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It is known that conformal invariance, with anomalous dimensions, determines the 2- and
3-point functions in relativistic quantum field theory up to some constants. It is then natural
to use these to construct the skeleton-graph expansion of the general »-point Green function.
We demonstrate that this leads to well-defined conformal-invariant expressions, for non-
exceptional external momenta, given by ordinary convergent (Riemann) integrals. This also
applies to the integrals in the Schwinger-Dyson equation for the 2- and 3-point functions.
These results support in particular conjectures recently advanced by Migdal—including self-
consistency of conformal invariance. All results are derived for (pseudo-) scalar Yukawa

theory.

L. INTRODUCTION

Wilson’s suggestion !'2 that infinite wave-func-
tion renormalization may lead to fields of anoma-
lous dimensions opens the way to construct a non-
trivial conformal-invariant3:4 field theory. More
precisely one can write down ® the most general
2- and 3-point functions invariant under infinitesi-
mal conformal transformations which satisfy the
correct locality and analyticity properties in co-
ordinate space and positivity constraints that fol-
low from the general principles of relativistic
quantum field theory. They do not coincide with
the corresponding functions for a free field (if
dimensions are anomalous). It is then natural to
attempt to use these simple conformal-invariant
expressions for the “dressed” propagators and
vertex functions in the skeleton-graph expansion
of the general n-point function (n =4). (These
skeleton-graph expansions may be considered as
iterative solutions of integral equations for Green
functions in Lagrangian field theory.®) The pur-
pose of the present paper is to prove that such a
skeleton theory is free from ultraviolet diver-
gences. All Green functions are given by ordinary
convergent integrals, for nonexceptional external
momenta.” We consider scalar or pseudoscalar
(ps) Yukawa theory as a model of hadronic inter-
actions. Strict chiral invariance (without spon-
taneous breaking) may also be imposed if desired.
Quantum electrodynamics is essentially different,
however,® and is not covered here.

We emphasize that our result should not be
viewed as an exercise in constructive quantum
field theory (QFT) only. The conformal-invariant
zero-mass theory is expected to reproduce cor-
rectly the real short-distance behavior of pro-
ducts of fields and currents in the presence of
strong interactions.! Indeed, recently Symanzik
showed °-*! that the small-x behavior of the c-
number coefficients in Wilson’s operator-product
expansions are determined by properties of cer-
tain zero-mass theories. Some of these coef-
ficients are measurable by electron-positron
annihilation'? or deep-inelastic lepton-hadron
scattering.!®* Before going to concrete applications,
we must of course include currents in our con-
siderations. This problem will be reserved for a
later publication.!

For consistency one must also analyze the (re-
maining) integral equations which are normally
used %1516 for determination of the 2- and 3-point
functions. A relevant discussion was recently
given by Migdal!” for the 3-point function, and by
Parisi and Peliti for the 2-point function.!® This
work will be reviewed in Sec. IV in the light of
our results. As a consequence of these integral
equations, one obtains three (algebraic) equations
for the three parameters g, d, andd’. Assuming
that this system of equations is nondegenerate,
the theory will not contain any dimensionless-free
parameter.

This is in agreement with what one expects on
the basis of the Callan-Symanzik analysis of short-
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distance behavior in renormalizable Lagrangian
QFT. In particular, Symanzik has shown? for the
example of ¢* theory that its Gell-Mann-Low-
limit theory'°—which is expected to be conformal-
invariant on the basis of Schroer’s result2°—
contains no dimensionless-free parameter if it
exists at all. Accordingly one may look upon the
present approach as an attempt to construct di-
rectly the Gell-Mann—-Low large-momentum
asymptote of a massive theory (Sec. IVC).

The material of the present paper is organized
as follows. First, we give the most general con-
formal-invariant expressions for the 2- and 3-
point functions (Sec. II). The derivation of these
expressions based on the manifestly conformal-
covariant six-dimensional formalism?' (Appendix
A) is given in Appendix B. In Sec. III we demon-
strate the absence of ultraviolet divergences for
dimensions of mass 1<d <3, $<d’<3 of the
“meson” and “nucleon” field, respectively, and
also absence of infrared divergences of the “cat-
astrophic kind.”??**®* To save labor the analysis
is first performed in the presence of an infrared
cutoff (a mass-type parameter) (Sec. ITA).
Subsequently, it is shown that the infrared cutoff
can be removed for nonexceptional external mo-
menta (Sec. III B), and that the limit thus ob-
tained is conformal-invariant (Sec. IIIC). The
proof of conformal invariance is based on re-
writing the generalized Feynman rules for the
skeleton graphs in a manifestly conformal-in-
variant form. Section IV is concerned with the
integral equations for the 2- and 3 -point functions.
It is also shown that y, invariance, which implies
vanishing of the coupling constant of one of the
two possible conformal-invariant vertex functions,
can be postulated without violating the bootstrap
condition. Appendix C contains the proof of the
fundamental covariance lemma which is used in
Sec. IIC.

II. CONFORMAL-INVARIANT PROPAGATORS AND

VERTEX FUNCTIONS: THE POSITIVITY
CONSTRAINT

We consider Poincaré-covariant quantum fields
¥ (x) transforming under dilatations x - px accord-
ing to the law

U (P} (U~ (p)= p"¥P(px), p>0 2.1)

and under infinitesimal special conformal trans-
formations as

VW) =4 () —iep (), K,] (€~ 0),

where

[v@w), K, |=i@d %, +2x,x,0" —x28, - 2ix"s , W (x) .
(2.2)

Here s,,=1i[7,, v,] for a Dirac field, and s,=0
for a spinless field.

Unlike the global conformal transformations,
these infinitesimal rules are well defined for a
field in Minkowski space, and do not violate the
causal order of events.” The nonexistence of
global unitary transformations corresponding to
the infinitesimal law (2.2) (except?® for the trivial
case of a free zero-mass field) indicates that the
operators K, though formally Hermitian, are
not self-adjoint (cf. Ref. 26).

Henceforth the dimension of mass d, of the
(pseudo-) scalar “meson” field will be denoted by
d, and the dimension of the spin-3 “nucleon” field
by d’. [Note that dimension of length I, = ~d,
(rather thand,) is used in some papers,® and
others (see Ferrara et al., Ref. 12) use [, for the
dimension of mass.] We shall also assume that
our theory is invariant under space reflection as
well as under the y, transformation (y;2 =-1)

PO~y @), PE)=PE)ys, PE)~-d&).
2.3)

In this section we write down and discuss the gen-~
eral expression for the invariant 2- and 3-point
functions in the case of interacting spinor and
(pseudo-) scalar fields. They are derived in Ap-
pendix B by the manifestly covariant technique of
Appendix A. They can all be written as (products
of) generalized Feynman propagators in the sense
of Speer,2” with specified exponents 6. We shall
use the following notation for these later:

¢ (x) =i (@m)"2C(0)(~sx2 +i0)~% |
SEx)=i#AG 1/ n(x), F=v-2.

Similarly, as a prototype for Wightman functions
we define

AL (x)=i(@m) 2T (0)(~gx% +i0x°)~ %,

(2.4a)

2.4b)

A. The 2-Point Function in Coordinate and Momentum Space

The general form of the conformal-invariant 2-
point functions is derived in Appendix B. It is .
found that the dressed propagators for a (pseudo-)
scalar field ¢ of dimensiond and for a spinor
field ¢ of dimension d’ are given by

O|T(¢ (x)p*(0))| 0y = —iA5(x),
OIT@ ) O))|0) = =iS§, &),
with the right-hand side defined by Eq. (2.4a).

(2.4c)
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Similarly, the Wightman functions,
(0o (x)9*(0)[0) = —iaz(x),
Oy ()¢ 0)|0) = =S 5, (x) =FAr -y 1 (¥) -

The distributions A§ and A are (different)
boundary values of the same analytic function
iF(z) holomorphic in the extended tube 28

2.4d)

T={z= cz2+a>0}.
This domian includes the Euclidean region in
which x, is pure imaginary (x,=¢x,, x+0). The
Fourier transform of A€ is most easily evaluated
by performing the Wick rotation to Euclidean x
and p:

ASGps, p) =fd4xe“”‘A§(x)

=ff dx4d3xe"‘3';F(ix4,£)

=T @-a)p)**>, (2.5)
whence
AZ(p)=T(@2 -d)(-p* -i0)'~2, 2.5")
Here

5'§=£'£+P4x4 (po=ip4)’ l§|2=£2+p42'

In evaluating the right-hand side of the first equa-
tion (2.5), we made use of the known Fourier
transform of the distribution #* in Euclidean
space (cf. Ref. 29, Chap. 4). For the Fourier
transform of the Wightman function we obtain

Ky(p)=i [ et Pz, ~i0, %)
T SV 2.6)

where T} =0()r* (cf. Ref. 29).
one uses the identities

To derive (2.6)

Ag(x)=iF(x,—i0,x)

=6 (xo)Ag(x) -6 (_xo)Kg("x) 3
2.7

@ +i0)* — (@ —i0)* =2i sinmA Q% [@}=0(-Q)|Q|*],
TQ)CA -A)sinmA=m.

Using (2.5") and (2.6) we also find the 2-point func-
tions for a Dirac field in momentum space,

S8 (p)=T(3 -d") f(-p? —i0)*"-5/2 2.8)
5(p)= 1—'7('672,1[1—3“[‘9 () (P2 -5/2 . 2.9)

The right-hand side of Egs. (2.5’) and (2.9) looks
at first sight like modified zero-mass propagators.
However, the K#llén-Lehmann representation 3°
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for the 2-point functions 3!
- 1 o Td-z
(4 —_
Ad(p)_r(d_i)fo dTT—pz—ZO’ 2.10)

31 =m0 ) [ ar e -5, @)

. ~ # L) Td'-s/z
Sg'(‘b)_r(d - %)jo dT'r -p?—i0

exhibit a continuous mass spectrum from 0 to «.
These representations also give us the range of
dimensions d and d’ for which the positivity con-
dition for the 2-point function is fulfilled. The re-
quirement is that the spectral function in the
Kiillén-Lehmann representation be positive. The
distribution 7} is positive on the space of fast
decreasing test functions f(r) if the integral

@.12)

-[d'r*r"f ()

is convergent at the origin. This demands A>-1,
or

a>1, d'>%. @2.13)

The canonical values d =1, d’=3 are also com-
patible with the positivity requirement since 2°

1
1i TA=06(1).
lim =0

(2.14)
However, they enforce a free-field theory.32:33

Knowledge of the Fourier transforms allows us
to write down the explicit expressions for the in-
verse propagators defined by

Jlagl -1 a6 -paty =56 -y @.15)

We obtain

1o (4% (p®-i0)*
[Ad(x)] J. (277) T@-d)
4T (4 —d) (=422 +30)1-4
T @nPr{d -2)r'@2 -d)
1
T -2)T@-d)

e—ipx

Ag_;(x)

-1 @-a)sinmaag @), ©2.16)

a% flp® =it

—-ipx
et TG-a) ¢

[Sg ()]t =~

-1 .
“TE-ar@=p S ®

cosnd’

p SGqr ().

2.17)
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B. The 3-Point Function

Let us consider now as a model of hadronic in-
teractions the conformal- and y,-invariant inter-
action of pseudoscalar mesons (or gluons) with
spin-3 nucleons (or quarks). The general form

T(x;y,5)= —if at'a*y'a*y’[ag —x)]7[S5 (v =y OIT( (3 (9} (FDION S5 (v =317

It was determined in Appendix B as
T(x;y,y)=gT@4-28;)7"¢ (v —x)
XSG,k =5)a%, (v =), (2.18b)
with

0,=0,=2=3d, 0y=2+3d ~d’. (2.18¢)

The notation was explained in Eq. (2.4a), and we
have chosen a normalization factor according to
convenience.

The inclusion of internal symmetries is obvious.
For instance, in the chiral SU(2)X SU(2)-invariant
0 model3* the 2-point functions will be diagonal
with respect to the internal-symmetry indices,
while the vertex function has to be replaced by
the SU(2)XSU(2) 4-vector I', whose components
are 8xX8 matrices

Tyc;9,5)=gT (4 =26,)7S§ (v = )7 ;75
X85, -y)a,(y =y) for j=1,2,3
and @.18d)
T,x;9,9)=gT(4-28,)7S5, (v —x)1
XS5 (=5)A% (5 -5) .

8, are given by Eq. (2.18¢c); 7 ; are the 2X2 iso-
spin matrices, and 1 is the 2X2 unit matrix.

These expressions can be graphically repre-
sented by an (“infraparticle”) triangular diagram
(see Fig. 2 below). A simple application of the
results of Weinberg 3% and Speer 27 proves that the
expressions in the right-hand side of Eqs. (2.18b)
and (2.18d) are well-defined distributions (cf.
Sec. III below).

Note finally that the coupling constant g is a
dimensionless number if we adopt the “noncanoni-
cal” normalization convention described by
Wilson.!

III. CONSTRUCTION OF THE n-POINT AMPLITUDE

In Lagrangian field theory one derives skeleton-
graph expansions for the z-point Green function
(see, e.g., Ref. 6). In the simplest case—which
applies whenever this leads to finite results—

of the invariant 3-point function for this case is
derived in Appendix B.

We shall later need in particular the vertex
function T'(x;y,y) which is obtained from the time-
ordered Green function by full-propagator ampu-
tation, viz.,

2.18a)

r

they allow the general time-ordered #n-point Green
function (z > 4) to be computed in terms of the
“dressed” propagators and the “dressed” 3-point
vertex function. For instance, the elastic meson-
scattering amplitude would then be given by an
infinite series of terms, the first of which are
presented in Fig. 1. In a skeleton graph G, each
line stands for a “dressed” propagator, and each
vertex for a “dressed” vertex function. There
are no proper subgraphs which are self-energy
insertions or vertex corrections. It will, how-
ever, be necessary to consider graphs G, where
the whole graph has three external legs. Contri-
butions of such graphs occur in the integral equa-
tion for the 3-point function (see Sec. IV).

We shall postulate that these skeleton-graph ex-
pansions hold for the conformal-invariant theory
to be constructed here.®® The purpose of the pres-
ent chapter is to show that in this way well-defined
conformal-invariant expressions are obtained for
the # -point Green function (z = 3, see above)
which are free from ultraviolet divergences. In
other words, the contribution from any skeleton
graph is given by an ordinary convergent integral,
if we use the result of Sec. II for dressed propa-
gators and vertex functions, with anomalous di-
mensions obeying the inequalities (<K means less
than and not equal to)

3<d'<%, 1<d<3 (d#2). @3.1)
A. Absence of Ultraviolet Divergences

In order to save labor we shall first investigate
the problem of ultraviolet divergences in the
presence of an infrared cutoff. This permits
known results ?” to be used. Subsequently we shall
show that the infrared cutoff may be removed for
nonexceptional external momenta, and that the

N ’ N e
Ay ’ N ’
crossed +
+ +  terms soe
N ’ b
l’ A Y . N

FIG. 1. Skeleton graph expansion for the mesonic
4-point function.

N v
N ’
N v
4 N
’ N
’ ~
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i
P w= -=-- = - - Ie
g !

FIG. 2. Triangular representation of the dressed
vertex. The coupling constant g; =gT'(d’ +3d -2)7L

result obtained in this way is conformal-invariant.
Let us define the infrared-cutoff generalized
Feynman propagators by

A5, (p;m) =T () ZM(p) (=p® + m? —ie) ™ n,
m?2>0,

€e>0, (3.2)

where Z*(p) is, in general, a homogeneous matrix-

MACK AND I.
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"
o
-

FIG. 3. The simplest skeleton graph occurring in the
vertex bootstrap (Fig. 10) and associated Migdal graph.

valued polynomial of p. In the end we shall let
€ -0, m-0. The limit € -0 will, as usual, pre-
sent no problem as long as m>0. The removal of
the infrared cutoff m—~ 0 will, however, need care-
ful investigation (Sec. III B).

The Fourier transform of (3.2) is, for € =+0,

AS (o m) =12 - ZR(G)m 2~ r(—x? +iO)“z'>"')’2K2_,\h[m(—x2 +40)Y/2]—~const Z#(9) (—=x2 +0)~5a

We see that in the limit m—~ 0 the A§ .(x,m) go over
into the expressions denoted by A§ h(x) and S§, (),
respectively, in (2.4a). Therefore both dressed
propagators, defined by Eq. (2.4c) as well as the
dressed vertex, Eq. (2.18) can be expressed in
terms of such generalized Feynman propagators
(3.3) in the limit € - 0, m~0.

Let us use a graphical notation. A line stands
for a generalized Feynman propagator as defined
in Eq. (3.2) above, with Z*(p)=1 for a dashed line,
and Z*(p)=# for a solid line. Lines will be labeled
by 2, and the value of X, will be indicated by dots
as follows:

@) ——— N==d’+3,
------- Ap==d +2,
(3.4)
(b) kh=—§—d+%,
------- )\h=d'—§d .

The conformal-invariant dressed propagators
found in Sec. II can be represented by the undotted
lines in this notation. The expression for the ver-
tex function is shown in Fig. 2.

This observation allows us to write the contri-

bution of any given skeleton graph G, to some n-
J

Fg(p)=1lim Fg(p;m),
m—>0

m—>0

with 8,=2 -1, . (3.3)

point function (see Fig. 1 or Fig. 11 below) in the
form of a generalized Feynman integral in the
sense of Speer.?” For instance, the simplest graph
occurring on the right-hand side of Migdal’s
“bootstrap” equation (Fig. 10 below) is presented
in Fig. 3.

Thus to every skeleton graph G, we may assign
a (generalized) Feynman graph G by substituting
Fig. 2 for the dressed vertex function. This graph
G will henceforth be referred to as the Migdal
graph associated with skeleton graph G,. Migdal
graphs can be characterized by the following re-
quirements:

(i) They can be obtained from a primitive
(skeleton ~) graph by substitution of Fig. 2.

(ii) Therefore, there are no self-energy sub-
graphs.

(iii) And with the exception of the whole uncut
graphs on the right-hand side of Migdal’s boot-
strap equation (Fig. 10) there are no vertex sub-
graphs except those of Fig. 2.

The set of all graphs satisfying (i), (i), and (iii)
will be denoted by ST'. The contribution of a given
skeleton graph G, to some amputated time-ordered
n-point function Fg(p) (p =p,** - p,, 7 >3) in mo-
mentum space may be written in the general form:

(3.5)

FG(p,m)(Zw)‘*é(l?pa):lim ff <I‘Id4xi><expi§p,-'x,> H N (xih—x,h;m). (3.6)

€—>+0

hELG)

Here £(G) is the set of all (internal) lines 4 of the Migdal graph G< ST'. Vertices in graph G are
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labeled by i; },,, means a sum over external
vertices (i.e., with external lines attached); ¢,
and f, are initial and final vertex of line % in G.
To every vertex ¢ in G there is assigned a vari-
able of integration x; € R,. Traces for internal
fermion loops (loops of solid lines) are under-
stood. The parameters A, in definition (3.2) of
generalized Feynman propagators A are chosen
according to prescription (3.4); they depend on
the dimensions d and d’ of “meson” and “nucleon”
field.

The convergence properties and singularities
qua analytic functions of A, of generalized Feyn-
man amplitudes (3.6) have been investigated by
Speer.?” The result is that singularities are con-
centrated on hypersurfaces

> =1D=[zp]-k E=0,1,2,..., (3.7
hEL (H)
and the generalized Feynman amplitude exists as
an ordinary convergent integral (after extraction
of energy-momentum-conserving 6 function) if

2 0=1>[51] (3.8)
he g (H)
for all one-particle irreducible subgraphs H of G
(exclusive of subgraphs with one vertex and no
line). £(H) is the set of lines of the subgraph H
of G; U, is the “canonical superficial degree of
divergence” of the graph H, viz.,

LH)=2LH)-4{nH) -1} + 35 7,. 3.9)
he £ (H)

Here L(H) and n (H) are the number of lines and
vertices of the Feynman graph H, respectively,
and 7, is the degree of Z" in (3.2), i.e., O or 1 for
solid and dashed lines, respectively. Finally [x]
is, as usual, the largest integer <x.

Since we only deal with Yukawa-type vertices,
it can be shown in the usual way ® that u, may also
be written in the form

pL.=4=B-3F, 3.10)

B being the number of external boson lines and F
the number of external fermion lines of H. We
shall show that conditions (3.1) guarantee that in-
equality (3.8) is fulfilled. This will then prove the
convergence of the generalized Feynman integral
(3.6). Existence of the limit € - 0 has been shown
by Speer.?” It must be emphasized that the result
(3.7), (3.8),is valid only when m>0. The limit
m - 0 will be studied in Sec. III B.

First we observe the relation

Z; ()\h"l)=0y

he S@i)

3.11)

where summation is over the three lines & incident

FIG. 4. Subgraphs with p, =0 and undotted external
lines.

at any vertex ¢ of the Migdal graph G. This is
verified by explicit computation from (3.4). This
“conservation of dimension” is a consequence of
conformal symmetry.3’

As a result of this, inequality (3.8) may be
written in the equivalent form

—%Q Mp=1)>[31], 3.12)

where summation is over the external lines at-
tached to subgraph H.

Thus we have managed to reduce the problem to
one of enumeration of all possible configurations
of external lines for graphs H which can occur as
one-particle irreducible subgraphs of a Migdal
graph G. They will be termed “admissible”
graphs.

The two diagrams presented in Fig. 4 are the
only admissible graphs with undotted external
lines for which u,> 0. In both cases actually
Kk,=0. It follows from (3.1) and (3.4) that A,-1<0
for undotted external lines, so that the left-hand
side of (3.12) is positive. This implies the validity
of (3.12) for all admissible graphs H with undotted
external lines only.

Going to the general case, we observe that a
subgraph H with some dotted external lines can
only be obtained by cutting (among others) an in-
ternal line of a dressed vertex I' in the skeleton
graph G,. Hence dotted external lines of H only
appear in pairs. Let the set E of external lines
of an admissible graph H consist of £ dotted fer-
mion lines, n dotted boson lines, « undotted fer-
mion lines, and b undotted boson lines, » +% and
K +k being even numbers. A necessary condition
that H can occur as a one-particle irreducible
subgraph of a Migdal graph G is given by the fol-
lowing inequality on the number of external lines:

min(n, k) +3 (¢ +3k) +b > 4, (3.13)

To verify this we note that pairs of dotted ex-
ternal lines of H must be imbedded in G in one of
the following ways:

Two dotted external boson lines of H can be
connected in G, i.e., they form the two ends of
one and the same line in G. In an analogous man-
ner, two dotted external fermion lines of H may
be connected in G. Then there is the possibility
that a dotted fermion line is linked with a dotted
boson line to a vertex with incident undotted fer-
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mion line not in H. Finally, a pair of dotted fer-
mion lines may be linked at a vertex of G with an
incident undotted boson line not in H. In this
listing we made use of the one-particle irreduci-
bility of H. This excludes subgraphs as shown,
e.g., in Fig. 5.

In this way every subgraph H can be imbedded
in a minimal larger subgraph H’'C G with only un-
dotted external lines. Inequality (3.13) then fol-
lows by noting that for H’ the inequality 3F +B >4
will hold, because a skeleton graph has no proper
2- or 3-point subgraphs. (Three-boson vertex
parts are absent because of y; invariance. In-
deed every such graph would involve a fermion
loop with an odd number of lines, and hence the
trace of an odd number of y matrices which is
zero,)

To fill in the details, let us write B=b+3,
F=k +F, where B (F) is the number of boson
(fermion) lines which are external lines of H' but
not of H. To make up one F line we link at a
vertex one dotted fermion line and one dotted
boson line. Consequently, F <min(z,%). Let us
next look at the balance of external dotted fermion
lines of H. We need one of them to make an F
line, and two to make a B line. Therefore, 3 F
+B <3k. Combining these inequalities we get

4<3F+B

=3k +b+F +GF +B)

<3k +b +min(n, k) +3k,
which proves (3.13). Putting the result in another
way, we have shown that if condition (3.13) is
violated, then the completed graph H’ will have
no more than two external lines (provided it is
one-particle-irreducible and nonzero). All such
graphs are excluded from our set ST'. Some ex-
amples of imbedding graphs violating (3.13) in
self-energy graphs are shown on Fig. 6.

Let then the condition (3.13) be satisfied. Taking

into account (3.4) we see that the convergence
condition (3.12) is verified if

Lo+, =1)=(4 =b —m = 3k —3P)
+b(l =d)+n(d' -3)
+[m -k -3k -n)1 -d)]+k(3-d’)

<0, (3.14)

L .
- ——— s etc,
. L g
' ~
d

~
~

FIG. 5. One-particle reducible graphs.

T. TODOROV 8
OO O =8

FIG. 6. Imbedding in self-energy graphs.

where
m = min(n, k)
=3(n+k=|n~k|).

But inequality (3.14) is indeed fulfilled if field
dimensions lie in the range (3.1), since each of
the terms in parentheses in (3.14) is then negative
semi-definite. In particular,

m—k =} —n)(1 ~d)=3[(n —k)@ -d) - |n ~F]]
<in —k[(|2-d|~1)
<0

because of (3.1). The possibility that each term
on the right-hand side of (3.14) is zero is readily
disposed of by noting that this would require
b=n=k=0and k=n.

We have thus proven that the contribution of any
skeleton graph to an arbitrary #-point Green func -
tion (n =4), and also to the right-hand side of
Migdal bootstrap equation (Fig. 10) below (n=3)
is given by an ordinary convergent generalized
Feynman integral, in the presence of an infrared
cutoff m >0,

This result is not obvious. First, canonical
perturbation theory does involve divergent skele-
ton diagrams with four external meson lines (an
infinite A¢* counterterm is needed in that case).
Also, the right-hand side in Fig. 10 below would
not be finite in canonical perturbation theory,
since it involves graphs with u,=0. Second, it
should be noted that the dimensions d, d’ enter in-
to expressions (3.4) for A, sometimes with posi-
tive and sometimes with negative sign. [This is
one reason why we had to restrict our discussion
to dimensions in the range (3.1).] Therefore,
there exist subgraphs H for which };(A,~1) is in-
dependent of dimensions d,d’. If subgraphs of
this variety existed which were “superficially
divergent,” then no anomalous dimensions could
ever help us to avoid divergences.

Generally speaking, what happens is this:
Propagators in a theory with anomalous dimen-
sions are more singular than free ones, but ver-
tex functions are less singular (in some sense),
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and the better behavior of the vertex functions
more than compensates the stronger singularity
of the propagators. The theory is therefore more
convergent in the ultraviolet region than canonical
perturbation theory.

The same remark may be phrased in another
way. Skeleton graph amplitudes can also be con-
structed from nonamputated 3-point functions and
inverse propagators. The nonamputated 3-point
functions (7 functions) are more singular here than
in perturbation theory, but the improved behavior
of the inverse propagators at large momentum p
more than compensates this.

B. Removal of Infrared Cutoff

Let us consider the infrared cutoff amplitude
F,(p,m) defined by Eq. (3.6), whose existence
was shown in the last section. For dimensional
reasons,

Fo(py s Dus P7m) = pVF(ppy * * Ppp i)
(3.15a)
v depends on dimensions d and d’ (cf. Ref. 1). Its
actual value will not be needed in the following

argument (but comes out of it).
The desired amplitude is then formally given by

Fo(p)=Hm Fg(py*pp3m)
m—>0

= Hmp~YFg(pp, ** PPy 3m) . (3.15b)

p—>o

We have to show that the limit exists. To demon-
strate this we rely on power counting. (Similar
techniques were employed by Symanzik? for deal-
ing with more complicated problems.)

Let us define

9
"AFG(P5m) = mg;n‘Fc(P, m). 3.16)

Because of Eq. (3.15a) this is equivalent to

a
<Z Pa5p—_ V> Fo(pyt ;M) =AFg(py** bpsm).
a
(3.17)
From definition (3.2) one has the identities

9

i

Acs(g;m) = —2m3AS(q; m)(—q% + m? —i0)71,

(3.18)

Consequently, the amplitude A F; may also be
represented by a sum of generalized Feynman in-
tegrals,

AFG="§A)1F61 3.19)
where summation is over all lines % of the Migdal
graph G, and the operation A, means that the
propagator for line % in the generalized Feynman
integral defining F; should be replaced by the
right-hand side of Eq. (3.18). Both amplitudes
Fg(p,m) and A, F; are given by convergent inte-
grals which satisfy the hypotheses of Weinberg’s
power-counting theorem.?®* [Convergence was
shown in Sec. IIT A for F; and carries over to AF,
because of (3.16).]

Weinberg’s power-counting theorem gives an
estimate for the behavior of the amplitudes
Fo(ppy*+ ppp;m) and A, Fo(ppy*** pp,sm) as p~<o.
In particular,

Fo(ppy*ppp;m)~p“logPp as p—o  (3.20a)

with some unspecified 3, and

a=maxDH). (3.20Db)
H

Here, D ) is the “dimensionality” of the sub-
graph H, and the maximum is to be taken over all
those subgraphs H of G whose set E, of external
lines includes all external lines of G. (For the
precise definition of a “subgraph” as used here
see Ref. 38.) D(H) is to be computed by power
counting: Each power (-¢2)~* in the integrand
contributes ~2), a factor 4 contributes 1, and
each integration d% contributes 4. If all A, were
equal to unity (ordinary Feynman integrals) one
would have DH) =, the canonical superficial
degree of divergence of H. In our more general
case it follows from the arguments described in
Sec. IIIA [compare Eq. (3.11)] that

DH) = 1y +§(’\h-1)- @.21)

[Condition (3.12) for ultraviolet convergence then
reads DH)<O0 for all one-particle irreducible
subgraphs H. This is the well-known statement
of Dyson’s power-counting theorem,*® which we
could have used in Sec. IITA in place of Speer’s
results.]

Equation (3.21) shows that ® (H) depends only on
the configuration of external lines of H. We shall
now show that the maximum in (3.20b) is assumed
for H =G, viz., a=9(G).

Let us denote the set of external lines of G and
H by E; and E,, respectively; we must only con-
sider H such that E;S E,, as explained after
(3.20b). It is also obvious that E; =E, is only pos-
sible for G =H. By Eqgs. (3.4), (3.10), and (3.21),
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adding an extra line to E,,, increases the dimen-

sionality ®(+*) by —-d’, 3(d - 4), and -d, d’

—%d -2 for undotted and dotted fermion lines, and

undotted and dotted boson lines, respectively.

All of these expressions are negative-definite for

d,d’ in the range (3.1). This proves that

DH)<DG) if H#G, 3.22)

for subgraphs H as specified after Eq. (3.20b).
For the amplitudes A, F,, Weinberg’s power-

counting theorem gives

Ay Fg(ppy** Ppa;m)~p*loghp as p~oo,
(3.23a)

where

o' =maxd' H) (3.23b)
with D’ (H) =DH) if H does not contain the line &,
and D' (H)=D(H) -2 otherwise. The extra —2
comes from power counting because the right-
hand side of (3.18) involves ~2 extra powers of ¢
compared to AS(g;m) itself. Since the whole graph
G contains every line 7, it follows from (3.22)
that

o' < a.

This is true for every term in the sum (3.19);
consequently, AFg(pp,°** pp,;m) falls off faster
at large p than Fg(pp,°** pp,;m) itself by some
power of p. It follows then from (3.17) that
F;(pp, m) becomes a homogeneous function of p
asymptotically at large p [viz.,, @=v, $=0in
(3.20a)]. Consequently, the limit (3.15b) exists
for nonexceptional external momenta p.

Nonexceptional momenta are defined to be those
for which Weinberg’s power ~counting theorem ap-
plies; this includes all Euclidean momenta

J

Fo(®yyeueyxy) =i"f .. f <g d4xi><IVI i1"(xwxz,,xsv)><IlI(l/i)Af(x” —x,l)) s

where the product is over all dressed vertices v
and propagator lines [ of the skeleton graph G;
A§ and S§ of (2.24a) for boson and spinor lines,
respectively. Integration is over Euclidean space.
We know the integral exists if appropriately in-
terpreted, i.e., one should first smear with a test
function ¢ (x,, ...,%,), or one whose Fourier
transformation vanishes at exceptional momenta
if that were ever necessary.'®

We use the Euclidean version of the projective
coordinates £ introduced in Appendix A, viz.,

E=(E- 89,

I.

T. TODOROV

|

p =(py **p,) such that no partial sum }7'p, van-
ishes,”"3

C. Proof of Conformal Invariance; Manifestly Conformal-
Invariant Generalized Feynman Rules

It remains to investigate whether the Green func-
tions whose existence was proven in Secs. IITA
and III B are indeed conformal-invariant. This is
especially important for the 3-point skeleton
graphs that occur on the right-hand side of Migdal’s
bootstrap equation (4.5) below, for if conformal
invariance were violated, that equation could not
be solved by the conformal-invariant ansatz.

We consider z-point vertex functions in Euclide-
an space {x}. They are obtained from the vertex
functions (i.e., full-propagator-amputated one-
“particle” ~irreducible Green functions) in Min-
kowski space by analytic continuation x°-ix®=x*
(cf. Sec. ITA). Under this analytic continuation,
the homogeneous Lorentz group goes over into
SO(4), and the conformal group becomes SO, (5, 1).
We shall show that the vertex functions in Eu-
clidean space are invariant under finite SO, (5, 1)
transformations. This implies that the Green
functions qua analytic functions of the coordinates
are invariant under infinitesimal conformal trans-
formations. Thus they have the property of “weak
conformal invariance” in the sense of Hortagsu,
Seiler, and Schroer,?® which is sufficient for all
our purposes.

Our proof will be based on rewriting the gen-
eralized Feynman rules for any skeleton graph in
a manifestly conformal-invariant form.

The amplitude

Fo(pyy oo oy 00) @MY ID)

associated with some skeleton graph G, is the
Fourier transform of

(3.24)
r
El=kx* (1 =1,..., 4)’
£8 - £2=x, (3.25)
§2=gab 1 Eb
=0’
where £>0 and g,, =diag(— - - -, —+). We will

also make use of the six-dimensional Clifford al-
gebra of 8 X8 matrices B, with defining property

{Bas Byt =284 - (3 .26)
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We shall occasionally use the explicit matrix rep-
resentation given in Appendix A, with 8,=-ij,.
There is also a conformal pseudoscalar

Bv=‘i613233346536- 3.27)

Matrices B, transform as 6-vectors under SO, (5, 1)
in the sense that

[ﬁa’ Spe ] =i(gabBc 'gacﬁb) for Ste =—}i[3b ’ ﬁc] .

Finally we introduce a measure
dp,(E)=2d°06(E%)0(En-1), 3.28)

where 7 is a positive “lightlike” 6-vector which
will be chosen as

7°=0,...,0,1,1). (3.29)

As a result,
Jan 7@ =[atsee=1). 3.30)

The manifestly conformal-covariant form of the
n-point vertex function is a multispinor function
Fo.uu.s, (& &,) whose spinor indices run
through eight values each for every external fer-
mion line. Let G be the Migdal graph obtained
from the skeleton graph G by substituting the in-
fraparticle representation Fig. 2 for the dressed
vertex. The corresponding amplitude Fg (£, £,)
is constructed according to the following rules
[for (pseudoscalar) Yukawa theory]:

(i) For every vertex ¢ of the Migdal graph G in-
clude a factor £;8, and an extra factor 8, for ver-
tices with incident undotted pseudoscalar meson
line.

(ii) For every line & with initial (final) vertex
i, (f;) write down a stripped propagator

@m) T 0 G &f,k4,) 00, 3.31)

where 8,=d (d’+%) for undotted meson (nucleon)
lines, and 6,=3d —d’'+2 (-3d +3) for dotted ones.
For every fermion line, include an extra factor 3.

(iii) Integrate over variables ¢ associated with
internal vertices, with measured p (£) given by
Eq. (3.28).

(iv) For every dressed vertex subgraph shown
in Fig. 2 include a factor g/T'(5 =},.a04), A =set
of three lines in triangle (Fig. 2).

Note that all matrix factors are here associated
with vertices, whereas the stripped propagators
in rule (ii) lack them. This form of the general-
ized Feynman rules is possible because of cer-
tain factorization properties to be discussed be-
low. The factors £B have to be arranged in the
same order as vertices are arranged along fer-
mion lines, and traces are to be taken over inter-

nal fermion loops.

The rules (i)-(iv) can also be used to write down
the left-hand side of Migdal’s bootstrap equation,
Fig. 10, i.e., the dressed vertex itself whose
Migdal graph is Fig. 2. The result is equal to the
right-hand side of Eq. (3.35) below.

By these rules, the amplitude is given by an in-
tegral whose integrand is manifestly conformal-
invariant, since it only depends on invariant
scalar products of 6-vectors. Thus it only re-
mains to show that the integral is independent of
the standard 6-vector 7 occurring in the definition
(3.28) of the measure d u,(£). This is guaranteed
by the fundamental covariance lemma.

Covariance lemma. Let f(£) defined on the for-
ward cone £2=0, £,>0, and such that
I=fdun(£)f(§) exists (for some 7). If f(p¢)
= p~if () for p>0, thenI is independent of the
positive lightlike 6-vector 7 in the measure (3.28).

A proof will be given in Appendix C. Let us note
that the hypothesis of the lemma is fulfilled for
the present application. Because of rule (ii) one
has “conservation of dimension” at every vertex
of G, viz.,

1- D) d,=-4. (3.32)
hES(E)
Summation is over the lines % incident at the ver-
tex 7. As a consequence, the integrand is homo-
geneous of degree —4 in every integration variable
&, separately.

It remains to justify the conformal-invariant
generalized Feynman rules, The x-space form
F(%y,+..,%, of the amplitude is recovered from
z‘BFOI,,. (-,n(§1~ ++ £,) by the following procedure:

(1) Substitute expression (3.25) for external co-
ordinates £, and put k,=1.

(2a) To every ingoing fermion line incident at
some external vertex a apply a boost matrix
Traoa(xa) acting on the corresponding spinor index
o,.

(2b) Similarly, to every outgoing fermion line
apply a boost T'l(;a-ftx teg)-

The result of this procedure will be nonvanishing
only for four values of each spinor index, because
of Eq. (3.36) below. The boost matrices are

T (x) =exp| —ix"(s 5, +Sg,)] - (3.33)

Apart from the application of these boost matrices,
i.e., a change of basis in spinor space, the ampli-
tude given by the above rules differs from expres-
sion (3.24) essentially only by a change of nota-
tion.

To see this, let us first inspect the dressed nu-
cleon propagator which was found in Appendix B,
viz.,
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%(4‘”)-251 ¢ 352 * Br(d’-}-‘é‘)égl . gz)-d'-l/z
=—iT"1(x))S 5 (6, = %,)T, T (), (3.34)

for k,=k,=1. We see that the matrix factor fac-
torizes into £, * 8 which may be assigned to initial
vertex 1, and £, 3 which may be assigned to the
final vertex 2. What remains is a stripped propa-
gator in the sense of rule (ii). Thus the Dirac
propagator accounts for matrix factors at internal

1

—iEl 'BT-l(xl)F(xa ; xlxz)T_T(xz)gz * ﬁ = F* (gs; 5152)

T. TODOROV

joo

vertices of G with an incident undotted fermion
line, and for the stripped propagator of undotted
fermion lines. The stripped propagator for un-
dotted meson lines is provided by the dressed
meson propagator (47)~2T'(d)Gé, - £,)7¢; see Eq.
(B6). The matrix factors associated with ver-
tices in G with incident undotted meson line [fac-
tor £,+ B in Eq. (3.35) below]| and the stripped
propagators of dotted lines are provided by the
dressed vertex I'(x,; x,%,), by virtue of the rela-
tion established in Appendix B,

=g(4m)™°T'(5 = 28,)72E, * BE, - BE, BT (0,)G &, * £,)7%3:T(5,)

X(GEc £)70%BT(6,) G, £)7 01,

with

61=52=—%d+

njo

, Og=3d —d'+2, xh=E4, k;=1.

The boost matrices T (x;) associated with inter-
nal vertices cancel out when dressed vertices and
propagators are multiplied together. Integrations
are the same as in (3.24), by virtue of Eq. (3.30).
The only factors so far unaccounted for are ma-
trices £, B associated with external vertices with
incident external fermion lines. They are in-
cluded for convenience. This can be done because

T)B* T (x)=~iT, for x*=&*, k=1. (3.36)

The manifestly conformal-invariant formalism
described in this subsection is very convenient for
carrying out reduction of spin terms. Traces may
be evaluated with the help of Eq. (3.26). Let
£=£-B. One obtains

2 =88, &,,

25aba =85y  £,)(Eg £) = (&, £5) (650 &)
+(E ) (E 0 8], 3.37)

Tréy £y = =8i€ 1puaor 380 - £

etc.,

with €,,.4,, the completely antisymmetric tensor
in six dimensions.

The somewhat clumsy factors of 3 and 47 in rule
(ii) above could be dropped by adopting different
normalization conventions. The rules can also be
interpreted in Minkowski space, i.e., on sector
(A7) of the cone C, ,. Then £+7 is to be read as
£ -1 +i0, otherwise the notation of Appendix A and
(B37) applies. Extra factors of ¢ coming from
rotation of the paths of the £* integration must,
however, be supplied.

3.35)

IV. INTEGRAL EQUATIONS FOR 2- AND
3-POINT FUNCTIONS

To complete the analysis, one should give a dis-
cussion of the integral equations which are nor-
mally used to determine the 2- and 3-point func-
tions (renormalized Schwinger-Dyson equa-
tions &15:16), For consistency it should be shown
that they can be solved by the conformal-invariant
ansatz of Sec. II. Such a discussion has been
given by Migdal!” for the 3-point function. This
will now be reviewed (Sec. IVA). The integral
equation for the 2-point function is considered in
Sec. IVB.

A. Migdal’s Bootstrap Equation

The Schwinger -Dyson integral equation for the
3-point function is given diagrammatically in Fig.
7, where the right-hand side involves the Bethe-
Salpeter kernel shown in Fig. 8.

If we consider amputated vertex functions, then
the first term on the right-hand side of the equation
in Fig. 7 is given by Fig. 9. In a theory with
anomalous dimensions, the propagators are more
singular at x =0 than in a free theory; therefore,!:3°

Z,=2,=0. 4.1)

Observing this, Migdal argues that the first term
on the right-hand side of the equation in Fig. 7 is
zero, so that one obtains the homogeneous “boot-
strap” equation?® shown in Fig. 10. Actually,
upon introducing the renormalized coupling con-

0 - e g

FIG. 7. The Schwinger-Dyson integral equation for
the 3-point function.
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stant 2=2,7,Z,"'g, one sees that the condition for
the equation in Fig. 10 is Z, =0.

Let us reformulate the argument without refer-
ence to the Z’s. In a treatment of Lagrangian field
theory based on renormalized integral equations ®
one uses not the equation in Fig. 7, but its de-
rivative with respect to momentum flowing be-
tween two external legs. The first, constant term
(bare vertex) disappears upon differentiating.

The resulting renormalized Schwinger-Dyson (SD)
integro-differential equation is exactly the same
for all values of masses and coupling constants;

it must therefore also hold for the conformal-
invariant Gell-Mann—-Low—(GML) limit theory
(see Sec. IVC). It is evident that it will be satis-
field, if the “bootstrap equation” (Fig. 10) is sat-
isfied. On the other hand, in the more general
solution (Fig. 7) the first term is to be interpreted
as a constant of integration. In perturbation the-
ory (with a cutoff, say) it would have to be deter-
mined by the usual normalization conditions,
which have to be supplied in addition to the SD
equation.®®!5 In the present (GML limit) theory,
the requirement of dilatation invariance fixes this
constant: It must be zero, because it would trans-
form differently under dilatations from the second
term in the equation in Fig. 7. Note that this is a
meaningful statement, since we have proven that
the right-hand side of the equation in Fig. 10 is
not over-all divergent.

[More generally, logarithmic divergences are
peculiar to canonical perturbation theory and are
expected not to be present in the exact theory on
the basis of the results of this paper. This state-
ment applies perfectly well to a massive theory,
since ultraviolet divergences are a problem of
short-distance behavior (cf. Sec. IVC).]

Returning to Fig. 10, the important point is
Migdal’s observation that it is conformal-invari-
ant, at least formally, even for anomalous di-
mensions in (2.1) and (2.2). He conjectures that
there exists a regularization of the integrals on
the right-hand side of the equation in Fig. 10, to
be effected by analytic continuation in parameters
d,d’, which maintains the conformal invariance.
If this is true then the bootstrap equation (Fig. 10)
may be solved by the most general conformal-
invariant ansatz. The results of the present paper
show that, in fact, the right-hand side of the equa-
tion in Fig. 10 is well defined, conformal-invari-

N e

= ] + /\’\ 4 oo
' ’
A z \\

FIG. 8. The Bethe-Salpeter kernel.

1
—-—< = 232,87,
FIG. 9. The bare vertex.

ant, and free from divergences for nonexceptional
external momenta (p,,p,,p;#0 in the Euclidean
case). No regulavization, by analytic continuation
in d,d’ or otherwise, is necessary at all. [This is
important becauase such analytic continuations
might destroy positivity (generalized unitarity)
e.g., if one continues beyond singularity surfaces
associated with subgraphs with some dotted ex-
ternal lines.] We remark that the general z-point
function, and also the right-hand side of the equa-
tion in Fig. 10, depend only on the value of the
vertex function at nonexceptional momenta, since
they are given by convergent integrals and ex-
ceptional momenta form a set of measure zero.

Thus if we insert into the equation in Fig. 10 the
most general conformal-invariant ansatz for the
dressed vertex and propagators (the latter occur
in the skeleton-graph expansion shown in Fig. 8
of the BS kernel) the ansatz will be reproduced by
the right-hand side because of its conformal in-
variance, and one obtains an algebraic equation
between the parameters in the ansatz, i.e., cou-
pling constant(s) and field dimensions.

The possibility of imposing vy, invariance, and
thus considering only the vertex (B42) [or (2.18)]
can be demonstrated in the following way:

According to the results of Appendix B4 the
most general vertex function can be written in the
form I', +T',, where I'; =T is y,-odd, that is

Y[ (639,575 ==T1 (%9, 5),
while T, is y;-even,
YsDa(e;9, 9 )vs=+T, (59, 5) .

Therefore, in order to prove the consistency of
the ansatz g, =0, it is sufficient to verify that the
right-hand side of the equation in Fig. 10 is y,-odd.
Now, because no fermion line can end in the in-
terior of a graph, the right-hand side of the equa-
tion in Fig. 10 will be of the form indicated in Fig.
11. Since, as noted in Sec. IIIA, all diagrams
with an odd fermion loop vanish, there should be
an even number of intermediate boson lines in
Fig. 11, and hence an even number of fermion
lines between them. From here (and from y;®>=-1)
it follows that the right-hand side of the equation
in Fig. 10 is indeed y,-odd.

FIG. 10. The homogeneous ‘“bootstrap” equation.
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2n + 1 vertices

T
)
]
[

FIG. 11. Structure of graphs in Fig. 10.

Inserting (2.4) and (2.18) into the equation in
Fig. 10 we therefore obtain one relation between
g andd,d’. Thus at this stage the theory contains
two free parameters.

B. The 2-Point Function

Finally we have to discuss the integral equations
for the 2-point functions. One must show that they
too can be solved by the conformal-invariant an-
satz of Sec. II. As we shall see, these equations
lead to two more algrbraic equations between pa-
rameters g, d, andd’. This remark was first
made by Parisi and Peliti in the context of critical
phenomena in statistical mechanics.!®* They use
for propagator bootstrap the generalized 2-point
unitarity relation in the form proposed by Polya-
kov.* This will now be discussed.

Because of the Killén-Lehmann representation,
the 2-point functions are uniquely determined by
their absorptive parts. (Subtractions in the Kil-
1én-Lehmann representation are not needed if
d <2, and in general their values are uniquely
determined by dilatation symmetry.)

The absorptive parts of the 2-point functions
are determined in terms of the n-point functions
with z = 3 by unitarity. As will be shown else-
where,!* use of such a unitarity relation is equiv-
alent to imposing either the renormalized Schwing-
er-Dyson integral equations of Refs. 14 and 15, or
the BS-equation analog to Fig. 10 for the stress
tensor’s vertex function.

Let us consider the meson propagator. Ina
finite-mass theory one can use the standard off-

n cut lines

FIG. 12. Standard off-mass-shell unitarity relation.

oo

FIG. 13. Summation over cut self-energy subgraphs.

mass-shell unitarity relation given in Fig. 12,
where the “blobs” stand for (amputated) (z +1)-
point Green functions, a cut line indicates a factor

Afee (0) =270 (p°)6(p* —m?) (X d*p),

i.e., the absorptive.part of a free propagator (=
phase space). Complex conjugation is understood
on the right-hand side of the cut.

There exists a remarkable alternative form of
Fig. 12 which involves the absorptive part A*(p)
of the dressed propagator. It is obtained by sub-
stituting into the equation in Fig. 12 the skeleton-
graph expansion for the z-point Green function,
and grouping together graphs with cuts through
“self-energy subgraphs,” for instance as shown
in Fig. 13. That summation is similar to those
considered in Symanzik’s axiomatic many-parti-
cle structure analysis of Green functions.* The
result is shown in Fig. 14. Here a cut line stands
for the absorptive part A*(p) of a dvessed propa-
gator (=Aj(p) in our conformal-invariant theory
[cf. Eq. 2.4)]), and summation )’ is over all
pairs I';, T', of (n +1)-point skeleton graphs such
that the combined graph I" does not contain a pro-
per “self-energy” subgraph. (By combined graph
I" we mean the result of juxtaposition of graphs
I,, T, with connecting lines, as in Fig. 14.)

In the partially summed form of Fig. 14, gen-
eralized unitarity continues to make sense in the
zero-mass limit (Gell-Mann~Low limit, say) and
is therefore appropriate for a zero-mass theory
with infra-particles as we consider here.*

Let us now insert the coiiformal-invariant ex-
pressions for the (z +1)<point skeleton-graph am-
plitudes, » =2, which were constructed in Secs.
II and III. One finds that the right-hand side of the
equation in Fig. 14 is finite and well defined. In-
deed, constructing an absorptive part as in Fig.
14 can never lead to new ultraviolet divergences,
since the integrations over the momenta of the cut
lines have compact range due to energy conserva-
tion and spectrum condition. (Recall that phase
space at fixed energy is compact.) As for infrared

e G e

| Plim
n cut lines

~

FIG. 14. Polyakov’s “stream unitarity.”
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convergence it would, strictly speaking, need a
separate argument. For in Sec. III B we used the
Weinberg power counting theorem whose proof
relies on the possibility of performing a Wick
rotation to Euclidean space, while the unitarity
relation given in Fig. 14 makes sense only in Min~
kowski space. However, using the above-men-
tioned equivalence of Fig. 14 to the BS equation
(the analog of Fig. 10) of the stress tensor’s ver-
tex function, we can apply the argument of Sec.
III B to the latter to imply its infrared conver-
gence, and therefore also that of the relation in
Fig. 14.

Because of dilatation symmetry of constituents,
both sides of the equation in Fig. 14 have the same
homogeneity in p?, thatis, they are proportional
to 6(p°)(p®)2-2. Thus the equation in Fig. 14 is
solved by the conformal-invariant ansatz, and we
obtain an algebraic relation between the param-
eters g, d, and d’ from it.

A second algebraic relation between g, d, and
d’ is obtained in the same fashion from the uni-
tarity relation for the nucleon propagator.

Combining this with the relation derived in Sec.
IV A we have a total of three equations for three
parameters. They should in principle determine
the three parameters uniquely, or at least up to
a discrete set of solutions (g,d,d’). Such unique-
ness may in fact be expected to hold if we want to
relate our theory to the Gell-Mann-Low large
momentum limit!? of a finite-mass Yukawa theory
in a nonredundant way. This will be discussed
presently.

C. Discussion

To understand the last remark, let us first re-
call the result of Symanzik’s analysis, Ref. 9, of
¢* theory. The vertex functions (=amputated one-
particle irreducible Green functions)

T(py * * Pansm? ) of the massive theory depend on
one dimensionless coupling constant & and a mass
m. Out of them one can construct in a first step
vertex functions T'as(py* ** pon;m?, Z) of 2 “pre-as-
ymptotic” zero-mass theory. They can still be
constructed by standard perturbation theory in the
manner described in Appendix B of Ref. 8, and
they are not dilatation-invariant. Rather, a
change in renormalization mass m2 can be com-
pensated by a change in coupling constant & and a
change of normalization. Thus there is a non-
trivial dependence on one parameter left. How-
ever the (conformal-invariant?°) Gell-Mann-Low
limit theory has no dimensionless free parameter
left, for its vertex functions are defined by

FGML(p].. * .pzn ;m2,§)=ras(p1' * ’Pz,.;mz,gw) .
(4.2)

They exist if the Callan-Symanzik % function 8(g)
has a (first) nontrivial zero at g = 2., [with slope
B’ (g.) <0 if they are to describe a large momen-
tum limit] and if T'sis continuous at g=2,. Tom
has a trivial dependence on7? (an over-all factor
of fractional power of #) because of dilatation
symmetry. It follows in particular that the asymp-
totic large-momentum behavior of the massive
theory is independent of its physical coupling con-
stant g, apart from some over-all factors.®
Finite-mass pseudoscalar Yukawa theory has three
dimensionless parameters (two coupling constants
gryand g.., and a mass ratio). The “pre-asymp-
totic” zero-mass theory constructed in analogy
with the procedure of Appendix B of Ref. 9 still
depends on one such parameter (besides dilatation
freedom). However, the Gell-Mann-Low limit
theory, with which we are effectively concerned
here, contains no dimensionless free parameter

if the “fixed point” case discussed in Wilson’s
renormalization-group analysis !® is realized.

The alternative discussed by Wilson, a “limit
cycle,” would not be consistent with conformal
symmetry. Strictly speaking, though, “fixed
point” and “limit cycle” do not exhaust all pos-
sibilities. It would be indicative of a more com-
plicated behavior being consistent with conformal
invariance if it should turn out that our three
equations for g, d, and d’ mentioned above are de-
generate (i.e., possess a continuous family of
solutions). We consider this a remote possibili-
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APPENDIX A: GENERALITIES ON THE CONFORMAL
GROUP; MANIFESTLY COVARIANT FORMALISM

1. The Conformal Group and Its Lie Algebra

The conformal group of space-time can be de-
fined as the set of local point transformations
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which preserve infinitesimal lightlike intervals:
dx?=0-~dx'?=0. Its connected component (con-
taining the identity) is a 15-parameter continuous
group which can be compounded from the follow-
ing coordinate transformations.

(a) Poincaré transformations:

xp=A%,+a,,AEL}, 1=0,1,2,3.
(b) Dilatations:

xXy=px,, p>0,
(c) Special conformal transformations:

%= (1=2¢x +c®®) ™ (x, = ¢, 8%) = RT Ry,
(A1)
where

Rx=-x/x%, T,x=x+cC.

We note that, strictly speaking, Eq. (A1) does
not define a coordinate transformation in Min-
kowski space since it is not defined on the cone

c 2
c2<x—?> =0.

(For ¢%=0 this singularity surface degenerates
into a hyperplane.) If we insist on considering
global conformal transformations we have to in-
troduce a compactification of Minkowski space.
Such a compactification can be defined by im-
bedding M, either into a set of “light” rays in
six dimensions, *¢

M,=C, ,/R',

or (equivalently) into the manifold of all 2X2 uni-
tary matrices.?” We shall adopt instead the point
of view that only infinitesimal special conformal
transformations have a physical meaning and will
consider (A1) only as local transformations,?*:48

The generators of special conformal transforma-
tions, K,, and of dilatations, D, obey the follow-
ing commutation relgtions among themselves and
with the generators M, and P, of the Poincaré
group:

[D9Mpu]=0; [DaPp]=—iP,_“ [D’Ku]ziK;u
[K“,KVJ=O, [K)\iMuy] =i(g>\”K,, —g)\uK“)’ (Az)
[PpyKv]zzz'(Dgpv—Muu)'

These are the commutation relations of the Lie
algebra of SO, (4, 2). Indeed, if we define the in-
finitesimal rotations J,,, a,0=0,1,2, 3, 5, 6 by the
linear combinations

G. MACK AND I.
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JplI:MpV’
Jes =D,
Js=3(P,~K,), Aa3)
Jeu=5(P,+K,),
then we get
[ars Jeal =8(8 aa vo =8acToa + BveTas = €14 ac) s
(A4)
where
8ea=(+=-—==,~4) and g, =0 for a+bd. (AD)

The lowest-order faithful representation of this
Lie algebra is four-dimensional. It is generated
by the Dirac y matrices and their traceless pro-
ducts satisfying the Hermiticity condition

YEA :A'}’R , A=A*,

where A defines the Dirac conjugation (for the
usual choice of the basis A =y,).

It is possible!? to define second-quantized gen-
erators of the conformal group in terms of the
(improved *°) energy-momentum tensor 6, by

P”=jemd3x, Mu,,=f(xﬂ9,,o—x,,e“o)d3x,

D :J x“@uodsx, Kﬂ=f (2xpx>‘ -xzéﬁ)e)\odsx .

2. Manifestly Covariant Formalism

The nonlinear character of special conformal
transformations (Al)makes it somewhat intricate
to exhibit the covariance of fields and Green func-
tions in four-dimensional space-time. A straight-
forward manifestly conformal-covariant formal-
ism?! may be set up by imbedding Minkowski
space in the “light-cone” C, , in six dimensions:

C,.=1t=(,,a=0,1,2,3,5,6)|£2= g%k,
=§02‘§2"552+562=0}. (A6)

Four-dimensional coordinates %, can be introduced

as local coordinates on C, , in the sector
k=E+E5>0 A7)

(along with k =k ):

E =kbg=kx?. (a8)

Evidently x, is invariant under similarity trans-
formations £ —-p&, p>0. The conformal group
acts on the manifold (A6) as the group of contin-
uous pseudorotations SO, (4, 2). Obviously its ac-
tion commutes with the transformations £ - pé.
A conformal-covariant (quantized) field®° y (£)
will be defined as a homogeneous vector valued
distribution (operator) on the sector (A7) of C,,,.

Eu=kxy, &E5+Eg=kK,



8 CONFORMAL-INVARIANT GREEN FUNCTIONS WITHOUT. .. 1779

Homogeneity reads

x(pE)=p°x (&)

In general (for an arbitrary s), the manifestly co-
variant field x (¢£) defined in the domain (A7) cannot
be extended in a unique way for all £. [This fact
is related to the difficulty in defining global con-
formal transformations for Green functions in
Minkowski space (cf. Ref. 26).] The domain (A7)
is however invariant under the 11-parameter
group of Poincaré transformations and dilatations.
[To see that it is translation-invariant, we note
that translations are given in the £ picture by

£l =E,+a,(Es+Eg),
E5+E5=E5+&s,
g;- 5&255 —£6+2a’£ +a2(£5+§3)-]

It is also invariant (just as well as any open set
on C, ,) under infinitesimal special conformal
transformations. Accordingly, we shall consider
only this type of transformations for the field

x (£). The infinitesimal form of an arbitrary con-
formal transformation is

Ox (£) = 1% (Lo +S )X (€) (A10)
with
L, =i(§a3b - £b3a ), Bu =3/8£“ .

In terms of local coordinates (A8),

(p>0, s real). (A9)

Lu,,:i(xyay—xuau), Ly, +Lg, =19, ,

. 9
Lsu_Lszz[zxu Kﬁ -x,9" +x23u], a11)

. )
Ly =i (x,,a" - K57<-> .

The simplest example is given by a scalar field.
In that case s =0 and ¢ (£) is related to the ¢ (x)
on Minkowski space by

o x)=kp(E) «>0). (a12)

Thus it is homogeneous in £ of degree —d.

3. The Dirac Field

We now turn to the discussion of spinor field
¥ (¢) and its relation with the conventional Dirac
field ¥ (x).

The covariant spinors over six-dimensional
space are eight-dimensional (provided that space
reflection is defined in the same spinor space).
In analogy with the Dirac case one can start with
the Clifford algebra spanned by units B satisfying

{Ba,ﬁb}+=2gab (A13)
with metric tensor given by (A5).

We shall use the following direct-product real-

ization of the g8 matrices:
Bu=T3s" Yy> Bs=iTy*1, Bg=T,°1. (A14)

Here 1 is the four-dimensional unit matrix; in the
following it will be omitted in similar expressions.
T; are the 2X2 Pauli matrices. The generators

of the spinorial conformal transformations are
given by

sab=%i[ Ba,Bb]- (A15)
or, using (A14),

Spw= %i['}’u ’ 7’11] ’

SeutSeu=F TV,

(A16)

The matrices 8, form a 6-vector in the sense that

[Ba: sbc] =i(gabBc _gacBb) .

The matrices s, generate a double-valued rep-
resentation of SO,(4, 2) which is a single-valued
reducible representation of the pseudounitary
group SU(2,2). It becomes irreducible if we ad-
join space reflections I to the group. There are
two possible definitions of space reflections
(Kastrup, Ref. 4); they differ by a reflection
& - —£. The physically interesting one is

€osEs &y )= (o, &, &5, £o) -
Its spinor representation is
T(I,)=7,. A17)
There exists a conformal pseudoscalar
By==BoB;1B2B3B5B¢
=YsTg .

There are also invariant Hermitian-symmetric
and skew-symmetric forms in the eight-dimen-
sional space. The Hermitian metric tensor @ sat-
isfies

GB.=-BXR, @S, =SiQ. - (A18)
For the choice (A14) of 8 matrices,
@=T,A A19)

with A defined after (A5), viz., A =y, for the usual
choice of basis. The symmetric metric tensor ®
satisfies instead

®B, = _‘Bc& sy ®BSpe = _‘slzc(B ’

where ¢ denotes transposition. For the choice

(A14) of Bes
®=T1,B, where B=y,C,
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with C the charge-conjugation matrix for an or-
dinary Dirac field. Finally, the skew-symmetric
tensor ¢ satisfies

CB,=%B.C, €S, =~'5,,C.
In the basis (A14), we have
e=T7,C.

The matrix € can serve to represent the action of
charge conjugation on the 8-spinor field x (§) which
we are now going to define.

The 8-spinor field y (7) is a homogeneous function
of degree —-d’'+3,

x(pg) = p~¥'"*12% (¢), p>0,d’ real. (A20)
The Dirac field y(x) is recovered from y (¢) by
P) =k V2T () x (£) @a21)

in local coordinates (A6) with x>0. The matrix

T (x) is chosen in such a way that a trivial index
transformation of ¢ (x) under translations P, is en-
sured. This gives

T(x) =e-i(55“ +sgy)xk
=1+ixtT_y, .

A22)

The field (A21) is still 8-component. In order to
obtain a 4-component spinor field we shall impose
a conformal-invariant subsidiary condition %

B*Ex()=0. (A23a)
This reads for ¥(x)
(Ssp=Sen Wx)=0 or 7,9()=0. (A23Db)

To verify the equivalence of (A23a) and (A23b) one
uses the identity

T (x)B*ET (x)™* = —ikT, . (A24)
Finally, the adjoint field is defined by
X(E)=x*(€)a
=X* YTy - (A25)

The transformation law of fields ¢(x) and ¢ (x)
over Minkowski space under infinitesimal con-
formal transformations may be computed from the
transformation law (A10) in £-space by inserting
definitions (A12) and (A21). With the help of iden-
tity (A11) and making use of the subsidiary condi-
tion (A23b), one finds that they transform accord-
ing to Eqs. (2.1) and (2.2) of Sec. II (cf. Ref. 3).

4. The Fields as Operator-Valued Distributions;
Hermitian Nonintegrable Representations of the
Conformal Lie Algebra

The objective of this section is to study in some
more detail the mathematical nature of the rep-
resentation of the conformal Lie algebra involved

I.
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in the field transformation law, and in particular
to give an elementary proof (using test functions)
that the 2-point Wightman function, considered as
a distribution, is invariant under infinitesinial
special conformal transformations. The proof is
valid for field dimensions d,<2, but the result is
more general. Further discussion of the intrica-
cies involved in conformal transformations in
Minkowski space can be found in Ref. 26.

In accord with the general framework of quantum
field theory (cf. Ref. 28) the fields are defined as
operator-valued tempered distributions. Let
F&)={fa®)}, folr)E8R? be a spin-tensor test
function such that the unbounded operator

$(A)= [ 46 Fa)ds (a26)
be invariant under (global) Poincaré transforma-
tions and dilatation and under infinitesimal spacial
conformal transformations. This means that y(x)
and f (x) should transform according to dual repre-
sentations of the (infinitesimal) conformal group.
In particular, if the transformation laws for ¢ and
f under dilatation are

U(plp @)U~ (p) = p*¥y(px), @z2n)

[V(P)flx)=p=% f (p~x), (A28)
then the invariance condition

U (o) (FIU(p) =9V (p)f) A29)
implies

de+dy=4. (A30)

The test functions f(x) also play the role of “y-
particle” wave functions, provided that their
Fourier transforms

7 (0= [ e erats

. vanish outside the forward light cone (p°= [p]).

The physical scalar product in the space of posi-
tive-energy wave functions is defined by

(f,8) =0y (f)*¥(£)[0)
=ff F @)F (6 =3) g ()dixd?y

= ~ ~ d4p
= [7 OF0)2(0) b @a31)
where

Fyxy(x =)= 0[¢* (x)y (3)]0) (A32)
is the 2-point Wightman function. It is assumed to
satisfy the positivity condition

Fyu0) = [ Fyuywre™atn=0. (a33)
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We have seen (Sec. ITA) that this condition re-
stricts the range of the dimension of the fields

[see (2.10)-(2.13)]. On the other hand, the spectral
condition implies that

Fyxy(p) =0 for p°<|p]| . (A34)

Clearly the 2-point Wightman function, consid-
ered as a distribution, will be invariant under in-
finitesimal conformal transformations if and only
if the scalar product (g, f) of test functions de-
fined by Eq. (A31) will be invariant thereunder.
Because of (A34), the Wightman function Fyxy (x)
can be represented as the boundary value of an
analytic function F(z) holomorphic in the backward
tube 28

T_={z=x+iy|lxcg*, y,<-|yl}:
Fyxy(xo=90,% =y)=lim F(x, -y, —i€,x —=y).
eV o
(A35)

For x —y timelike, the limit in the right-hand side
of (A35) depends on the sign of x, -y, which is not
invariant under global conformal transformations.
It is only invariant under the\ll-parameter sub-
group of SO(4, 2) consisting of Poincaré trans-
formations and dilatations (in accord with the re-

_

sult of Zeeman %),

We shall prove, however, that at least under
certain restrictions on the dimensiond,, the
scalar product (A31) is invariant under infinitesi-
mal special conformal transformations, that is,

(gprf) —(Kug,f)=0,

where K, is given by (2.2) withd,=d,=4-d,.
Away from its singularity on the light cone (x —y)?
=0 the Wightman function Fj§ (v - ) satisfies the
differential conformal invariance condition

K, F 5 (& =) +K,(0) 8 Ff,(x -3) =0,

(A36)

(A37)
where KL differs from K, in that s, is replaced by
-S,y. Therefore, we only need to investigate the
neighborhood of the light cone. To this end we

write the scalar product (A31) as the limit

(g9f)=1im

€l0

g(x)Fw (6 = (dxdy .

-2 =¢
(A38)

Taking into account that in the domain of integra-
tion (A38) F satisfies (A37), and using (A30), we
can write the left-hand side of (A36) as an integral
over a total divergence:

(8, K,.f)-K,g,f) =li¢n01 ff [gz— R, ) —gz—Ru,,(y)] B (%)Fyxylc =y) f (y)d*xd%

=921 =¢

=lim
elo

-2 =¢

Here

(A40)

and ds” is the surface element on the pair of hyper-
boloids | (¥ —)?| =€ which is proportional to €32,
Noting further that for € - 0

R,,(x)=2x,x,~ x"’gm, ,

R,,() =R, () ~€'?, Fyxylx—y)~e%,

we conclude that for 2 —d, >0 the limit of the'right-
hand side of (A39) is zero.

This completes our proof of infinitesimal con-
formal invariance of the scalar product.

APPENDIX B: GENERAL FORM OF THE
COVARIANT 2- AND 3- POINT FUNCTIONS

1. The 2-Point Functions for a (Pseudo) Scalar
Field

Consider the 2-point functions

A% (x =) =i(0|Z( (x)p* (9)]0), (B1)

j ds"f a+ ‘;y[R,,,,(x)—R,,y(y)]E(x)Fw*w(x-y)f(y)-

(A39)

r

where Z stands for any of the different types of
products (ordinary, time-ordered, retarded, etc.).
We are looking for the general conformal-invari-
ant expression for AZ. It can be found right away
by using invariance under Aut® alone, i.e., Poin-
caré and scale invariance. We shall, however,
use instead the manifestly covariant technique of
Appendix A which has the advantage of also apply-
ing the Green functions of a spinor field as well as
to the vertex function.

Thus, we start with the auxiliary problem of
finding all SO(4, 2)-invariant distributions D(&, n)
(¢, neC,,,) homogeneous of degree —d with re-
spect to each argument:

=p~D(E, ) for p>0. (B2)

1t follows from the SO (4, 2) invariance that D(¢, n)
is a function of the only nonvanishing scalar prod-
uct
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—-(E-n)=2&n
==Kk (X =y)?. (B3)

Combining this with the homogeneity property
(B2) we find just two independent distributions %3

(En£i0)d=(t-n);¢+eTim (g )0, (B4)

In order to derive from here the expressions for
A% we have to restrict our consideration to the do-
main (A7), i.e., k>0, k,>0. It is only in this do-
that we have an unambiguous relation between
D(£,7n) and A (v =y) through (A12), viz.,

Ax =y)= (K K, S DE, 7) (B5)

with x, £ (y, n) related through (A8) which implies
(B3). The different AZ are then specified by their
known analytic and support properties which fol-
low from locality and spectrum condition [e.g., the
Fourier transform of the Wightman function must
vanish for momentum p outside the forward light
cone, as is verified explicitly in Eq. (2.6) of Sec.
II]. In particular, the time-ordered propagator

A° is obtained from

D5 (§, ) =Cy 5+ n +10)7
=Cy(E - +i0k gk,)™ for K,,k,>0. (B6)

In order to obtain a simple expression for the
propagator in momentum space [see Eq. (2.5')],
we fix the normalization factor to

C,=i2¢(4n)"2T'(d) . (B7)

We remark that the choice of normalization of the
2-point function is a matter of convention; it mere-
ly fixes the normalization of the fields. Since
these fields do not satisfy canonical equal-time
commutation relations on the one hand, and the
Killén-Lehmann spectral function receives no
discrete d-function contribution on the other hand
(see Sec. II). there is no “canonical” choice of
normalization.

With the choice (B7) we obtain from (B5) for the
time-ordered and Wightman function of a scalar
field ¢ the expressions given in Eqs. (2.4c) and
(2.4d) of Sec. IIA, and for the retarded function

AF (x) =i (0| T(p(x)$*(0)|0)

=A§0c) = Ag(=x)

“wraz (7). @)

while

Aq4(x) =i(0|[¢ (), 9 *(0)]|0)
=A ;) —=A;(=x)

‘e (),

“gTd-a) \4/, (B9)
[In the derivation of (B8) and (B9) we have used the
identity I'(d)I'(1 —d)sinnd =7.] We note that when
d approaches its canonical value d =1 these ex-
pressions approach the 2-point functions of a free
massless scalar field with conventional normaliza-
tion. To see this we note the identity

3 1 2\=~d 2
%1111:1_,(1 _d)(x )72 =6 (x%). (B10)
This formula is a special case of the equation
A
X
1 + =5"=1) (x
LB Th+1) 2

proven in Ref. 29, Chap. 1, Sec. 3.5.

It is easy to verify formally that the functions
(2.4c), (2.4d), (B8), (B9) are invariant, as ex-
pected, under infinitesimal conformal transforma-
tions, i.e., that they satisfy the differential equa-
tion

[K,)+K (D]A%(x -3)=0, Z=c,+R,...(Bl1)

[ef. (A37)], where K, is given by (2.2). This for-
mal verification is justified for (x -y)?+0. In or-
der to prove that A% (x —y) satisfy (B11) as distribu-
tions, one uses the well-known fact that identities
like, e.g.,

%20 ,(=x% +10)™% = =2dx ,(-x* +i0)"%, d +integer
(B12)

are entirely correct in the sense of distribution
theory. They can be derived by analytic continua-
tion from the results of Appendix A 4 (cf. Ref. 29
where the technique of analytic continuation of dis-
tributions is expounded).

The 2-point functions are determined uniquely
(up to normalization) from conventional axioms 28
and the imposed invariance conditions. In the case
of a spinless field, considered here, they are in
fact already determined by dilatation symmetry,

P*AZ (px —py) =A% (x =) .

2. The 2-Point Functions for a Dirac Field

The 2-point functions (0|Z(y (x)§ (¥))|0) for a Dirac
field ¢ (x) can also be determined from the mani-
festly covariant formalism of Appendix A.

An invariant 8X 8 matrix 8,, (£, n) will be a func-
tion of the scalar products of the 6-vectors &,, 7,,
and 8,. We are looking for the general form of §,.
satisiying the homogeneity property
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84/ (&, m) =8, (¢, pm)
=pY2-4'g ,(¢,n), p>0 (B13)
and the subsidiary condition coming from (A23a),
B &84 (€, m) =84 (5,m)B 7
=0. (B14)

Taking into account that, according to (A13),
Bt)?=£2=0, we find

G (E, M) =2Cy0u 10k *BE -1 +i0k (k)¢ V2. 8,
(B15)

Using (A21) we can express the causal propagator
of a spinor field in Minkowski space by

(k) 12T ()85, (8, MT "2 (3) =SS (x =), .
(B16)

The appearance of a 7, factor in the direct product
on the right-hand side of (B16) could have been
guessed from the form (A23b) of the subsidiary
condition. To find the explicit expressions for S°
and the other S functions, we use (A24) and

T)T () =T(x -y)
=1+i(£-y)_, (B17)
T T T =T, .

With the choice of normalization indicated in (B15),
we obtain

S5+ (%) = 0| T( () (0))[0)

r(di+%) x ] %2 ~-d'=1/2
S §lo-F)
_ I‘(d’—%) . x2 -d'+1/2
TT T @) WGO_T>
=IW Ay ), (B18)
r 1 2\ —d'=1/2
=iﬁA;,_1/2(x), (B19)
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and analogous expressions for S* and S [cf. (B8)
and (B9)].

3. The 3-Point Functions

The manifestly covariant technique is particular-
ly useful in the derivation of the general form of
the conformal-invariant 3-point functions

Gz (65 9,5)=(01Z(¢ @)y (9)F (3))]0),

where Z stands as before for the different types
of products. (We will be mainly interested in the
case Z =T and we shall write G,=7.)

We shall determine the general form of the
manifestly covariant 8 X8 matrix §(&;n, ) satisfy-
ing (@) the homogeneity requirements,

8(&; on, n)=8(; m, p7)
=p ¥+ %, 1), (B20)
8(p&; m, 1) =p"%(E; 0, m), >0,
(b) the subsidiary condition
B m8(&; m, 1) =8(&; n, MB+7=0, (B21)

{c) covariance under space reflection. We shall
assume for the sake of definiteness that the field
() =k ~%¢ (x) is pseudoscalar. Then we would
have

YoS(Is&; Ign, Isn)y,==8(¢ 0, 1), (B22)

where
IsE=(&,, -5 &, ‘Es) .

For &, 71, and # in the domain (A7) §(¢; 1, 77) can
be defined as

8(&;m, 1) =(012(¢ (6) x () X (7))|0). (B23)

In the domain in which all three scalar products
€+n, £+7, and n* 7 are positive (that is, when the
intervals x -y, x -3, and y -y in Minkowski space
are spacelike) the Wightman function and the 7
function coincide and § with the above properties
will have the general form

8(E; m, 1) = g0 * BE BB B@n+ 7)™V 2E < ) @E - )]V 4 gym BB - B @Y+ T)VEY TV (28 - ) (2 - )]V,

(B24)
The x-space expression G is related to ¢ by
K 3) 2T (088 0, T (F) =G (x5 9,5), . (B25)
[We assume here all « positive in accord with (A7).] Inserting (B24) in (B25) gives
Gl; 9,9)=8G,;9,7)+8,6,K;9,5),
G (65 3, 3)=i(F = s (£ =Dl = (v =3V /2 2" [ = =] [=(x =§)?]}~4/2-172 (B26)

Gy (5 9,3)==i(y =5y =(y =F P12~ 12 [~ (v — 9] [~ (& =3 2T}~2.
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Here we have again used (A24) and (B17) as well
as the identities

T(x)8,T(x)"* =8,
=T3V¥s»
T_Tg==TgT_
=T_.
In order to obtain the 3-point Wightman function
we; 3,5)=0]¢ &)y (P (H)[0), (B27)

we note that it is characterized by its property of
being the boundary value of an analytic function
regular in the backward tube

-Im(x -y)eV,, -Im(y-=y)eV,,

V. being the forward light cone. This implies that
w(x; y,5) can be obtained from (B26) through ana-
lytic continuation from the spacelike region. The
resulting expression will be related to G by the
substitution

"‘(x_y)z"i(xo _yo)o"(x '—y)z (B28)

for each of the squared intervals on the right-hand
side of (B26).
The time-ordered function

can be constructed from the Wightman function in
standard fashion. As a result, each bracket of
the type [-(x —¥)?] in (B26) has to be replaced by

0~ (x =), (B30)

We can also define the time-~ordered function on
the part (A7) of the cone C, , using the substitution

28 =280 +i0=2 *n+i0k &, (B31)

in (B24).

Finally, we mention that if the theory is as-
sumed to be y,~-invariant,* that is, if the Green
functions are invariant under the discrete trans-
formation (2.3), then g, must vanish and we are
left with only one conformal-invariant 3-point
function. Indeed, the y, invariance condition

-75G(x; y,j’.)')’5=G(x;y,:V.) (B32)
implies that
G(x;9,9)=8G,(x;9,5). (B33)

4. The Vertex Function

In perturbative computations it is convenient to
work with “amputated” vertex functions (which do
not contain propagators corresponding to the ex-
ternal lines). Such a vertex function I' is related

75 9,5)=0|T($ )y (W) (3))|0) (B29) to the time-ordered Green function 7 by

T(x;y,§)=ifff a‘x'd%y’ d%' g = x")S5 (y =y )T (&5 3", 57)85. (3" =), (B34)
or in a manifestly covariant form

$(egm, ) =1 [+ [ du € )ik G106, €)8° 0, 1) TE'; 0, °G, ), (835)
where

dig(§)=20(62)0( ¢ ~-1)a%

(B36)

and ¢ is any fixed vector on C, , with x,>0. In the sequel we shall choose ¢ = (0, 0; 1,1) in order to have
£+¢ =k, [cf. Eq. (3.29)]. The covariant vertex function cannot be determined uniquely from (B35) since the
fermion propagators 8° contain nilpotent factors of type 7. For this reason it is appropriate to intro-

duce the generalized vertex

iT, (& n,n) =B nTE; 0, 7B 7.

(B37)

According to (B35) I « i1s a manifestly covariant homogeneous distribution

T (p&; n,m) =p%~*T'x (&5 0, ),
T« (& on, 1) =Tx(&; n, p7})
=p?" 24k (g 0, 1), p>0,

satisfying the subsidiary condition [cf. (B37)]

BenTx(E; n,n) =Tx(; n,7)B 7
=0.

(B38)

(B39)

It is determined from these properties uniquely (up to two constants):
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r* (g; 77, ;’) = gB * 77[“192/2-442(77, ﬁ)sj“s'/z-a/z(n’ g)ﬁ ° gmg/z_.g/z (gy 7.1) +02:D§/2_4:+ 5/2 (77: '71)‘-0;_4/2(77, 5)532-4/2 (E’ ﬁ)]BvB * ;’ ’
(B40)

where D is given by (B6), and ga, and ga, are proportional to g, and g, of (B24). The vertex function
I'(x; y,7) in Minkowski space can be obtained from I'x by (B25), with I'x substituted for § and I" for G. An
equivalent formula is given in (3.5) of Sec. IIIC [cf. Eq. (A24)]. The reader is advised to verify for him-
self as an exercise that the manifestly covariant amputation formula (B35) is equivalent to (B34) if I'x and
T are so related. In this, Eq. (B37) is to be used, and § and G are of course related by the original Eq.
(B25). For the y,~odd part of I" we find, with a suitable choice of normalization (which, together with the

normalization of the propagators, defines g),

F(x; y:&)= gr(d""%d - 2)-13;‘-4/2(37 "x)')’ssg-a/z(x -§)Ag+a/z—¢'(y _5’-) .

APPENDIX C: PROOF OF THE COVARIANCE LEMMA

The group SO, (5, 1) acts transitively on the for-
ward cone (3.25). Thus every positive lightlike
vector ' may be obtained from the standard vec-
tor n°=0,...,0,1,1) as

n'=An 1)

for suitable AE SO,(5,1). Matrices A which do not
leave 1 invariant may be factorized as

A=E,VBE,, €2)

where V is a rotation by 7 in the 1-5 plane, E, ,
are in the little group of 7, and B is a boost in the
5-6 plane. That is,

E, m=n; Bn=pn, p>0.

An analogous decomposition was proven for SO(3,1)
in Ref. 55. We can use that result to obtain (C2)
as a corollary by noting that every transformation
may be composed from an SO(4) transformation
acting on components (£« ¢ £%) and therefore con-
tained in the little group of 7, and an SO(3,1)
transformation acting on components (£1£2¢5, £6)
The main piece of work is to show that the inte-
gral I is invariant under n—-n'=Vy
=(0,...,0,-1,1). Letd£=2d%5(£?). We have
n'E =£%+£%=k|x|? in coordinates (3.25). Thus,

I'= [ duy,©)5 )

=fdga(:<|x|2 “1)f ().

(B41)

r

We introduce new variables £'=£|x|?, so thatd§
=d¢’|x|™®. Hence

= [ag e -1) fxl-2¢)
=fdgo<x -1)f (&)

by homogeneity. The last integral is equal to I
since né =«.

Let us now return to general transformations A
of the form (C2). We have

r'= [ du, €7@
= [age(v, om, ¢ -1)7 )

= j A8 (Vyk —1)f (E,£)

by introducing new variables and using homogenei-~
ty of f. We now apply our previous result which
guarantees invariance under n-V,. Hence,

r=[agsme -1)£ (5,9
= [aso @B, - 1)1 @)

=fd£6(17£ -1)f ),

since E,n=7. QED.

*Permanent address: Institut fiir Theoretische Physik,
Universitit Bern, Bern, Switzerland.

10n leave from the Physical Institute of the Bulgarian
Academy of Sciences, Sofia, Bulgaria.

K. wilson, Phys. Rev. 179, 1499 (1969).

2Anomalous dimensions were first discovered in the
Thirring model: K. Wilson, Phys. Rev. D 2, 1473 (1970);
J. H. Lowenstein, Commun. Math. Phys. 16, 265 (1970).
For background see: W. Thirring, Ann. Phys. (N.Y.) 3,
91 (1958); K. Johnson, Nuovo Cimento 20, 773 (1961);



1786 G. MACK AND I.

B. Klaiber, in Lectures in Theovetical Physics (Gordon
and Breach, New York, 1968), Vol. XA, pp. 141-176.
Operator product expansions in the Thirring model were
recently considered in J. H. Lowenstein and B. Schroer,
Phys. Rev. D 3, 1981 (1971); G. F. Dell’Antonio,
Y. Frishman, and D. Zwanziger, ibid. 6, 988 (1972);
S. Ferrara, R. Gatto, and A. F. Grillo,— Nuovo Cimento
12A, 959 (1972).

3G. Mack and Abdus Salam, Ann. Phys. (N.Y.) 53, 174
(1969), and references therein.

‘H. A. Kastrup, Nucl. Phys. 58, 561 (1964); Phys. Rev.
150, 1189 (1966), and references therein; J. E. Wess,
Nuovo Cimento 18, 1086 (1960); D. Gross and J. E. Wess,

Phys. Rev. D 2, 753 (1970); D. G. Boulware, L. S. Brown,

and R. D. Peccei, ibid. 2, 293 (1970); C. J. Isham,
Abdus Salam, and J. Strathdee, Phys. Letters 31B, 300
(1970); P. Carruthers, Phys. Reports 1C, 1 (1971); V. A,
Matveev, R. M. Muradyan, and A. N. Tavkhelidze,
Particles Nucl. 2, 7 (1971).

S5A. M. Polyakov, ZhETF Pis. Red. 12, 538 (1970)
[JETP Lett. 12, 381 (1970)]; A. A. Migdal, Phys. Letters
37B, 98 (1971). For 3-point functions involving currents
and tensor fields see: E. Schreier, Phys. Rev. D 3, 980
(1971); S. Ferrara, R. Gatto, and A. F. Grillo, in
Springer Tracts in Modern Physics (Springer, Heidel-
berg, 1973), Vol. 67.

8J. D. Bjorken and S. D. Drell, Relativistic Quantum
Fields (McGraw-Hill, New York, 1965); K. Symanzik,
DESY Report No. DESY T-71/1 (University of Islamabad
Lectures, 1968, unpublished).

"Euclidean external momenta are nonexceptional except
when a partial sum of them vanishes (Sec. III B). Light-
like Minkowski momenta are usually exceptional. For
further discussion see Ref. 9.

8M. Baker and K. Johnson, Phys. Rev. 183, 1292
(1969); Phys. Rev. D 3, 2516 (1971); 3, 2541 (1971);

S. L. Adler and W. A. Bardeen, Phys. Rev. D 4, 3045
(1971); 6, 734(E) (1972); S. L. Adler, bid. 5, 3012 (1972).
%K. Symanzik, Commun. Math. Phys. 23, 49 (1971).
por the applications envisaged here, one needs the
Green functions of the zero-mass theory as functions at
nonexceptional momenta, not as distributions over all of
momentum space. This matches with our results. How-
ever, our Green functions are in fact also well-defined
distributions; this follows from the result of Ref. 11.
UK. Symanzik, Lett. Nuovo Cimento 3, 734 (1972).
12G. Mack, Phys. Rev. Letters 25, 400 (1970); Nucl.
Phys. B35, 592 (1971), especially Sec. III. For back-
ground see J. D. Bjorken, Phys. Rev. 179, 1547 (1969).
Conformal-invariant operator product expansions have
been extensively studied by S. Ferrara, R. Gatto, A. F.
Grillo, and G. Parisi, Lett. Nuovo Cimento 2, 1363
(1971); 4, 115 (1972); Nucl. Phys. B49, 77 (1972). See
also S. Ferrara, R. Gatto, and A. F. Grillo, Nucl. Phys.
B34, 349 (1971); Phys. Rev. D5, 3102 (1972); and
Ref. 5. :
13R. Gatto, Riv. Nuovo Cimento 1, 514 (1969).
14G. Mack and K. Symanzik, Commun. Math. Phys. 27,
247 (1972).
15K, Symanzik, in Lectures in High Enevgy Physics,
edited by B. Jak&ié (Gordon and Breach, New York,
1965).
16 Another formulation of the renormalized Schwinger-
Dyson equations is given in: E. S. Fradkin, Zh. Eksp.
Teor. Fiz. 29, 121 (1955) [Sov. Phys. JETP 2, 148

T. TODOROV g
(1956)]; 1. Biafynicki-Birula, Bull. Acad. Polon. Sci. 13,
499 (1965).

"A. A. Migdal, Phys. Letters 37B, 386 (1971).

18G. Parisi and G. Peliti, Nuovo Cimento Lett. 2, 627
(1971).

19M. Gell-Mann and F. E. Low, Phys. Rev. 95, 1300
(1954); K. Wilson, Phys. Rev. D 3, 1818 (1971).

20B. Schroer, Lett. Nuovo Cimento 2, 867 (1971).

2p. A. M. Dirac, Ann. Math. 37, 429 (1936); Mack and
Salam, Ref. 3, and references contained therein to the
work of Murai, Hepner, and Kastrup.

Znfrared divergences of the “catastrophic kind” would

prevent the existence of Green functions at any external
momenta. They could arise from divergences of integrals
at large x. Absence of this type of divergences in per-
turbation theory is the nontrivial starting point of the
renormalization group approach. See Gell-Mann and
Low, Ref. 19; N. N. Bogolubov and D. V. Shirkov,
Introduction to the Theory of Quantized Fields (Inter-
science, New York, 1959), Chap. VIII. On the other
hand, there will of course be infrared singularities at
some exceptional momenta (as in QED—see Ref. 9).
A nontrivial conformal-invariant QFT is necessarily an
infraparticle theory (see Ref. 23). There are no asymp-
totic free-particle states and hence no on-shell S matrix
(see Ref. 1).

% The concept of infraparticle is due to B. Schroer,
Fortschr. Physik 11, 1 (1963).

When speaking about conformal invariance we shall
have in mind invariance under (global) Poincaré trans-
formations and dilatations, and under infinitesimal
special conformal transformations, or the (equivalent)
concept of “weak conformal invariance” of Hortagsu,
Seiler, and Schroer (see Ref. 26). The reason is that,
first, global conformal transformations are not defined
on the whole Minkowski space (see Appendix A) and,
second, they do not preserve either time ordering or
even the sign of (x —y)2. The relevance of infinitesimal
conformal transformations was stressed by M. Flato
and D. Sternheimer, Compt. Rend. Acad. Sc. Paris 263,
A935 (1963). Global conformal transformations may be
considered after analytic continuation to the Euclidean
region (x* imaginary), this will be used in Sec. III C.
The conformal group then becomes SO(5,1). K. Johnson
(private communication); see also footnote 48.

%G. Mack and I. T. Todorov, J. Math. Phys. 10, 2078
(1969).

26M. Hortagsu, R. Seiler, and B. Schroer, Phys. Rev.
D 5, 2519 (1972).

2TE. Speer, Generalized Feynman Amplitudes, Annals
of Math Studies No. 62 (Princeton Univ. Press, Prince-
ton, New Jersey, 1969). See also, E. Speer, J. Math.
Phys. 9, 1404 (1968); Commun. Math. Phys. 23, 23
(1971); E. Speer and J. Westwater, Ann. Inst. Henri
Poincaré 14A, 1 (1971). The techniques of analytic
regularizm were also used earlier, see, e.g.,

T. Gustafson, Arkiv. Mat. Astron. Fysik 34A, No. 2
(1947); C. G. Bollini, J. J. Giambiagi, and A. Gonzalez
Dominguez, Nuovo Cimento 31, 550 (1964).

28R. F. Streater and A. S. Wightman, PCT, Spin and
Statistics and All That (Benjamin, New York, 1964).

29, M. Gel’fand and G. E. Shilov, Genevalized Functions
(Academic, New York, 1964), Vol. 1.

30G. Killén, Helv. Phys. Acta 25, 417 (1952); H. Leh-
mann, Nuovo Cimento 11, 342 (1954).



8 CONFORMAL-INVARIANT GREEN FUNCTIONS WITHOUT. .. 1787

31f d>2, the Killén-Lehmann representation (2.10)
needs a subtraction. It is most conveniently made at
P =0; the subtraction constant is then zero by dilatation
symmetry.

%K. Pohlmeyer, Commun. Math. Phys. 12, 204 (1969).
Pohlmeyer’s theorem extends earliér results of Feder-
bush and Johnson and Jost and Schroer (Ref. 33). The
possibility that d =2 cannot occur either for an inter-
acting fundamental scalar field, because a conformal-
invariant time-ordered propagator with d =2 would have
a vanishing absorptive part, which is incompatible with
the propagator bootstrap condition (4.6) whose right-hand
side is positive definite. This remark applied only to
fundamental fields whose propagators enter in the skele-
ton graph expansions. In all other cases, invariance of
only the 2-point Wightman function would be acceptable.
This allows for canonical dimensionality [cf. Ref. 14,
Eq. (2.14) and subsequent discussion].

33p. G. Federbush and K. A. Johnson, Phys. Rev. 120,
1926 (1960); R. Jost and B. Schroer, see R. Jost, in
Lectuves on Field Theory and the Many-Body Problem,
edited by E. R. Caianello (Academic, New York, 1961).

34J. Schwinger, Ann. Phys. (N.Y.) 2, 407 (1957);

M. Gell-Mann and M. Lévy, Nuovo Cimento 16, 705
(1960). -

33, Weinberg, Phys. Rev. 118, 838 (1960). Weinberg’s
power-counting theorem is valid for arbitrary, not
necessarily integer, asymptotic power behavior of
integrands.

36Skeleton graph expansions which hold for a massive
theory constructed by canonical perturbation theory
must also hold for its conformal-invariant Gell-Mann—
Low limit theory (see Sec. IV C). The possibility of
“dissolving” in addition the mesonic 4-point function is
at least self-consistent (Sec. III) and, of course, com-
patible with the axioms (cf. Ref. 14).

3TMigdal, Ref. 5.

38Weinberg, Ref. 35, bottom of p. 847.

9F. J. Dyson, Phys. Rev. 75, 1736 (1949); Abdus Salam,
ibid. 82, 217 (1951); 84, 426 (1951).

4Exploitation of this equation has often been tried, but
without using conformal symmetry. See, e.g., S. F.
Edwards, Phys. Rev. 90, 284 (1953).

“A. M. Polyakov, Zh. Eksp. Teor. Fiz. 59, 542 (1970)
[Sov. Phys. JETP 32, 296 (1971)]; M. Veltman, Physica
29, 186 (1963), especially Secs. 3, 4.

K. Symanzik, J. Math. Phys. 1, 249 (1960).

#C. G. Callan, Phys. Rev. D 2, 1451 (1970); K. Syman-
zik, Commun. Math. Phys. 18, 227 (1970). Theories
with several coupling constants were considered by
K. Symanzik (unpublished).

#1n particular, therefore, predictions for the physical
coupling constant g (or g,y, &44) are possible in princi-
ple on the basis of extra assumptions only: The GML
large-momentum asymptote is approached fastest (Ref.
9) if §=g,. Thus, assuming some form of “precocious
scaling” would fix physical coupling constant g to § =2...
[The term “precocious asymptopia”’ was coined by R. A.
Brandt and G. Preparata, in Broken Scale Invariance and
the Light Cone, 1971 Coral Gables Conference on Funda-
mental Interactions at High Energy, edited by M. Dal
Cin, G. J. Iverson, and A. Perlmutter (Gordon and
Breach, New York, 1971),Vol. 2, pp. 43—60.] The propos-
al made by one of us that dilatation symmetry-breaking

effects should be purely (3,3% @ (3*,3) under chiral
SU(3) xSU(3) (or anything without singlet, to lowest
order) would fix the physical coupling constants to the
same values, because AT" in the notation of Ref. 14
(Appendix C) will contain a singlet piece, but is zero for
g =Z. because c(g) <g —Z. in Eq. (C6) of Ref. 14. [See
G. Mack, Nucl. Phys. B5, 499 (1968)] Z. is related to
our parameter g (but with a factor that can be evaluated
only in the framework of the massive theory). The
physical coupling constants are defined by the value of
the vertices at certain finite momenta. Hence they will
be strongly affected by symmetry breaking due to rest
masses, etc.

41t is an entirely different question whether or not
there could exist continuous families of conformal-
invariant QFT’s which are not GML limits of perturba-
tion-theoretically renormalizable theories, and which,
in particular, do not admit of any skeleton graph ex-
pansions. While validity of such expansions is sufficient
(modulo convergence problems of the series involved)
to ensure the axioms, they are by no means necessary:
They are only iterative solutions of integral equations
which are specializations of axiomatically valid ones
(Ref. 15). (The canonical counterexample is Bogoliubov-
Parasiuk-Hepp renormalized perturbative solution of
a ‘“nonrenormalizable’” theory.)

465ee, e.g., W. Kopczynski and L. S. Woronowicz,
Rep. Math. Phys. 2, 35 (1971).

4TA. Uhlmann, Acta Phys. Polonica 24, 295 (1963).

#Global conformal transformations could also be
considered if one works with fields ¢ that live on a
manifold M which is an «-sheeted covering of the cone
C, 4 (i.e., M/R, is the universal covering of M,). The
values ¢ (¢) for arguments ée M over the same point of
C,,4 would then differ by a phase factor. According to
Segal, the (noncompact) manifold M/R; admits a causal
orientation. [I. Segal, Bull. Am. Math. Soc. 77, 6
(1971).]

43C, G. Callan, S. Coleman, and R. Jackiw, Ann. Phys.
(N.Y.) 59, 42 (1970). The symmetric traceless tensor
©,, which is coupled to the gravitational field g, was
considered earlier by N. A. Chernikov and E. A. Tagirov,
Ann. Inst. H. Poincaré 9, 109 (1968).

501n this and the following appendixes we could have
avoided the use of the auxiliary fields x(£) and intro-
duced the manifestly covariant formalism directly for
Green’s functions.

S'There is an alternative possibility (discussed in Ref.
3): One may identify physical fields as equivalence
classes of 8-spinor fields, two fields x (£) being called
equivalent if they differ by a new kind of additive gauge
transformation y (£) — x(¢) +&- BA(¢), where A(¢) is also
an (arbitrary homogeneous) 8-spinor. In this scheme
X (£) has to be homogeneous in ¢ of degree —d’ —3.

52E. C. Zeeman, J. Math. Phys. 5, 490 (1964);

L. Michel, in Applications of Mathematics to Problems
in Theoretical Physics, edited by F. Lurgat (Gordon
and Breach, New York, 1967), pp. 409—452.

53Cf. Chap. 3 of Ref. 29, where it is shown that for
noninteger d the distributions (B4) are well defined and
exhaust the list of homogeneous distributions of £« 7.

54cf. Adbus Salam, Nuovo Cimento 5, 298 (1957).

%G. J. Iverson and G. Mack, J. Math. Phys. 11, 1581
(1970).



