presence
of specific interactions can be resolved by inspec-
tion of the characteristic surfaces associated with
the system of partial differential equations' con-
stituted by the field equations. They have inves-
tigated a number of examples from this approach-
in particular, the case of spin-1 particles with
anomalous magnetic moments or electric quadru-
pole moments. In the presence of quadrupole in-
teraction with external electric fields it turns out
that field propagation is noncausal, as evidenced
by the existence of spacelike characteristic sur-
faces. In the case of the anomalous magnetic di-
pole interaction the characteristic surfaces coin-
cide with the null cone (irrespective of the space-
time dependence of the magnetic field), and it is

concluded therefore that causality is not violated.
There seems to be good reason, however, to

doubt the validity of this last conclusion. Firstly,
there is the work of Lee and Yang4 showing that
when the electromagnetic interaction of a spin-1
particle includes an anomalous magnetic moment
term, the interaction Hamiltonian to be used for
generating the S matrix (through covariant Feyn-
man rules) has a part which is noncovariant and
non-Hermitian. A more direct demonstration of
difficulties with the theory comes from the recent
finding by Tsai and Yildiz' that the energy spec-
trum of such a particle (in sufficiently strong
magnetic fields) includes imaginary values. These
results are clearly at variance with the conclu-
sion of Velo and Zwanziger, and a reexamination
of the latter is therefore essential. This is our ob-
jective in this note.

In the work of Velo and Zwanziger' and others, '
the ratio n, /(n~ associated with the normal n
=- (rt„n)to a characteristic vector is identified as
the maximum velocity of propagation of some mode
of the field. Our basic observation is that this
identification is not always correct; n, /~n~ may
well be the minimum velocity in certain cases.
This point will be clear from the simple example
of the Klein-Gordon equation. The equation for
the normal to the characteristic surface is n' =0,
so that n, /~n~= 1. This is indeed the maximum
velocity in the case of ordinary particles, but if
one takes rrt' &0 (tachyons) it becomes the mini-


