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We discuss the renormalization of spontaneously broken gauge theories in a large class of renormalizable

gauges which includes the unitary gauge as a singular limit. Particular attention is paid to the constraints of
gauge invariance on the renormalization program and to the gauge invariance and finiteness of the S
matrix. Our intention is to supplement the formal discussions already in the literature by carrying out the
renormalization program in an explicit and complete way (fixing counterterms and defining the physical

parameters), and by restricting demonstrations of gauge invariance and finiteness to the one-loop level. The
discussion is limited to an Abelian model for simplicity, and can easily be extended to more complicated

gauge theories. All the essential features, however, are found already in the Abelian model.

I. INTRODUCTION

There are, by now, several papers in the litera-
ture dealing with the renormalization of spontane-
ously broken gauge (SBG) theories. The original
work of 't Hooft' and Lee' has been extended and
formulated in a large class of gauges" by Lee and
Zinn- Justin, " 't Hooft and Veltman, ' and others. '
In addition to these formal discussions of renor-
malization and gauge invariance there have been
explicit calculations exhibiting important features
of these theories. Gauge invariance of several
physical processes" has been demonstrated for
models formulated in a general class of renormal-
izable gauges, and finiteness of some S-matrix
elements has been shown when calculations are
performed directly in the unitary gauge. '

In this paper we will discuss the renormalization
of an Abelian SBG theory in an explicit and com-
plete way in order to describe some of the interest-
ing features of these theories that are not revealed
in a formal treatment. We set up the renormaliza-
tion program in a general class of gauges (the Jt I
gauge of Fujikawa, Lee, and Sanda') which con-
tains the unitary gauge as a singular limit. Our
primary interest is in formulating the renormal-
ization in a way that makes the gauge invariance of
the S matrix easy to check (at least on the one-loop
level) and the passage to the unitary gauge (g-0)
easy to discuss. Thus, for example, we do sub-
tractions at physical on-mass-shell points so that
the renormalized parameters of the theory are de-
fined in a gauge-invariant way. All proofs of gauge
invariance and finiteness are restricted to the one-
loop level. This paper is intended to supplement
the formal treatments in the literature and to pro-
vide some theoretical foundation for the discussion
of divergence cancellations in the Abelian theory. '
It is intentionally written in a somewhat pedagogic
style so that it could serve as an introduction to

the renormalization of SBG theories. The discus-
sion can readily be extended to more complicated
gauge theories, but the Abelian model already has
enough structure to show the essential features of
any such renormalization program.

Two of these features should be pointed out here.
The first is a consequence of the fact that there
are more particle masses and vertices in the theo-
ry than there are free parameters. The simple
relationships between measurable quantities which
appear at the tree-graph level must be maintained
by the renormalized theory (up to finite higher-
order corrections) if the theory is to be renormal-
izable. This is because the tree-graph relations
(or equivalently the original gauge symmetry of
the Lagrangian) severely restricts the introduction
of Lagrangian counterterms. This leads to finite
relations in the renormalized theory involving the
physical masses and physical coupling constants
(decay rates). Such relations have already been
pointed out in the literature in connection with
mass-shift calculations" and LLt, -e universality in
Weinberg's SU(2)xU(I) theory of leptons, "but they
appear already in the Abelian model.

The other part of the renormalization program
which is discussed in detail is the role of the sca-
lar-meson tadpole contributions. This we treat
carefully, pointing out that the tadpoles themselves
are both gauge-dependent and divergent, canceling
other gauge-dependent contributions to physical
renormalization effects.

We begin by discussing quantization of the theory
with a manifestly unitary choice of field variables
(Sec. IIA). The quantization in a class of gauges
which are renormalizable by power-counting argu-
ments is then given in Sec. II 8. Section IIC shows
that, at the tree-graph level, the unitary-gauge S
matrix is recovered in a simple way by taking the
parameter ( to zero Section III giv.es a brief dis-
cussion of regularization. Section IV contains the
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renormalization program for general $. Finally in
Sec. V the $-0 limit is discussed in the context of
this program, and it is demonstrated that the re-
sults so obtained are identical to those which would
be found for renormalized quantities, with the uni-
tary choice of field variables and a straightfor-
wax'd renormalization px'ocedure.
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II. THE ABELIAN MODEL

~„(x)-~„(x)+(I/g)8 „A(x),
e(x)- C(x)e-"&"&.

(2.2)

When p.
' &0, the Higgs mechanism"'" operates to

give mass to the vector meson and avoid the pres-
ence of massless Goldstone bosons. We discuss
the quantization of the theory first in the unitary
gauge and then in a class of renormalizable gauges
which include the unitary gauge as a singular limit.

A. The Unitary Gauge

The transformation of variables introduced by

Higgs'

4 (x) = (I/vY )[A. + $(x)]8 ' ~"'~

(2.3)

~„(x)= a„(x)+(I/~g)s„e(x),

with ( g)0 = 0, leads to the manifestly unitary La-
gx"anglan

The Abelian model which we analyze in this paper
is described by the Lagrangian

z =--,'(s„~„-s, x„)2

+ ( (&„+igA„)e~'.—p, 'C *e- h(C *C)', (2.1)

where 4 is a complex scalar field. This Lagran-
gian is invariant under the gauge transformation

L 2g g~V

-i 5Ih)

(0) ln (1+ ), }

FIG. 1. Feynman ru1es in the unitary gauge.

A complete derivation of the 5'(0) term in the con-
text of canonical quantization has been given by
Weinberg" for a large class of spontaneously
broken gauge theories.

On the tree-graph level, the choice

x' = —g'/a (2.S)

B. Renormalixable Gauges

Following Fujikawa et al. ' we next quantize the
theory in a class of renormalizable gauges. We
introduce Cartesian components for 4:

will maintain the condition ( p)o = 0. What happens
beyond the tree-graph level will concern us in Sec.
IV. The unitary-gauge Feynman rules are shown
in Fig. 1.

(2.4) ~+ g(x)+ z q(x) (2.9)

&o = -'('p &~ - s ~~~)'+ 2(~z)'&~'

+ —,'(& „y)' ——,'(g'+ 3h X') y' (2.5)

again choosing A.
' = -p, '/h. The gauge transforma-

tion (2.3) which leaves the Lagrangian (2.1) invari-
ant involves a mixing of P and y, which infinitesi-
mally is

S, =-,'g'(y'+ 2xy)a„'

-A(p +A.'h)y &hg' —hhg' .- (2.6)

0-0+XA

y- li —gA —A.A . (2.10)

X„„=-Z,+ i 6'(0) ln(1+ y/z) . (2.7)

The unitarity is manifest since there are no re-
dundant degrees of freedom, and, as a result, the
theory can be canonically quantized. The result is
that the noncovariant part of the vector-meson
propagator can be dropped if the effective interac-
tion Hamiltonian in the interaction representation
is taken to be"

Quantization begins by adding a gauge-fixing term
to the Lagrangian. " A convenient choice for our
purposes is that of Fujikawa et al. ,

'

&.=--'&(~,&"-—x
Ag (2.11)

which leads to their A& gauge. With this choice of
gauge, one must include Faddeev-Popov ghosts,
and this we do by adding another term to the La-
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grangian'7:

(2.12)
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The Faddeev-Popov (FP) ghosts appear only in
closed loops and obey Fermi statistics. Feynman
rules can now be derived from g+g, + Z ~ and are
shown in Fig. 2.

The condition (2.8) keeps (g)o=0 in the tree ap-
proximation. Usirig this condition, it can easily
be seen from the Feynman rules of Fig. 2 that
tree-graph contributions to S-matrix elements are
independent of g. The pole in the A propagator at
k' = (Ag)'/$ is just canceled by the y propagator
pole at the same point.

F-P
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C. The )~ 0 Limit

For S-matrix elements between in- and out-
states consisting only of g and A particles, g in-
dependence is obvious. Furthermore, in the limit
$-0, one recovers the unitary-gauge Feynman
rules graph by graph. Graphs with X propagators
go to zero, and the A propagator takes the canoni-
cal form for a massive spin-one field.

In graphs with closed loops, the g- 0 limit is
singular because of the asymptotic behavior of the
unitary-gauge vector propagator, and must be dis-
cussed carefully in the context of a renormaliza-
tion program including a regularization procedure.
This will be done in Sec. V. Vfe merely point out
here that formally the g- 0 limit gives the unitary
gauge theory in any order. Note in particular that
Faddeev-Popov loops degenerate to quartically
divergent contact terms in the $ - 0 limit. These
are exactly the terms in the expansion of the loga-
rithm in (2.8). The connection between these two
objects is manifest in the path integral formalism
where both arise from the Jacobian of a transfor-
mation of variables.

III. REGULARIZATION

In order to discuss renormalization in a general
gauge we need a regularization technique which is
gauge-invariant and also powerful enough to handle
the highly divergent quantities which occur in the
unitary gauge. The dimensional-continuation
method of 't Hooft and Veltman" satisfies both
these criteria and we have used it throughout our
calculations. It is implicit in the discussion which
follows that all divergent Feynman integrals are
to be defined by this method.

In the context of the simple Abelian model here
discussed, there are no problems in applying this
method. One simply uses the usual prescription
to express each loop in a Feynman diagram as an
integral in momentum space, 1 d "kf(k), n =4, and

12g'g~v

P
L 2g gpv

g (k„+ k'„)

-i5!hX

-L5!h

-i2h

-i2hX

FIG. 2. Feynman rules in the RL gauge. The dashed
line with the arrow represents the Faddeev-Popov ghost
and appears in closed loops only.

then evaluates this integral by continuing in n to a
region such that it is finite. It is straightforward
to generalize the necessary tensor algebra to di-
mension n 44. In generalizing our treatment to
processes involving fermions, we use dimensional
continuation to define the coefficient of each spinor
invariant. The only situation where any problem
arises is in the case of Adler-Bell-Jackiw" tri-
angle anomalies. Since theories containing un-
canceled anomalies are not renormalizable, this
problem is not relevant to our discussion. For all
renormalizable theories the prescription of
't Hooft and Veltman appears completely satisfac-
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tory as a regularization procedure.
A short description of the method and its applica-

tion to our treatment of renormalization is given
in the Appendix.

IV. RENORMALIZATION

Our starting point for formulating a renormal-
ization program is the Lagrangian (2.1), which we
now call S.„. We generate Lagrangian counter-
terms by rescaling the fields and parameters ac-
cording to

A„- (Z,)' 'A„,
c- vzc,

I
(Z )X/2

g'
~

z =--'((8 A" ——x
2

c 2

and the Faddeev-Popov term

(4.4)

all orders. This, as we shall see, would make A.

both gauge-dependent and diver gent even on the
one-loop level. Instead, we simply set

(4.3)

which makes (g), vanish in the tree-graph approxi-
mation but not beyond. The closed-loop contribu-
tions to ((j), (tadpoles) are gauge-dependent and
enter only as renormalization effects, canceling
other gauge-dependent pieces. This we will show
explicitly. We will express our results in terms
of g, h, and A, , eliminating g' by E(I. (4.3).

To quantize the theory, we again add the gauge-
determining piece

A. A,g„@z, S2~ (4.5)

We again write 4 in terms of its Cartesian com-
ponents with the real part shifted by A.. Then

Z, =--,'Z, (s„A„-e.A„}'

+-2'Z((&„+ igA„)(X+ (j)+ ig) )'

-Z„-2'q2]~+(I+fq(2 —Z„-.'h)~+g+Zy )'.
(4.2)

The parameters g, p, , and fg are now renormalized
parameters and p,

2 is taken to be negative. The
parameter A. could be adjusted to give ((j)),= 0 to all
orders of perturbation theory, that is, (4))0=A, to

Note that the fields in (4.4) and (4.5) are renormal-
ized fields. The result is a Lagrangian which can
be divided into two pieces: One gives the Feynman
rules of Fig. 2, and the other is a set of counter-
terms. These symmetric counterterms will be
sufficient to remove the divergences of the theory. "
This leaves a finite renormalization to perform if
we wish to give g a simple physical definition. It
is convenient to introduce such a further rescaling
at this stage by letting

g- (z,/z)' 'g. (4.6}

Then the entire renormalization of g is given by
[Z,/(Z, Z)]'~2, with Z, and Z relatively finite.

The entire counterterm Lagrangian is

g., = --,'(Z, —I)(S„A„-e „A„)2+-,'(Z, —1)~'g'A„'+ -,'(Z - 1)(e„y)2+-,'(Z- 1)(e„q)2

+ —,'(Z, —I)g2A„2((j)'+ )p) + (Z, —l)g'M„'(j

Z X/2
+ ~Z (Z- I)g&A„&"y-((ZZ, ),

' '- I)g[(s„(j)A"X-(s, X)A" (j]

(4.7)

There are two other finite counterterms associated
with the FP ghost mass and coupling, but since we
will not be going beyond the one-loop level, they
do not enter our discussion.

The next step is to adjust the renormalization
constants, thereby defining the renormalized pa-
rameters of the theory. There are five renormal-
ization constants (Z, Z„Z„,Z„,Z, ) which will be
used to define the three parameters g, h, and A. in
terms of physical masses and coupling constants

and to do wave-function-renormalization subtrac-
tions for the fields A„and g which describe the
physical particles. An important feature of our
procedure is to do subtractions at on-shell points
so that g, h, and A. are defined in a gauge-invariant
way. This simplifies the discussion of gauge inde-
pendence of the S matrix and the transition to the
unitary gauge.

It is convenient to begin by discussing the scalar-
meson (g) two- and three-point functions. There
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FIG. 3. One-loop graphs for the scalar-meson self-
energy II(q2).

(b)

-i [2h)i.'(Z„- 1) —q'(Z - 1)]

(the sum of the two pieces) to effect conventional
mass and wave-function subtractions on the entire
11(q'):

(4.8)

are two types of graphs to consider in the two-point
function: ordinary one-particle- irreducible (1PI)
self-energy graphs and tadpole contributions. We
denote the sum by II(q'). The one-loop graphs of
each type are shown in Figs. 3(a) and 3(b). Each
set has a counterterm as shown and written ex-
plicitly in Fig. 3(c). They come directly from
(4.7). We do noi adjust the tadpole counterterm to
cancel the tadpoles of Fig. 3(b). Rather, we pro-
ceed physically, adjusting the entire counterterm,

- i 3!h X [Z h
- 1] i3hk [Zh- Z„]

(c)

FIG. 4. One-loop graphs for the scalar three-point
function V(qf y g2 p g3).

1PI or tadpole as shown in Figs. 4(a) and 4(b).
From Fig. 4(c), the complete counterterm is

-3ie.[(Z„-I) + (Z„- 1)] .

By adjusting Z„so that

3ihy[(Z„-1)+(Z„-1)]=V(M~2,M~2, M~ ),
(4.11)

i (Z„-Z)2h)i. ' = 11(2h~'),
(4.9)

the only contribution to the on-shell 3-|( coupling
constant g& will be the tree graph. This defines

8-i (Z —1)=,II(q')
q 2 2AX2

hA. —= g&
= physical 3-g coupling. (4.12)

This defines

2hZ'=M '
= (physical g mass)' (4.10)

and fixes Z and Z„. Z will be gauge-dependent,
but Z„/Z cannot be since it is the mass renormal-
ization. Inlowest order this means Z„-Z is gauge-
independent, i.e., that II(2hZ~) is gauge-independent.
We have explicitly checked that this on-shell two-
point function (both finite and cutoff-dependent
parts) is gauge-independent on the one-loop level.
Details are displayed in the Appendix.

The one-loop contributions to the scalar-meson
three-point function V(q, ', q,', q,') are also either

This object must be gauge-independent since it is
experimentally accessible by extrapolation to a
pole in the unphysical region. Equations (4.10) and

(4.12) completely fix h and A, in a gauge-independent
way. Since Z„/Z' is a coupling-constant renormal-
ization, (Z„- 1)—2(Z —1) should be gauge-indepen-
dent on the one-loop level. Thus from (4.11) and

the one-loop gauge independence of Z„-Z,

V(M~, Mv', M~ ) = QihA(Z —1)

+ gauge-independent terms.

(4.13)

The demonstration of this one-loop relation is out-
lined in the Appendix.
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We complete the determination of the Z's and
definition of the renormalized parameters by look-
ing at the vector self-energy

Il„.(p) =A(p')~„. ~(p')P„p. .

The one-loop 1PI and tadpole contributions are
shown in Figs. 5(a) and 5(b). The complete counter-
term is the sum of the two pieces shown in Fig.
5(c). We adjust Z, and Z, to do conventional mass
and wave-function subtractions eliminating the
first two terms in the Taylor expansion of A(p')
about p' =A,'g'. This fixes Z, and Z, and defines

(a)

(b)

g g =—M

= (physical A mass)'. (4.14)
ig ~ (Z, -1)g „ -Lg k [Zg-Zp]g~p

It can easily be checked that Z, /Z is finite on the
one-loop level. The quantity Z,/Z, Z which is cou-
pling-constant renormalization must be gauge-in-
dependent. In fact Z, and Z,/Z turn out to be sep-
arately gauge-independent in this model. " The
parameters A. , g, and h are now all defined in a
physical, gauge-independent way, and the counter-
terms are all fixed. It can now be checked that
these counterterms remove the divergences in the
Green's functions of the theory for nonzero g, and
that physical processes are finite, gauge-indepen-
dent functions of A, , g, and h..

Before looking at a few examples, a brief dis-
cussion of the tadpoles and their counterterm is in
order. A simple calculation shows that

T- i Z g (Z„-Z„) = 2Z h—,+ finite terms,

(4.15)

where T is the sum of the one-loop tadpole, graphs.
Thus the tadpole with its counterterm is both di-
vergent and gauge-dependent, only becoming finite
(on the one-loop level) in the Landau gauge (g- ~}.
The gauge dependence of this object which contrib-
utes solely to renormalization should not be sur-
prising since, in each case, it is merely one part
of a physical renormalization effect.

An alternate but completely equivalent treatment
of the tadpole contributions can be achieved by in-
troducing a further subtraction constant and re-
quiring that the tadpole vanish identically. That
is, in addition to the rescalings of Eq. (4.1) and
(4.6) we could take

(c)

FIG. 5. One-loop graphs for the vector-meson self-
energy 0» (p2).

I'p. (p~p') =»z ~up, &p+.(p P'} . (4.16)

The additional constant Z„ is then fixed by the re-
quirement that the tadpole contribution, consisting
now of Eq. (4.15) plus a Zz-dependent counterterm,
must vanish identically. Thus defined, Z~ is di-
vergent and gauge-dependent. At every point,
where the previous procedure gave the tadpole con-
tribution represented by (4.15), the modified pro-
cedure contains the same contribution, which now,
however, enters by way of the Z~-dependent
counterterm. This is simply a matter of choosing
a slightly different method of bookkeeping. We
note that this second method is the one used by two
of us" for the Weinberg model in a calculation of
p, decay in the unitary gauge. A similar method
has also been used by Lee and quinn-Justin' for
their comparison of the (=0 and (=~ gauges (U
and R gauges of their paper).

Returning to the counterterms of (4.7), other
physical processes can now be calculated. The
simplest to discuss is the g-AA decay rate (taking
h&2g'} which is given by the PAA three-point
function on shell. The one-loop graphs and
counterterms are shown in Fig. 6. If we denote the
graphs and counterterms of Fig. 6 by A „„(p,p'),
then the complete three-point function including the
Born term is

in rewriting the Lagrangian, and again use

as a relationship among renormalized quantities.

The counterterms of Fig. 6(c} (previously deter-
mined) are just sufficient to make I"„„(p,p} finite
for any value of p' and p with g e0. Furthermore
it is gauge-independent when put on shell and sand-
wiched between physical polarization vectors.
Thus
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F(P- A A) ~ (g'g)' [I+finite, gauge-independent
terms of order g' and k].

(4.1V)

This is a finite relation between the decay rates
and masses of the theory and is a consequence of
the small number of independent counterterms
available. This feature of spontaneously broken
gauge theories has been pointed out already in con-
nection with mass-difference calculations" and
the question of p-e universality in Weinberg's the-
ory, ' but it is interesting to see it in this simplest
of all such theories.

A few concluding comments might help put this
section in perspective.

(1) First of all, it is not necessary to choose
mass and wave-function renormalizations along
with the triple scalar vertex to define the parame-
ters g, h, and A. and to fix the subtraction con-
stants. Any convenient choice which relates these
parameters to physical quantities may be made.

(2) Once the counterterms are fixed, it can be
checked that they remove the divergences of the
remaining 1PI Green's functions (for g «0). Thus,
for example, the y self-energy is rendered finite
by its (previously fixed ) counterterm. In the case
of divergent Green's functions consisting only of
external g and A lines, this result leads to finite
higher-order relations such as (4.1V).

(3) The fact that the counterterms already intro-
duced make the remaining vertices finite can be
proved by making use of the Ward identities of the
theory. Such an analysis will be reported by one
of us." The Ward identities can also be used to
show the gauge independence of the S matrix. This
is the content of the papers by Lee and Zinn-
t'ustin' and 't Hooft and Veltman. '

V. THE UNITARY GAUGE

With the program given in Sec. IV it is clear
that the $ - 0 limit is easy to examine since particle
masses, on-shell couplings, and S-matrix ele™
ments are explicitly gauge-independent. The only
question which remains is whether the quantities
so calculated correspond to those one would find
by calculating with the manifestly unitary choice of
fields. We turn now to this question.

The starting point is the renormalized Lagran-
gian (4.2), expressed in terms of the unitary gauge
variables (2.3). This, together with the further re-
scaling g - (Z,/Z)'~' g, gives a Lagrangian with
five independent counterterms which can be can-
onically quantized. The choice A.'=-g'/k can again
be made to make (P), = 0 on the tree-graph level.
Quantization leads to an effective interaction
Hamiltonian given by the negative of the interaction

(a)

(b)

i2g h(Z)-l)g„„

(c)

ig X [Zg-Z+] g+„

FIG. 6. One-loop graphs for the one-scalar-two-
vector three-point function.

Lagrangian (including counterterms) along with
the 5'(0) term of (2.V). The dimensional continua-
tion method can again be used to regulate divergent
integrals, and the renormalization program of Sec.
IV can be carried out. The difference now is that
individual graphs and the gauge-dependent renor-
malization constants become much more divergent
as the regulator is removed. Green's functions
now contain divergences even after renormaliza-
tion, and only after calculating the on-shell S ma-
trix may the regulator be removed (n- 4). In this
context, it is worth pointing out that in the frame-
work of the 't Hooft-Veltman regulator, the inte-
gral of any polynomial is defined to be zero." In
particular, 5'(0) ~fd'k =- 0.

The entire unitary gauge formalism can be ob-
tained, graph by graph, from the 8

&
formalism by

taking the limit g-0 in the presence of the regula-
tor. The vector-meson propagator takes its uni-
tary-gauge form, and all graphs with X propagators
go to zero provided that the space-time dimension
n is less than 2. The $- 0 limit of the FP ghost
loops is more delicate, but if the limit is taken
with n&0 they go to zero, in agreement with the
above result. This has already been pointed out
by 't Hooft and Veltman. ' There are also terms of
this form (formally quartically divergent but van-
ishing when regulated) in the g-0 limit of closed
loops consisting only of vector mesons. If the
vector-meson loops and the FP ghost loops are
added together before taking the g- 0 limit, the



1754 APPELQUIST, CARAZZONE, GOLDMAN, AND QUINN

would-be quartic divergences cancel, and it is suf-
ficient to take n &2 for the entire calculation.

It is clear from this discussion that for all physi-
cal quantities a U-gauge treatment yields the same
results as the $- 0 limit of the A&-gauge method.
Thus the two are equivalent.

VI. SUMMARY

The following are the essential features of our
renormalization program

(1) The independent renormalization constants
are adjusted to effect subtractions at on-mass-
shell points. This leads to gauge-independent def-
initions of the renormalized parameters of the the-
ory. Although we have worked in a restricted
class of gauges, the program clearly applies to
any gauge.

(2) The renormalized scalar field is shifted by
an amount equal to its tree-graph vacuum expecta-
tion value. A further shift to include the one-loop
and higher contributions to the vacuum expectation
value in the shift parameter is superfluous and
confusing since these tadpole contributions are
both gauge-dependent and divergent. Thus it is not
useful to speak of higher-order corrections to the
relation (4.3). The tadpole graphs must be includ-
ed, and they contribute only to renormalization
effects canceling other gauge-dependent pieces.

(3) The limited number of independent subtrac-
tion constants leads to finite, gauge-independent,
higher-order relations among the physical masses
and on-shell vertices of the theory.
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APPENDIX

This appendix presents the details involved in
examining the gauge-dependent portions of our re-
normalization procedure. A brief discussion of
gauge-covariant regularization is included along
with the explicit formulas used to verify relation
(4.13). Besides exhibiting the gauge dependence of
the renormalization constants, it is also worth-
while writing down their divergent, gauge-indepen-
dent pieces. This is necessary in order to check
finiteness relations such as (4.17). We have, in
fact, checked (4.17) in this way, but the details are
not presented here.

As remarked in the text, all divergent integrals
which arise in our calculations are to be regarded
as defined by the 't Hooft-Veltman regulation pro-
cedure, which consists of an analytic continuation
in the number of space-time dimensions. ' We note
that in the absence of fermions, our theory con-
tains no objects, such as e„„s,which are peculiar
to 4-dimensional space, and the continuation en-
counters no difficulty. This method is an extremely
attractive one to use for gauge theories because
dimensional continuation leaves the form of Ward
identities unchanged, thus ensuring the validity of
the formal arguments based upon them. Indeed, it
is precisely this property of the regulation pro-
cedure which also makes the method very conve-
nient; vector algebra is left formally unaltered
by continuation in the number of space-time di-
mensions. This means that one is free to perform
shifts in integration variables so long as divergent
integrals are regularized by dimensional continua-
tion, and the results presented in this Appendix
were obtained by making repeated use of this
property.

The Feynman integrals presented below can all
be evaluated by use of the 't Hooft-Veltman for-
mula"

(2p)" (k'+2k p+ m')" (2m)"(m'- p')" "~' F(n) (Al)

where the integration is carried out over an n-dimensional Euclidean momentum space, and p„ is a Eu-
clidean vector. Using this formula one ean obtain the following parametric forms for the Feynman inte-
grals which arise in the calculation. As n tends to 4 we have

d k 1 i m
(2m)" k' —m'+i@ (4v)' (2 —,'n) '—

r d
"k 1 2 1

(2 )„(, ,
) [( ), ,

)
=

(4 ), (2, )
— dxdy5(1 —x-y)(ln(m, 'x+m, 'y+p'xy)+const),

d k 1 1 1
(2w) (k' —m, '+ ie) [(k+p)' —m, '+ ie] [(k+ q)' —m, '+ ic] (A2)

2

(4w)'

1 1
dxdydz 5(1—x- y —z)

p'xy+ q'xz+ (p + q)'yz —m, 'x —m, 'y —m, 'z
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where these are conventional momentum-space integrals.
We present below the explicit gauge dependence of the vector-meson self-energy, the scalar-meson self-

energy, and the scalar-meson three-point function.
To simplify notation, define

A(k+ q) = (k+ q)' —g'A. '+ ic, A =A(k)

A( j ) =A(k+ q, ), j= 1, 2, 3

B(k+q) = $(k+ q)' —g'X +i@, B=B(k)

B(j)=B(k+q,), j=1,2, 3

(A3)

where the q,. are the external momenta of the scalar-meson three-point function V(q, ', q, ', q3') as defined
in Fig. 4(a).

The gauge-dependent part of the vector meson self-energy, as calculated from the diagrams of Figs.
5(a) and 5(b), is

2 2 2' 1 2g2
11„„(p')=1[)„p„—2 p'+ -4AA.' dx ln p'x(l —x)+2kh2(1- x)+ g +const

0

+ gauge-independent terms (GIT)}rye „xG)T,

Note that only the longitudinal part is gauge-dependent and that this part becomes divergent in the limit
g-0 (unitary gauge}. The gauge independence of the coefficient of g„„implies that the vector-meson mass
and wave-function renormalization are both gauge-independent.

The scalar meson self-energy calculated from Figs. 3(a) and 3(b) is

2k ~ —' "' ' — -4k~ ' "' '
+GIT

(2 )" B(k) 2X' (2 )" B(k)B(k+ )
(A5)

Note that the gauge-dependent parts vanish on shell (q' =2k%2), so that mass renormalization is gauge-inde-
pendent as expected. The formulas given above for the regulated integrals can be used to compute the sca-
lar-meson wave-function renormalization constant as

2k ' g2X2
(&- 1)=-, dx ln x(x- 1)2hZ.'+ const —, +GIT .

7[ p

For V(q,', q, ', q,'), the diagrams of Fig. 4(a) give the contributions

ff

g3 (2 ) BB(2)B(3)(g ~ ((ql q2 + q3 5k~ ) + 2g ~ 'V[2k~ (ql + q2 + q3 ) ql q2 q2 'q3 q3 'ql ]

+ 2 g'[ q, 'q, 'q, ' —kz'(q, 'q2'+ q, 'q, '+ q, 'q, ') + 4k'X'] }

+ —, „' [—(i —t)'i '+ t(t+ t)h'(q, *+q,')- t(gq, 'i,'+ q, 'q, ')[+cystic permutations oi q, }
g' d "k q, '(q, ' —q, '}+ —,( + $) (2 )„~(3)B(2) cyc. perm. (j)

g' d "k [A.'(1 —$) —(q,2] (4k'' —q,
' —q, ')

(2)T)"

1 dk 1 22 2 2 4
(2 )„(1)(g y[, $(q2 + q3 — ky(. )

~ t'[gh h + g i. (2hh'-q, ')+ —'(ghh —q
' —q, ')q, '])+cyc. perm. (j))

( )„—+GIT .

The diagrams of Fig. 4(b) contribute

3k) d k 1
(2w)" B

(Av)

(A8)
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The renormalization procedure has been set up so that external-line corrections vanish on shell. Thus,
when q,.

' =2@A.', the sum of the above terms is

9hg d "0 1» d "0 1 1 1 1
(2m)" 8 . (2~)" B B(1) B(2) B(3)

X (2v)" B (2~)" BB(1) (A9)

since the three terms of. the second intern'al are all equal (each term is evaluated on the same mass shell).
Converting to Feynman-parameter form, we verify Eq. (4.13) of the text:

V(M~2, M~, M~ ) =-9zhA(g —1)+GIT . (Alo)

This ensUres that the relation betw'een the bare and physical three-scalar coupling, arising from both 1PI
vertex corrections and external-line wave- function renormalization, is gauge- independent.
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